Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-27T23:47:42.364Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  17 December 2020

Andrew Binley
Affiliation:
Lancaster University
Lee Slater
Affiliation:
Rutgers University, New Jersey
Get access
Type
Chapter
Information
Resistivity and Induced Polarization
Theory and Applications to the Near-Surface Earth
, pp. 335 - 384
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdulsamad, F., Florsch, N. and Camerlynck, C. (2017) ‘Spectral induced polarization in a sandy medium containing semiconductor materials: Experimental results and numerical modelling of the polarization mechanism’, Near Surface Geophysics, 15(6), pp. 669683. DOI: 10.3997/1873-0604.2017052Google Scholar
Abdulsamad, F., Revil, A., Soueid Ahmed, A., Coperey, A., Karaoulis, M., Nicaise, S. and Peyras, L. (2019) ‘Induced polarization tomography applied to the detection and the monitoring of leaks in embankments’, Engineering Geology, 254, pp. 89101. DOI: 10.1016/j.enggeo.2019.04.001CrossRefGoogle Scholar
Accerboni, E. (1970) ‘Sur la correlation existant entre porosite et fagteur de formation dans les sediments non consolides’, Geophysical Prospecting, 18(4), pp. 505515.CrossRefGoogle Scholar
Achal, V., Pan, X. and Özyurt, N. (2011) ‘Improved strength and durability of fly ash-amended concrete by microbial calcite precipitation’, Ecological Engineering, 37(4), pp. 554559.Google Scholar
Ahmed, A. S., Revil, A. and Gross, L. (2019) ‘Multiscale induced polarization tomography in hydrogeophysics: A new approach’, Advances in Water Resources, 134, p. 103451. DOI: 10.1016/j.advwatres.2019.103451Google Scholar
Ahmed, A. S., Revil, A., Byrdina, S., Coperey, A., Gailler, L., Grobbe, N., Viveiros, F., Silva, C., Jougnot, D. and Ghorbani, A. (2018) ‘3D electrical conductivity tomography of volcanoes’, Journal of Volcanology and Geothermal Research, 356, pp. 243263.CrossRefGoogle Scholar
Aines, R., Nitao, J., Newmark, R., Carle, S., Ramirez, A., Harris, D., Johnson, J., Johnson, V., Ermak, D. and Sugiyama, G. (2002) The stochastic engine initiative: Improving prediction of behavior in geologic environments we cannot directly observe. Lawrence Livermore National Lab., CA (US). UCRL-ID-148221. DOI: 10.2172/15002143CrossRefGoogle Scholar
Aizebeokhai, A. P., Olayinka, A. I., Singh, V. S. and Uhuegbu, C. C. (2011) ‘Effectiveness of 3D geoelectrical resistivity imaging using parallel 2D profiles’, Current Science, 101(8), pp. 10361052.Google Scholar
Al Hagrey, S. A. (2006) ‘Electrical resistivity imaging of tree trunks’, Near Surface Geophysics, 4(3), pp. 179187.Google Scholar
Alfano, L. (1962) ‘Geoelectrical prospecting with underground electrodes’, Geophysical Prospecting, 10(3), pp. 290303.CrossRefGoogle Scholar
Alle, I. C., Descloitres, M., Vouillamoz, J.-M., Yalo, N., Lawson, F. M. A. and Adihou, A. C. (2018) ‘Why 1D electrical resistivity techniques can result in inaccurate siting of boreholes in hard rock aquifers and why electrical resistivity tomography must be preferred: The example of Benin, West Africa’, Journal of African Earth Sciences, 139, pp. 341353.CrossRefGoogle Scholar
Allen, D. A. and Merrick, N. P. (2005) ‘Imaging of Aquifers beneath watercourses’, in Where Waters Meet. New Zealand Society of Soil Science, pp. 18.Google Scholar
Allred, B., Daniels, J. J. and Ehsani, M. R. (2008) Handbook of Agricultural Geophysics. CRC Press, Boca Raton, FL, p. 432.CrossRefGoogle Scholar
Alumbaugh, D. L. and Newman, G. A. (2000) ‘Image appraisal for 2-D and 3-D electromagnetic inversion’, Geophysics, 65(5), pp. 14551467.CrossRefGoogle Scholar
Ambegaokar, V., Halperin, B. I. and Langer, J. S. (1971) ‘Hopping conductivity in disordered systems’, Physical Review B, 4(8), p. 2612.Google Scholar
Andersen, K. E., Brooks, S. P. and Hansen, M. B. (2003) ‘Bayesian inversion of geoelectrical resistivity data’, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 65(3), pp. 619642.CrossRefGoogle Scholar
Anderson, R. (1981) ‘Nonlinear induced polarization spectra’. PhD dissertation thesis, Department of Geology and Geophysics, University of Utah.Google Scholar
Anderson, W. L. (1979) ‘Numerical integration of related Hankel transforms of orders 0 and 1 by adaptive digital filtering’, Geophysics, 44(7), pp. 12871305.Google Scholar
André, F., van Leeuwen, C., Saussez, S., Van Durmen, R., Bogaert, P., Moghadas, D., de Rességuier, L., Delvaux, B., Vereecken, H. and Lambot, S. (2012) ‘High-resolution imaging of a vineyard in south of France using ground-penetrating radar, electromagnetic induction and electrical resistivity tomography’, Journal of Applied Geophysics, 78, pp. 113122.Google Scholar
Angoran, Y. and Madden, T. R. (1977) ‘Induced polarization: A preliminary of its chemical basis study’, Geophysics, 42(4), pp. 788803.CrossRefGoogle Scholar
Anwar, H. and Kistijantoro, A. I. (2016) ‘Acceleration of finite element method for 3D DC resistivity modeling using multi-GPU’, in 2016 International Conference on Information Technology Systems and Innovation (ICITSI). IEEE, pp. 15.CrossRefGoogle Scholar
Archie, G. E. (1942) ‘The electrical resistivity log as an aid in determining some reservoir characteristics’, Transactions of the American Institute of Mining, Metallurgical, and Petroleum Engineers, 146, pp. 5462.Google Scholar
Archie, G. E. (1950) ‘Introduction to petrophysics of reservoir rocks’, AAPG Bulletin. American Association of Petroleum Geologists, 34(5), pp. 943961.Google Scholar
Asami, K. (2002) ‘Characterization of heterogeneous systems by dielectric spectroscopy’, Progress in Polymer Science, 27(8), pp. 16171659.CrossRefGoogle Scholar
Asch, T. and Morrison, H. F. (1989) ‘Mapping and monitoring electrical resistivity with surface and subsurface electrode arrays’, Geophysics, 54(2), pp. 235244.Google Scholar
Aster, R. C., Borchers, B. and Thurber, C. H. (2018) Parameter Estimation and Inverse Problems. Elsevier, p. 383.Google Scholar
Atekwana, E. and Slater, L. D. (2009) ‘Biogeophysics: A New Frontier in Earth Science Research’, Reviews of Geophysics, 47(RG4004/2009), pp. 130. DOI: 10.1029/2009RG000285Google Scholar
Atekwana, E. A., Sauck, W. A. and Werkema, D. D. (2000) ‘Investigations of geoelectrical signatures at a hydrocarbon contaminated site’, Journal of Applied Geophysics, 44(2–3), pp. 167180. DOI: 10.1016/S0926-9851(98)00033-0CrossRefGoogle Scholar
Atekwana, Estella A. and Atekwana, Eliot A. (2009) ‘Geophysical signatures of microbial activity at hydrocarbon contaminated sites: A review’, Surveys in Geophysics, 31(2), pp. 247283. DOI: 10.1007/s10712-009-9089-8CrossRefGoogle Scholar
Atkinson, R. J. C. (1953) Field Archaeology. Methuen, pp. 1233.Google Scholar
