Published online by Cambridge University Press: 05 May 2013
The analysis of the wake is considerably simplified if the rotor is modeled as an actuator disk, which is a circular surface of zero thickness that can support a pressure difference and thus accelerate the air through the disk. The actuator disk neglects the discreteness in the rotor and wake associated with a finite number of blades, and it distributes the vorticity throughout the wake volume. The actuator disk model is the basis for momentum theory (sections 3.1.1 and 5.1.1). The simplest version of vortex theory uses an actuator disk model, which produces a tractable mathematical problem, at least for axial flight (section 3.7). In contrast to hover, the mathematical problem in forward flight is still not trivial, because of the skewed cylindrical geometry (section 5.2). Some results from actuator disk models were presented in section 5.2.1.
The focus of this chapter is the unsteady aerodynamics of the rotor associated with the three-dimensional wake. In particular, the dynamic inflow model is developed. This is a finite-state model, relating a set of inflow variables and loading variables by differential equations. Such a model is required for aeroelastic stability calculations and real time simulation. Vortex theory uses the Biot-Savart law for the velocity induced by the wake vorticity. Potential theory solves the fluid dynamic equations for the velocity potential or acceleration potential.
Vortex Theory
For the actuator disk in axial flow, the wake is a right circular cylinder (Figure 11.1). With uniform loading, the bound circulation is constant over the span, and the trailed vorticity is concentrated in root and tip vortices.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.