Auken, E. and Christiansen, A. V. (2004) ‘Layered and laterally constrained 2D inversion of resistivity data’, Geophysics, 69(3), pp. 752761.CrossRefGoogle Scholar
Auken, E., Christiansen, A. V., Jacobsen, B. H., Foged, N. and Sørensen, K. I. (2005) ‘Piecewise 1D laterally constrained inversion of resistivity data’, Geophysical Prospecting, 53(4), pp. 497506.CrossRefGoogle Scholar
Backus, G. and Gilbert, F. (1970) ‘Uniqueness in the inversion of inaccurate gross earth data’, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 266(1173), pp. 123192.Google Scholar
Bairlein, K., Bücker, M., Hördt, A. and Hinze, B. (2016) ‘Temperature dependence of spectral induced polarization data: Experimental results and membrane polarization theory’, Geophysical Journal International, 205(1), pp. 440453. DOI: 10.1093/gji/ggw027CrossRefGoogle Scholar
Barber, D. C. (1989) ‘A review of image reconstruction techniques for electrical impedance tomography’, Medical Physics, 16(2), pp. 162169.CrossRefGoogle ScholarPubMed
Barber, D. C. and Brown, B. H. (1984) ‘Applied potential tomography’, Journal of Physics E: Scientific Instruments, 17(9), p. 723.CrossRefGoogle Scholar
Barboza, F. M., Medeiros, W. E. and Santana, J. M. (2019) ‘A user-driven feedback approach for 2D direct current resistivity inversion based on particle swarm optimization’, Geophysics, 84(2), pp. E105E124.CrossRefGoogle Scholar
Barker, R. D. (1979) ‘Signal contribution sections and their use in resistivity studies’, Geophysical Journal International, 59(1), pp. 123129.Google Scholar
Barker, R. D. (1981) ‘The offset system of electrical resistivity sounding and its use with a multicore cable’, Geophysical Prospecting, 29(1), pp. 128143. DOI: 10.1111/j.1365-2478.1981.tb01015.xCrossRefGoogle Scholar
Barton, D. C. (1927) ‘Applied geophysical methods in America’, Economic Geology, 22(7), pp. 649668.CrossRefGoogle Scholar
Barus, C. (1882) ‘On the electrical activity of ore bodies’, in Geology of the Comstock Lode and the Washoe District (Becker, G. F. ed.). U.S. Gological Survey, pp. 309367.Google Scholar
Baumgartner, F. and Christensen, N. B. (1998) ‘Analysis and application of a non‐conventional underwater geoelectrical method in Lake Geneva, Switzerland’, Geophysical Prospecting, 46(5), pp. 527541.CrossRefGoogle Scholar
Bayford, R. H. (2006) ‘Bioimpedance tomography (electrical impedance tomography)’, Annual Review of Biomedical Engineering, 8, pp. 6391.CrossRefGoogle ScholarPubMed
Bear, J. (1972) Dynamics of Fluids in Porous Media, Elsevier Publishing Co., p 764.Google Scholar
Beard, L. P., Hohmann, G. W. and Tripp, A. C. (1996) ‘Fast resistivity/IP inversion using a low-contrast approximation’, Geophysics, 61(1), pp. 169179.CrossRefGoogle Scholar
Beasley, C. W. and Ward, S. H. (1986) ‘Three-dimensional mise-a-la-masse modeling applied to mapping fracture zones’, Geophysics, 51(1), pp. 98113.CrossRefGoogle Scholar
Benoit, S., Ghysels, G., Gommers, K., Hermans, T., Nguyen, F. and Huysmans, M. (2019) ‘Characterization of spatially variable riverbed hydraulic conductivity using electrical resistivity tomography and induced polarization’, Hydrogeology Journal, 27(1), pp. 395407.Google Scholar
Bergmann, P., Schmidt-Hattenberger, C., Kiessling, D., Rücker, C., Labitzke, T., Henninges, J., Baumann, G. and Schütt, H. (2012) ‘Surface-downhole electrical resistivity tomography applied to monitoring of CO2 storage at Ketzin, Germany’, Geophysics, 77(6), pp. B253B267.Google Scholar
Bergmann, P., Schmidt-Hattenberger, C., Labitzke, T., Wagner, F. M., Just, A., Flechsig, C. and Rippe, D. (2017) ‘Fluid injection monitoring using electrical resistivity tomography: Five years of CO2 injection at Ketzin, Germany’, Geophysical Prospecting, 65(3), pp. 859875.Google Scholar
Bernabé, Y. (1995) ‘The transport properties of networks of cracks and pores’, Journal of Geophysical Research, 100(B3), pp. 42314241. DOI: 10.1029/94JB02986Google Scholar
Bernabé, Y., Li, M. and Maineult, A. (2010) ‘Permeability and pore connectivity: A new model based on network simulations’, Journal of Geophysical Research: Solid Earth, 115 (10), pp. 114. DOI: 10.1029/2010JB007444CrossRefGoogle Scholar
Bernabé, Y., Zamora, M., Li, M., Maineult, A. and Tang, Y. B. (2011) ‘Pore connectivity, permeability, and electrical formation factor: A new model and comparison to experimental data’, Journal of Geophysical Research: Solid Earth, 116 (11), pp. 115. DOI: 10.1029/2011JB008543CrossRefGoogle Scholar
Bernard, J. and Valla, P. (1991) ‘Groundwater exploration in fissured media with electrical and VLF methods’, Geoexploration, 27(1–2), pp. 8191.Google Scholar
Berryman, J. G. (1995) ‘Mixture theories for rock properties’, Rock Physics and Phase Relations: A Handbook of Physical Constants, 3, pp. 205228, DOI: 10.1029/RF003p0205Google Scholar
Bertin, J. and Loeb, J. (1976) Experimental and Theoretical Aspects of Induced Polarization, Vol 1, Presentation and application of the IP method case histories. Gebrüder Borntraeger, p. 250.Google Scholar
Bérubé, C. L., Chouteau, M., Shamsipour, P., Enkin, R. J. and Olivo, G. R. (2017) ‘Bayesian inference of spectral induced polarization parameters for laboratory complex resistivity measurements of rocks and soils’, Computers & Geosciences, 105, pp. 5164.CrossRefGoogle Scholar
Bérubé, C. L., Olivo, G. R., Chouteau, M. and Perrouty, S. (2018) ‘Mineralogical and textural controls on spectral induced polarization signatures of the Canadian Malartic gold deposit: Applications to mineral exploration’, Geophysics, 84(2), pp. 183. DOI: 10.1190/geo2018-0404.1Google Scholar
Bevc, D. and Morrison, H. F. (1991) ‘Borehole-to-surface electrical resistivity monitoring of a salt water injection experiment’, Geophysics, 56(6), pp. 769777.CrossRefGoogle Scholar
Beven, K. J., Henderson, D. E. and Reeves, A. D. (1993) ‘Dispersion parameters for undisturbed partially saturated soil’, Journal of Hydrology, 143(1–2), pp. 1943.Google Scholar
Bhattacharya, P. K. and Patra, H. P. (1968) Direct Current Geoelectric, Sounding Methods in Geochemistry and Geophysics. Elsevier, Amsterdam, p. 135.Google Scholar
Bhattacharya, B. B., Gupta, D., Banerjee, B. and Shalivahan, (2001) ‘Mise-a-la-masse survey for an auriferous sulfide deposit’, Geophysics, 66(1), pp. 7077.Google Scholar
Bibby, H. M. (1977) ‘The apparent resistivity tensor’, Geophysics, 42(6), pp. 12581261.CrossRefGoogle Scholar
Bigelow, E. (1992) Introduction to Wireline Log Analysis. Baker Hughes Inc., Western Atlas International, p. 312Google Scholar
Bing, Z. and Greenhalgh, S. A. (1997) ‘A synthetic study on crosshole resistivity imaging using different electrode arrays’, Exploration Geophysics, 28(1–2), pp. 15.CrossRefGoogle Scholar
Bing, Z. and Greenhalgh, S. A. (2000) ‘Cross-hole resistivity tomography using different electrode configurations’, Geophysical Prospecting, 48(5), pp. 887912.CrossRefGoogle Scholar
Bing, Z. and Greenhalgh, S. A. (2001) ‘Finite element three dimensional direct current resistivity modelling: Accuracy and efficiency considerations’, Geophysical Journal International, 145(3), pp. 679688.CrossRefGoogle Scholar
Binley, A. and Daily, W. (2003) ‘The performance of electrical methods for assessing the integrity of geomembrane liners in landfill caps and waste storage ponds’, Journal of Environmental & Engineering Geophysics, 8(4), pp. 227237.Google Scholar
Binley, A., Ramirez, A. and Daily, W. (1995) ‘Regularised image reconstruction of noisy electrical resistance tomography data’, in Process Tomography – 1995, Proceedings of the 4th Workshop of the European Concerted Action on Process Tomography. Bergen, pp. 68.Google Scholar
Binley, A., Henry-Poulter, S. and Shaw, B. (1996a) ‘Examination of solute transport in an undisturbed soil column using electrical resistance tomography’, Water Resources Research, 32(4), pp. 763769.Google Scholar
Binley, A., Shaw, B. and Henry-Poulter, S. (1996b) ‘Flow pathways in porous media: Electrical resistance tomography and dye staining image verification’, Measurement Science and Technology, 7(3), pp. 384390. DOI: 10.1088/0957-0233/7/3/020Google Scholar
Binley, A., Pinheiro, P. and Dickin, F. (1996c) ‘Finite element based three-dimensional forward and inverse solvers for electrical impedance tomography’, in Colloquium on Advances in Electrical Tomography, Computing and Control Division, IEE, Digest No. 96/143. Manchester, UK, pp. 6/16/3.Google Scholar
Binley, A., Daily, W. and Ramirez, A. (1997) ‘Detecting leaks from environmental barriers using electrical current imaging’, Journal of Environmental and Engineering Geophysics, 2(1), pp. 1119.Google Scholar
Binley, A., Slater, L. D., Fukes, M. and Cassiani, G. (2005) ‘Relationship between spectral induced polarization and hydraulic properties of saturated and unsaturated sandstone’, Water Resources Research, 41 (12), DOI: 10.1029/2005WR004202Google Scholar
Binley, A., Winship, P., Middleton, R., Pokar, M. and West, J. (2001) ‘High‐resolution characterization of vadose zone dynamics using cross‐borehole radar’, Water Resources Research, 37(11), pp. 26392652.Google Scholar
Binley, A., Winship, P., West, L. J., Pokar, M. and Middleton, R. (2002a) ‘Seasonal variation of moisture content in unsaturated sandstone inferred from borehole radar and resistivity profiles’, Journal of Hydrology, 267(3–4), pp. 160172.Google Scholar
Binley, A., Cassiani, G., Middleton, R. and Winship, P. (2002b) ‘Vadose zone flow model parameterisation using cross-borehole radar and resistivity imaging’, Journal of Hydrology, 267 (3–4), pp. 147159. DOIDOI: 10.1016/S0022-1694(02)00146-4Google Scholar
Binley, A., Hubbard, S. S., Huisman, J. A., Revil, A., Robinson, D. A., Singha, K. and Slater, L. D. (2015) ‘The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales’, Water Resources Research, 51, pp. 38373866. DOI: 10.1002/2015WR017016Google Scholar
Binley, A., Keery, J., Slater, L., Barrash, W. and Cardiff, M. (2016) ‘The hydrogeologic information in cross-borehole complex conductivity data from an unconsolidated conglomeratic sedimentary aquifer’, Geophysics, 81(6), pp. E409E421. DOI: 10.1190/geo2015-0608.1Google Scholar
Blanchy, G., Saneiyan, S., Boyd, J., McLachlan, P., Binley, A. (2020) ‘ResIPy, an intuitive open source software for complex geoelectrical inversion/modeling in 2D space’, Computers and Geosciences, 137. DOI: 10.1016/j.cageo.2020.104423CrossRefGoogle Scholar
Blaschek, R., Hördt, A. and Kemna, A. (2008) ‘A new sensitivity-controlled focusing regularization scheme for the inversion of induced polarization data based on the minimum gradient support’, Geophysics, 73(2). DOI: 10.1190/1.2824820Google Scholar
Bleil, D. F. (1953) ‘Induced polarization: A method of geophysical prospecting’, Geophysics, 18, pp. 605635. DOI: 10.1190/1.1437917Google Scholar
Blome, M., Maurer, H. and Greenhalgh, S. (2011) ‘Geoelectric experimental design: Efficient acquisition and exploitation of complete pole-bipole data sets’, Geophysics, 76(1), pp. F15F26.Google Scholar
Blowes, D. W., Ptacek, C. J., Benner, S. G., McRae, C. W. T., Bennett, T. A. and Puls, R. W. (2000) ‘Treatment of inorganic contaminants using permeable reactive barriers’, Journal of Contaminant Hydrology, 45(1–2), pp. 123137.Google Scholar
Bobachev, A. A. (2003) Reshenie pryamyh i obratnyh zadach elektrorazvedki metodom soprotivlenij dlya slozhno-postroennyh sred (Direct and inverse problems of electrical prospecting by the resistivity method for difficult-built environments, in Russian). PhD dissertation. Moscow University, Russia.Google Scholar
Bodin, T. and Sambridge, M. (2009) ‘Seismic tomography with the reversible jump algorithm’, Geophysical Journal International, 178(3), pp. 14111436.Google Scholar
Bodmer, R., Ward, S. H. and Morrison, H. F. (1968) ‘On induced electrical polarization and groundwater’, Geophysics, 33(5), pp. 805821.CrossRefGoogle Scholar
Bogoslovsky, V. A. and Ogilvy, A. A. (1977) ‘Geophysical methods for the investigation of landslides’, Geophysics, 42(3), pp. 562571.Google Scholar
Bording, T. S., Fiandaca, G., Maurya, P. K., Auken, E., Christiansen, A. V., Tuxen, N., Klint, K. E. S. and Larsen, T. H. (2019) ‘Cross-borehole tomography with full-decay spectral time-domain induced polarization for mapping of potential contaminant flow-paths’, Journal of Contaminant Hydrology, 226. DOI: 10.1016/j.jconhyd.2019.103523CrossRefGoogle ScholarPubMed
Börner, F. (1992) Complex conductivity measurements of reservoir properties. Advances in Core Evaluation III (Reservoir Management). Gordon and Breach Science Publishers, London.Google Scholar
Börner, F. D. and Schön, J. H. (1991) ‘A relation between the quadrature component of electrical conductivity and the specific surface area of sedimentary rocks’, The Log Analyst, 32, pp. 612613.Google Scholar
Börner, F. Gruhne, M. and Schön, J. (1993) ‘Contamination indications derived from electrical properties in the low frequency range 1’, Geophysical Prospecting, 41(1), pp. 8398.Google Scholar
Börner, F. D., Schopper, J. R. and Weller, A. (1996) ‘Evaluation of transport and storage properties in the soil and groundwater zone from induced polarization measurements’, Geophysical Prospecting, 44(4), pp. 583601. DOI: 10.1111/j.1365-2478.1996.tb00167.xCrossRefGoogle Scholar
Boryta, D. A. and Nabighian, M. N. (1985) ‘Method for determining a leak in a pond liner of electrically insulating sheet material’, U.S. Patent 4,543,525.Google Scholar
Bouchedda, A., Chouteau, M., Binley, A. and Giroux, B. (2012) ‘2-D joint structural inversion of cross-hole electrical resistance and ground penetrating radar data’, Journal of Applied Geophysics, 78, pp. 5267. DOI: 10.1016/j.jappgeo.2011.10.009Google Scholar
Boyd, J., Blanchy, G., Saneiyan, S., McLachlan, P., Binley, A. (2019) ‘3D geoelectrical problems with ResiPy, an open source graphical user interface for geoelectrical data processing’, Fast Times, 24(4), pp. 8592.Google Scholar
Bradbury, K. R. and Taylor, R. W. (1984) ‘Determination of the hydrogeologic properties of lakebeds using offshore geophysical surveys’, Groundwater, 22(6), pp. 690695.Google Scholar
Brindt, N., Rahav, M. and Wallach, R. (2019) ‘ERT and salinity: A method to determine whether ERT-detected preferential pathways in brackish water-irrigated soils are water-induced or an artifact of salinity’, Journal of Hydrology, 574, pp. 3545.Google Scholar
Brown, B. H. (2001) ‘Medical impedance tomography and process impedance tomography: A brief review’, Measurement Science and Technology, 12(8), p. 991.Google Scholar
Brown, B. H., Barber, D. C., Wang, W., Lu, L., Leathard, A. D., Smallwood, R. H., Hampshire, A. R., Mackay, R. and Hatzigalanis, K. (1994) ‘Multi-frequency imaging and modelling of respiratory related electrical impedance changes’, Physiological Measurement, 15(2A), p. A1.Google Scholar
Brown, F. H. (1900) ‘Process of locating metallic minerals or buried treasures’, U.S. Patent 645,910.Google Scholar
Brown, F. H. (1901) ‘Process of locating metallic minerals’, U.S. Patent 672,309.Google Scholar
Brown, S. R., Lesmes, D., Fourkas, J. and Sorenson, J. R. (2003) Complex Electrical Resistivity for Monitoring DNAPL Contamination. New England Research Inc. (US), p. 29.Google Scholar
Bruggeman, V. D. A. G. (1935) ‘Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen’, Annalen der physik, 416(7), pp. 636664.CrossRefGoogle Scholar
Brunauer, S., Emmett, P. H. and Teller, E. (1938) ‘Adsorption of gases in multimolecular layers’, Journal of the American Chemical Society, 60(2), pp. 309319.Google Scholar
Bücker, M. and Hördt, A. (2013a) ‘Analytical modelling of membrane polarization with explicit parametrization of pore radii and the electrical double layer’, Geophysical Journal International, 194 (2), pp. 804813. DOI: 10.1093/gji/ggt136Google Scholar
Bücker, M. and Hördt, A. (2013b) ‘Long and short narrow pore models for membrane polarization’, Geophysics, 78(6), pp. E299E314. DOI: 10.1190/geo2012-0548.1Google Scholar
Bücker, M., Bairlein, K., Bielefeld, A., Kuhn, E., Nordsiek, S. and Stebner, H. (2016) ‘The dependence of induced polarization on fluid salinity and pH, studied with an extended model of membrane polarization’, Journal of Applied Geophysics, 135, pp. 408417. DOI: 10.1016/j.jappgeo.2016.02.007Google Scholar
Bücker, M., Orozco, A. F. and Kemna, A. (2018) ‘Electrochemical polarization around metallic particles – Part 1: The role of diffuse-layer and volume-diffusion relaxation’, Geophysics, 83(4), pp. E203E217. DOI: 10.1190/geo2017-0401.1Google Scholar
Bücker, M., Flores Orozco, A., Undorf, S. and Kemna, A. (2019) ‘On the role of Stern- and diffuse-layer polarization mechanisms in porous media’, Journal of Geophysical Research: Solid Earth, 124 (6), pp. 56565677. DOI: 10.1029/2019JB017679Google Scholar
Butler, K. E. (2009) ‘Trends in waterborne electrical and EM induction methods for high resolution sub-bottom imaging’, Near Surface Geophysics, 7(4), pp. 241246.Google Scholar
Cai, J., Wei, W., Hu, X. and Wood, D. A. (2017) ‘Electrical conductivity models in saturated porous media: A review’, Earth-Science Reviews. pp. 419433. DOI: 10.1016/j.earscirev.2017.06.013Google Scholar
Calderón‐Macías, C., Sen, M. K. and Stoffa, P. L. (2000) ‘Artificial neural networks for parameter estimation in geophysics’, Geophysical Prospecting, 48(1), pp. 2147.Google Scholar
Candansayar, M. E. (2008) ‘Two-dimensional individual and joint inversion of three-and four-electrode array dc resistivity data’, Journal of Geophysics and Engineering, 5(3), pp. 290300.Google Scholar
Carcangiu, S., Fanni, A. and Montisci, A. (2019) ‘Electric capacitance tomography for nondestructive testing of standing trees’, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 32 (4), pp. 110. DOI: 10.1002/jnm.2252Google Scholar
Carman, P. C. (1939) ‘Permeability of saturated sands, soils and clays’, The Journal of Agricultural Science, 29(2), pp. 262273.Google Scholar
Carpenter, E. W. (1955) ‘Some notes concerning the Wenner configuration’, Geophysical Prospecting, 3(4), pp. 388402.Google Scholar
Carpenter, E. W. and Habberjam, G. M. (1956) ‘A tri-potential method of resistivity prospecting’, Geophysics, 21(2), pp. 455469.Google Scholar
Cassiani, G., Binley, A., Kemna, A., Wehrer, M., Orozco, A. F., Deiana, R., Boaga, J., Rossi, M., Dietrich, P., Werban, U., Zschornack, L., Godio, A., JafarGandomi, A. and Deidda, G. P. (2014) ‘Noninvasive characterization of the Trecate (Italy) crude-oil contaminated site: Links between contamination and geophysical signals’, Environmental Science and Pollution Research, 21(15), pp. 89148931. DOI: 10.1007/s11356-014-2494-7Google Scholar
Caterina, D., Beaujean, J., Robert, T. and Nguyen, F. (2013) ‘A comparison study of different image appraisal tools for electrical resistivity tomography’, Near Surface Geophysics, 11(6), pp. 639657. DOI: 10.3997/1873-0604.2013022CrossRefGoogle Scholar
Chambers, J., Ogilvy, R., Kuras, O., Cripps, J. and Meldrum, P. (2002) ‘3D electrical imaging of known targets at a controlled environmental test site’, Environmental Geology, 41(6), pp. 690704.Google Scholar
Chambers, J. E., Meldrum, P. I., Ogilvy, R. D. and Wilkinson, P. B. (2005) ‘Characterisation of a NAPL-contaminated former quarry site using electrical impedance tomography’, Near Surface Geophysics, 3(2), pp. 8192. DOI: 10.3997/1873-0604.2005003Google Scholar
Chambers, J. E., Wilkinson, P. B., Uhlemann, S., Sorensen, J. P. R., Roberts, C., Newell, A. J., Ward, W. O. C., Binley, A., Williams, P. J., Gooddy, D. C., Old, G. and Bai, L. (2014) ‘Derivation of lowland riparian wetland deposit architecture using geophysical image analysis and interface detection’, Water Resources Research, 50(7), pp. 58865905. DOI: 10.1002/2014WR015643Google Scholar
Chambers, J. E., Wilkinson, P. B., Wardrop, D., Hameed, A., Hill, I., Jeffrey, C., Loke, M. H., Meldrum, P. I., Kuras, O., Cave, M. and Gunn, D. A. (2012) ‘Bedrock detection beneath river terrace deposits using three-dimensional electrical resistivity tomography’, Geomorphology, 177–178, pp. 1725. DOI: 10.1016/j.geomorph.2012.03.034CrossRefGoogle Scholar
Chambers, J. E., Gunn, D. A., Wilkinson, P. B., Meldrum, P. I., Haslam, E., Holyoake, S., Kirkham, M., Kuras, O., Merritt, A. and Wragg, J. (2014) ‘4D electrical resistivity tomography monitoring of soil moisture dynamics in an operational railway embankment’, Near Surface Geophysics, 12(1), pp. 6172.Google Scholar
Chambers, J., Meldrum, P., Gunn, D., Wilkinson, P., Uhlemann, S., Kuras, O. and Swift, R. (2015) ‘Proactive infrastructure monitoring and evaluation (PRIME): A new electrical resistivity tomography system for remotely monitoring the internal condition of geotechnical infrastructure assets’, in 3rd International Workshop on Geoelectrical Monitoring (GELMON).Google Scholar
Chave, A. D., Constable, S. C. and Edwards, R. N. (1991) ‘Electrical exploration methods for the seafloor’, in Electromagnetic Methods in Applied Geophysics: Volume 2, Application, Parts A and B. Society of Exploration Geophysicists, pp. 931966.Google Scholar
Chelidze, T. L. and Gueguen, Y. (1999) ‘Electrical spectroscopy of porous rocks: A review-I. Theoretical models’, Geophysical Journal International, 137(1), pp. 115. DOI: 10.1046/j.1365-246X.1999.00799.xGoogle Scholar
Chelidze, T. L., Guéguen, Y. and Ruffet, C. (1999) ‘Electrical spectroscopy of porous rocks: A review- II. Experimental results and interpretation’, Geophysical Journal International, 137, pp. 1634.Google Scholar
Chen, J., Kemna, A. and Hubbard, S. S. (2008) ‘A comparison between Gauss-Newton and Markov-chain Monte Carlo-based methods for inverting spectral induced-polarization data for Cole–Cole parameters’, Geophysics, 73(6). DOI: 10.1190/1.2976115Google Scholar
Chen, Q., Pardo, D., Li, H. and Wang, F. (2011) ‘New post-processing method for interpretation of through casing resistivity (TCR) measurements’, Journal of Applied Geophysics, 74(1), pp. 1925.Google Scholar
Cheng, Q., Chen, X., Tao, M. and Binley, A. (2019a) ‘Characterization of karst structures using quasi-3D electrical resistivity tomography’, Environmental Earth Sciences, 78 (9). DOI: 10.1007/s12665-019-8284-2Google Scholar
Cheng, Q., Tao, M., Chen, X. and Binley, A. (2019b) ‘Evaluation of electrical resistivity tomography (ERT) for mapping the soil–rock interface in karstic environments’, Environmental Earth Sciences, 78(15), p. 439.Google Scholar
Cho, Y., Sudduth, K. A. and Chung, S.-O. (2016) ‘Soil physical property estimation from soil strength and apparent electrical conductivity sensor data’, Biosystems Engineering, 152, pp. 6878.Google Scholar
Christensen, N. B. (1990) ‘Optimized fast Hankel transform filters 1’, Geophysical Prospecting, 38(5), pp. 545568.Google Scholar
Christensen, N. B. and Sørensen, K. (2001) ‘Pulled array continuous electrical sounding with an additional inductive source: An experimental design study’, Geophysical Prospecting, 49(2), pp. 241254.CrossRefGoogle Scholar
Chuprinko, D. and Titov, K. (2017) ‘Influence of mineral composition on spectral induced polarization in sediments’, Geophysical Journal International, pp. 186191. DOI: 10.1093/GJI/GGX018CrossRefGoogle Scholar
Claerbout, J. F. and Muir, F. (1973) ‘Robust modeling with erratic data’, Geophysics, 38(5), pp. 826844.Google Scholar
Clark, A. (1990) Seeing Beneath the Soil: Prospecting Methods in Archaeology. Routledge, p. 176.Google Scholar
Clark, A. R. and Salt, D. J. (1951) ‘The investigation of earth resistivities in the vicinity of a diamond drill hole’, Geophysics, 16(4), pp. 659665.Google Scholar
Clavier, C., Coates, G. and Dumanoir, J. (1984) ‘Theoretical and experimental bases for the dual-water model for interpretation of shaly sands’, Society of Petroleum Engineers Journal, 24(02), pp. 153168.Google Scholar
Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A. and Oldenburg, D. W. (2015) ‘SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications’, Computers & Geosciences, 85, pp. 142154.Google Scholar
Coggon, J. H. (1971) ‘Electromagnetic and electrical modeling by the finite element method’, Geophysics, 36(1), pp. 132155.CrossRefGoogle Scholar
Cole, K. S. and Cole, R. H. (1941) ‘Dispersion and absorption in dielectrics I. Alternating current characteristics’, The Journal of Chemical Physics, 9(4), pp. 341351.Google Scholar
Colton, D. L. and Kress, R. (1992) Inverse Acoustic and Electromagnetic Scattering Theory. Springer-Verlag (Applied Mathematical Sciences), p. 334.Google Scholar
Commer, M., Newman, G. A., Williams, K. H. and Hubbard, S. S. (2011) ‘3D induced-polarization data inversion for complex resistivity’, Geophysics, 76(3). DOI: 10.1190/1.3560156Google Scholar
Constable, S. C., Parker, R. L. and Constable, C. G. (1987) ‘Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data’, Geophysics, 52(3), pp. 289300.Google Scholar
Crestani, E., Camporese, M. and Salandin, P. (2015) ‘Assessment of hydraulic conductivity distributions through assimilation of travel time data from ERT-monitored tracer tests’, Advances in Water Resources, 84, pp. 2336.Google Scholar
Crook, N., Musgrave, H. and Binley, A. (2006) ‘Geophysical characterisation of the riparian zone in groundwater fed catchments’, in 19th Symposium on the Application of Geophysics to Engineering and Environmental Problems, SAGEEP 2006. Geophysical Applications for Environmental and Engineering Hazards – Advances and Constraints.Google Scholar
Crook, N., Binley, A., Knight, R., Robinson, D. A., Zarnetske, J. and Haggerty, R. (2008) ‘Electrical resistivity imaging of the architecture of substream sediments’, Water Resources Research, 44, W00D13, DOI:10.1029/2008WR006968Google Scholar
Čuma, M. and Zhdanov, M. S. (2014) ‘Massively parallel regularized 3D inversion of potential fields on CPUs and GPUs’, Computers & Geosciences, 62, pp. 8087.Google Scholar
Dafflon, B., Wu, Y., Hubbard, S. S., Birkholzer, J. T., Daley, T. M., Pugh, J. D., Peterson, J. E. and Trautz, R. C. (2012) ‘Monitoring CO2 intrusion and associated geochemical transformations in a shallow groundwater system using complex electrical methods’, Environmental Science & Technology, 47(1), pp. 314321.CrossRefGoogle Scholar
Dafflon, B., Hubbard, S., Wainwright, H., Kneafsey, T. J., Ulrich, C., Peterson, J. and Wu, Y. (2016) ‘Geophysical estimation of shallow permafrost distribution and properties in an ice-wedge polygon-dominated Arctic tundra region’, Geophysics, 81 (1), pp. WA247WA263. DOI: 10.1190/geo2015-0175.1CrossRefGoogle Scholar
Daft, L. and Williams, A. (1906) ‘Apparatus for detecting and localizing mineral deposits’, U.S. Patent 817,736.Google Scholar
Dahlin, T. (1995) ‘On the automation of 2D resistivity surveying for engineering and environmental applications’. PhD thesis, Lund University, Sweden, p. 187.Google Scholar
Dahlin, T. (2000) ‘Short note on electrode charge‐up effects in DC resistivity data acquisition using multi‐electrode arrays’, Geophysical Prospecting, 48(1), pp. 181187.Google Scholar
Dahlin, T. and Loke, M. H. (1997) ‘Quasi-3D resistivity imaging-mapping of three dimensional structures using two dimensional DC resistivity techniques’, in 3rd EEGS Meeting, European Association of Geoscientists & Engineers (EAGE). DOI: 10.3997/2214–4609.201407298CrossRefGoogle Scholar
Dahlin, T. and Leroux, V. (2012) ‘Improvement in time-domain induced polarization data quality with multi-electrode systems by separating current and potential cables’, Near Surface Geophysics, 10(6), pp. 545565. DOI: 10.3997/1873-0604.2012028Google Scholar
Dahlin, T. and Loke, M. H. (2015) ‘Negative apparent chargeability in time-domain induced polarisation data’, Journal of Applied Geophysics, 123, pp. 322332.Google Scholar
Dahlin, T. and Zhou, B. (2006) ‘Multiple-gradient array measurements for multichannel 2D resistivity imaging’, Near Surface Geophysics, 4(2), pp. 113123.Google Scholar
Dahlin, T., Bernstone, C. and Loke, M. H. (2002a) ‘A 3-D resistivity investigation of a contaminated site at Lernacken, Sweden’, Geophysics, 67(6), pp. 16921700.Google Scholar
Dahlin, T., Leroux, V. and Nissen, J. (2002b) ‘Measuring techniques in induced polarisation imaging’, Journal of Applied Geophysics, 50(3), pp. 279298. DOI: 10.1016/S0926-9851(02)00148-9Google Scholar
Daily, W. and Owen, E. (1991) ‘Cross-borehole resistivity tomography’, Geophysics, 56(8), pp. 12281235.CrossRefGoogle Scholar
Daily, W. and Ramirez, A. (1995) ‘Electrical resistance tomography during in-situ trichloroethylene remediation at the Savannah River Site’, Journal of Applied Geophysics, 33(4), pp. 239249.CrossRefGoogle Scholar
Daily, W. D. and Ramirez, A. L. (1999) ‘Electrical resistance tomography using steel cased boreholes as electrodes’, U.S. Patent 5,914,603.Google Scholar
Daily, W. and Ramirez, A. L. (2000) ‘Electrical imaging of engineered hydraulic barriers’, Geophysics, 65(1), pp. 8394.Google Scholar
Daily, W., Ramirez, A., LaBrecque, D. and Nitao, J. (1992) ‘Electrical resistivity tomography of vadose water movement’, Water Resources Research, 28(5), pp. 14291442.Google Scholar
Daily, W., Ramirez, A. and Binley, A. (2004) ‘Remote monitoring of leaks in storage tanks using electrical resistance tomography: Application at the Hanford Site’, Journal of Environmental and Engineering Geophysics, 9(1), pp. 1124.Google Scholar
Daniels, J. J. (1977) ‘Three-dimensional resistivity and induced-polarization modeling using buried electrodes’, Geophysics, 42(5), pp. 10061019.Google Scholar
Davidson, D. W. and Cole, R. H. (1951) ‘Dielectric relaxation in glycerol, propylene glycol, and n-propanol’, The Journal of Chemical Physics, 19(12), pp. 14841490. DOI: 10.1063/1.1748105Google Scholar
Davidson, E., Lefebvre, P. A., Brando, P. M., Ray, D. M., Trumbore, S. E., Solorzano, L. A., Ferreira, J. N., Bustamante, M. M. da C. and Nepstad, D. C. (2011) ‘Carbon inputs and water uptake in deep soils of an eastern Amazon forest’, Forest Science, 57(1), pp. 5158.Google Scholar
Davis, J. A., James, R. O. and Leckie, J. O. (1978) ‘Surface ionization and complexation at the oxide/water interface: I. Computation of electrical double layer properties in simple electrolytes’, Journal of Colloid and Interface Science, 63(3), pp. 480499. DOI: https://DOI.org/10.1016/S0021-9797(78)80009-5Google Scholar
Day-Lewis, F. D., Singha, K. and Binley, A. M. (2005) ‘Applying petrophysical models to radar travel time and electrical resistivity tomograms: Resolution-dependent limitations’, Journal of Geophysical Research: Solid Earth, 110(8), pp. 117. DOI: 10.1029/2004JB003569Google Scholar
Day-Lewis, F. D., White, E. A., Johnson, C. D., Lane, J. W. Jr and Belaval, M. (2006) ‘Continuous resistivity profiling to delineate submarine groundwater discharge: Examples and limitations’, The Leading Edge, 25(6), pp. 724728.Google Scholar
Day-Lewis, F. D., Linde, N., Haggerty, R., Singha, K. and Briggs, M. A. (2017) ‘Pore network modeling of the electrical signature of solute transport in dual-domain media’, Geophysical Research Letters, 44(10), pp. 49084916. DOI: 10.1002/2017GL073326Google Scholar
De Donno, G. and Cardarelli, E. (2011) ‘Assessment of errors from different electrode materials and configurations for electrical resistivity and time-domain IP data on laboratory models’, Bollettino di Geofisica Teorica ed Applicata, 52(2), pp. 211223.Google Scholar
de Sosa, L. L., Glanville, H. C., Marshall, M. R., Schnepf, A., Cooper, D. M., Hill, P. W., Binley, A. and Jones, D. L. (2018) ‘Stoichiometric constraints on the microbial processing of carbon with soil depth along a riparian hillslope’, Biology and Fertility of Soils. 54(8), pp. 949963. DOI: 10.1007/s00374-018-1317-2Google Scholar
De Witt, G. W. (1979) ‘Parametric studies of induced polarization data’. MS disseration thesis, University of Utah, p. 178.Google Scholar
Deceuster, J. and Kaufmann, O. (2012) ‘Improving the delineation of hydrocarbon-impacted soils and water through induced polarization (IP) tomographies: A field study at an industrial waste land’, Journal of Contaminant Hydrology, 136, pp. 2542.Google Scholar
Deceuster, J., Etienne, A., Robert, T., Nguyen, F. and Kaufmann, O. (2014) ‘A modified DOI-based method to statistically estimate the depth of investigation of dc resistivity surveys’, Journal of Applied Geophysics, 103, pp. 172185. DOI: 10.1016/j.jappgeo.2014.01.018Google Scholar
deGroot-Hedlin, C. (1990) ‘Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data’, Geophysics, 55 (12), pp. 16131624. DOI: 10.1190/1.1442813Google Scholar
Demirel, C. and Candansayar, M. E. (2017) ‘Two-dimensional joint inversions of cross-hole resistivity data and resolution analysis of combined arrays’, Geophysical Prospecting, 65(3), pp. 876890. DOI: 10.1111/1365-2478.12432Google Scholar
Dey, A. and Morrison, H. F. (1973) ‘Electromagnetic coupling in frequency and time-domain induced-polarization surveys over a multilayered earth’, Geophysics, 38(2), pp. 380405.Google Scholar
Dey, A. and Morrison, H. F. (1979) ‘Resistivity modeling for arbitrarily shaped three-dimensional structures’, Geophysics, 44(4), pp. 753780.Google Scholar
Dias, C. A. (1972) ‘Analytical model for a polarizable medium at radio and lower frequencies’, Journal of Geophysical Research, 77(26), pp. 49454956. DOI: 10.1029/jb077i026p04945Google Scholar
Dias, C. A. (2000) ‘Developments in a model to describe low-frequency electrical polarization of rocks’, Geophysics, 65(2), pp. 437451. DOI: 10.1190/1.1444738Google Scholar
Dickin, F. and Wang, M. (1996) ‘Electrical resistance tomography for process applications’, Measurement Science and Technology, 7(3), p. 247.Google Scholar
Dissado, L. A. and Hill, R. M. (1984) ‘Anomalous low-frequency dispersion. Near direct current conductivity in disordered low-dimensional materials’, Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 80(3), pp. 291319.Google Scholar
Doetsch, J. A., Coscia, I., Greenhalgh, S., Linde, N., Green, A. and Günther, T. (2010a) ‘The borehole-fluid effect in electrical resistivity imaging’, Geophysics, 75 (4), pp. F107F114.Google Scholar
Doetsch, J., Linde, N., Coscia, I., Greenhalgh, S. A. and Green, A. G. (2010b) ‘Zonation for 3D aquifer characterization based on joint inversions of multimethod crosshole geophysical data’, Geophysics, 75(6). DOI: 10.1190/1.3496476Google Scholar
Doetsch, J., Linde, N., Vogt, T., Binley, A. and Green, A. G. (2012a) ‘Imaging and quantifying salt-tracer transport in a riparian groundwater system by means of 3D ERT monitoring’, Geophysics, 77(5). DOI: 10.1190/geo2012-0046.1Google Scholar
Doetsch, J., Linde, N., Pessognelli, M., Green, A. G. and Günther, T. (2012b) ‘Constraining 3-D electrical resistance tomography with GPR reflection data for improved aquifer characterization’, Journal of Applied Geophysics, 78, pp. 6876.Google Scholar
Dosso, S. E. and Oldenburg, D. W. (1989) ‘Linear and non-linear appraisal using extremal models of bounded variation’, Geophysical Journal International, 99(3), pp. 483495.Google Scholar
Draskovits, P. and Fejes, I. (1994) ‘Geophysical methods in drinkwater protection of near-surface reservoirs’, Journal of Applied Geophysics, 31(1–4), pp. 5363.Google Scholar
Draskovits, P., Hobot, J., Vero, L. and Smith, B. D. (1990) ‘Induced-polarization surveys applied to evaluation of groundwater resources, Pannonian Basin, Hungary’, Induced Polarization: Applications and Case Histories, Investigations in Geophysics, 4, pp. 379410.Google Scholar
Duckworth, K. and Calvert, H. T. (1995) ‘An examination of the relationship between time-domain integral chargeability and the Cole–Cole impedance model’, Geophysics, 60(4), pp. 12491252.Google Scholar
Dukhin, S. S. and Shilov, V. N. (1974) Dielectric Phenomena and the Double Layer in Disperse Systems and Polyelectrolytes. Naukova Duma, Kiev, p. 206.Google Scholar
Dunlap, H. F. and Hawthorne, R. R. (1951) ‘The calculation of water resistivities from chemical analyses’, Journal of Petroleum Technology, 3(03), p. 17.Google Scholar
Edwards, L. S. (1977) ‘A modified pseudosection for resistivity and IP’, Geophysics, 42(5), pp. 10201036.Google Scholar
Efron, B. and Tibshirani, R. J. (1994) An Introduction to the Bootstrap. CRC Press, p. 456.Google Scholar
Ekinci, Y. L. and Demirci, A. (2008) ‘A damped least-squares inversion program for the interpretation of Schlumberger sounding curves’, Journal of Applied Sciences, 8(22), pp. 40704078.Google Scholar
Ellis, D. V. and Singer, J. M. (2008) Well Logging for Earth Scientists. Springer Science and Business Media, p. 708.Google Scholar
Everett, M. E. (2013) Near-Surface Applied Geophysics. Cambridge University Press, p. 400.Google Scholar
Evjen, H. M. (1938) ‘Depth factors and resolving power of electrical measurements’, Geophysics, 3(2), pp. 7895.Google Scholar
Farias, V. J. da, C., Maranhão, C. H. de M., da Rocha, B. R. P. and de Andrade, N. de P. O. (2010) ‘Induced polarization forward modelling using finite element method and the fractal model’, Applied Mathematical Modelling, 34(7), pp. 18491860.Google Scholar
Farquharson, C. G. and Oldenburg, D. W. (1998) ‘Non-linear inversion using general measures of data misfit and model structure’, Geophysical Journal International, 134(1), pp. 213227.Google Scholar
Fatt, I. (1956) ‘The network model of porous media’. Petroleum Transactions, AIME, Volume 207, pp. 144181.Google Scholar
Fernandez, P. M., Bloem, E., Binley, A., Philippe, R. S. B. A. and French, H. K. (2019) ‘Monitoring redox sensitive conditions at the groundwater interface using electrical resistivity and self-potential’, Journal of Contaminant Hydrology, 226, p. 103517.Google Scholar
Fernández-Muñiz, Z., Khaniani, H. and Fernández-Martínez, J. L. (2019) ‘Data kit inversion and uncertainty analysis’, Journal of Applied Geophysics, 161, pp. 228238. DOI: 10.1016/j.jappgeo.2018.12.022Google Scholar
Ferré, T., Bentley, L., Binley, A., Linde, N., Kemna, A., Singha, K., Holliger, K., Huisman, J. A. and Minsley, B. (2009) ‘Critical steps for the continuing advancement of hydrogeophysics’, Eos, Transactions American Geophysical Union, 90(23), p. 200.Google Scholar
Fiandaca, G., Auken, E., Christiansen, A. V. and Gazoty, A. (2012) ‘Time-domain-induced polarization: Full-decay forward modeling and 1D laterally constrained inversion of Cole-Cole parameters’, Geophysics, 77(3), pp. E213E225. DOI: 10.1190/geo2011-0217.1Google Scholar
Fiandaca, G., Ramm, J., Binley, A., Gazoty, A., Christiansen, A. V. and Auken, E. (2013) ‘Resolving spectral information from time domain induced polarization data through 2-D inversion’, Geophysical Journal International, 192(2), pp. 631646. DOI: 10.1093/gji/ggs060Google Scholar
Fiandaca, G., Madsen, L. M. and Maurya, P. K. (2018a) ‘Re-parameterisations of the Cole–Cole model for improved spectral inversion of induced polarization data’, Near Surface Geophysics, 16(4), pp. 385399. DOI: 10.3997/1873-0604.2017065Google Scholar
Fiandaca, G., Maurya, P. K., Balbarini, N., Hördt, A., Christiansen, A. V., Foged, N., Bjerg, P. L. and Auken, E. (2018b) ‘Permeability estimation directly from logging-while-drilling induced polarization data’, Water Resources Research, 54(4), pp. 28512870. DOI: 10.1002/2017WR022411Google Scholar
Fixman, M. (1980) ‘Charged macromolecules in external fields. I. The sphere’, The Journal of Chemical Physics, 72(9), pp. 51775186. DOI: 10.1063/1.439753Google Scholar
Flathe, H. (1955) ‘A practical method of calculating geoelectrical model graphs for horizontally stratified media’, Geophysical Prospecting, 3(3), pp. 268294. DOI: 10.1111/j.1365-2478.1955.tb01377.xGoogle Scholar
Flis, M. F., Newman, G. A. and Hohmann, G. W. (1989) ‘Induced-polarization effects in time-domain electromagnetic measurements’, Geophysics, 54(4), pp. 514523.Google Scholar
Flores Orozco, A., Kemna, A. and Zimmermann, E. (2012) ‘Data error quantification in spectral induced polarization imaging’, Geophysics, 77(3). DOI: 10.1190/geo2010-0194.1Google Scholar
Flores Orozco, A. F., Williams, K. H. and Kemna, A. (2013) ‘Time-lapse spectral induced polarization imaging of stimulated uranium bioremediation’, Near Surface Geophysics, 11(5), pp. 531544. DOI: 10.3997/1873-0604.2013020CrossRefGoogle Scholar
Flores Orozco, A., Velimirovic, M., Tosco, T., Kemna, A., Sapion, H., Klaas, N., Sethi, R. and Bastiaens, L. (2015) ‘Monitoring the injection of microscale zerovalent iron particles for groundwater remediation by means of complex electrical conductivity imaging’, Environmental Science and Technology, 49(9), pp. 55935600. DOI: 10.1021/acs.est.5b00208Google Scholar
Flores Orozco, A., Micić, V., Bücker, M., Gallistl, J., Hofmann, T. and Nguyen, F. (2019a) ‘Complex-conductivity monitoring to delineate aquifer pore clogging during nanoparticles injection’, Geophysical Journal International, 218(3), pp. 18381852. DOI: 10.1093/gji/ggz255Google Scholar
Flores Orozco, A. F., Kemna, A., Binley, A. and Cassiani, G. (2019b) ‘Analysis of time-lapse data error in complex conductivity imaging to alleviate anthropogenic noise for site characterization’, Geophysics, 84(2), pp. B181B193. DOI: 10.1190/GEO2017-0755.1Google Scholar
Florsch, N. and Muhlach, F. (2017) Everyday Applied Geophysics 1: Electrical Methods. Elsevier, p. 202.Google Scholar
Frangos, W. (1997) ‘Electrical detection of leaks in lined waste disposal ponds’, Geophysics, 62(6), pp. 17371744.Google Scholar
Freedman, R. and Vogiatzis, J. P. (1986) ‘Theory of induced-polarization logging in a borehole’, Geophysics, 51(9), pp. 18301849.Google Scholar
Fujita, Y., Ferris, F. G., Lawson, R. D., Colwell, F. S. and Smith, R. W. (2000) ‘Subscribed content calcium carbonate precipitation by ureolytic subsurface bacteria’, Geomicrobiology Journal, 17(4), pp. 305318.Google Scholar
Fuller, B. D. and Ward, S. H. (1970) ‘Linear system description of the electrical parameters of rocks’, IEEE Transactions on Geoscience Electronics, 8(1), pp. 718.Google Scholar
Fuoss, R. M. and Kirkwood, J. G. (1941) ‘Electrical properties of solids. VIII. Dipole moments in polyvinyl chloride-diphenyl systems*’, Journal of the American Chemical Society, 63(2), pp. 385394. DOI: 10.1021/ja01847a013Google Scholar
Furman, A., Ferré, T. P. and Heath, G. L. (2007) ‘Spatial focusing of electrical resistivity surveys considering geologic and hydrologic layering’, Geophysics, 72(2), pp. F65F73.Google Scholar
Gaffney, C. F. and Gater, J. (2003) Revealing the Buried Past: Geophysics for Archaeologists. Tempus, p. 192.Google Scholar
Gaffney, C., Harris, C., Pope-Carter, F., Bonsall, J., Fry, R. and Parkyn, A. (2015) ‘Still searching for graves: An analytical strategy for interpreting geophysical data used in the search for “unmarked” graves’, Near Surface Geophysics, 13(6), pp. 557569.Google Scholar
Galetti, E. and Curtis, A. (2018) ‘Transdimensional electrical resistivity tomography’, Journal of Geophysical Research: Solid Earth, 123(8), pp. 63476377.Google Scholar
Gallardo, L. A. and Meju, M. A. (2003) ‘Characterization of heterogeneous near-surface materials by joint 2D inversion of dc resistivity and seismic data’, Geophysical Research Letters, 30(13). DOI: 10.1029/2003GL017370Google Scholar
Gallardo, L. A. and Meju, M. A. (2011) ‘Structure-coupled multiphysics imaging in geophysical sciences’, Reviews of Geophysics, 49(1). DOI: 10.1029/2010RG000330Google Scholar
Gan, F., Han, K., Lan, F., Chen, Y. and Zhang, W. (2017) ‘Multi-geophysical approaches to detect karst channels underground: A case study in Mengzi of Yunnan Province, China’, Journal of Applied Geophysics, 136, pp. 9198.CrossRefGoogle Scholar
Gardner, F. D. (1897) ‘The electrical method of moisture determination in soils: Results and modifications in 1897’, in Bulletin No. 12. U.S. Department of Agriculture, Division of Soils, Washington, D.C., p. 24.Google Scholar
Gardner, F. D. (1898) The Electrical Method of Moisture Determination in Soils, Results and Modifications in 1897. US Government Printing Office, p. 38.Google Scholar
Garré, S., Javaux, M., Vanderborght, J. and Vereecken, H. (2011) ‘Three-dimensional electrical resistivity tomography to monitor root zone water dynamics’, Vadose Zone Journal, 10(1), pp. 412424.Google Scholar
Gazoty, A., Fiandaca, G., Pedersen, J., Auken, E., Christiansen, A. V. and Pedersen, J. K. (2012) ‘Application of time domain induced polarization to the mapping of lithotypes in a landfill site’, Hydrology and Earth System Sciences, 16(6), pp. 17931804. DOI: 10.5194/hess-16-1793-2012Google Scholar
Gazoty, A., Fiandaca, G., Pedersen, J., Auken, E. and Christiansen, A. V. (2013) ‘Data repeatability and acquisition techniques for Time-Domain spectral Induced Polarization’, Near Surface Geophysics, 11(1983), pp. 391406. DOI: 10.3997/1873-0604.2013013Google Scholar
Gebbers, R., Lück, E., Dabas, M. and Domsch, H. (2009) ‘Comparison of instruments for geoelectrical soil mapping at the field scale’, Near Surface Geophysics, 7(3), pp. 179190.Google Scholar
Gelman, A. and Rubin, D. B. (1992) ‘Inference from iterative simulation using multiple sequences’, Statistical Science, 7(4), pp. 457472.Google Scholar
Geometrics (2001) OhmMapper TR1 29005–01 REV.F Operation Manual. Geometrics Inc.Google Scholar
Gernez, S., Bouchedda, A., Gloaguen, E. and Paradis, D. (2020) ‘AIM4RES, an open-source 2.5D finite differences MATLAB library for anisotropic electrical resistivity modeling’, Computers and Geosciences, 135, p. 104401. DOI: 10.1016/j.cageo.2019.104401Google Scholar
Geselowitz, D. B. (1971) ‘An application of electrocardiographic lead theory to impedance plethysmography’, IEEE Transactions on Biomedical Engineering, 1, pp. 3841.Google Scholar
Geuzaine, C. and Remacle, J. (2009) ‘Gmsh: A 3‐D finite element mesh generator with built‐in pre‐and post‐processing facilities’, International Journal for Numerical Methods in Engineering, 79(11), pp. 13091331.Google Scholar
Ghorbani, A., Camerlynck, C., Florsch, N., Cosenza, P. and Revil, A. (2007) ‘Bayesian inference of the Cole–Cole parameters from time-and frequency-domain induced polarization’, Geophysical Prospecting, 55(4), pp. 589605.Google Scholar
Ghorbani, A., Camerlynck, C. and Florsch, N. (2009) ‘CR1Dinv: A Matlab program to invert 1D spectral induced polarization data for the Cole–Cole model including electromagnetic effects’, Computers & Geosciences, 35(2), pp. 255266.Google Scholar
Ghosh, D. P. (1971a) ‘Inverse filter coefficients for the computation of apparent resistivity standard curves for a horizontally stratified earth’, Geophysical Prospecting, 19(4), pp. 769775.Google Scholar
Ghosh, D. P. (1971b) ‘The application of linear filter theory to the direct interpretation of geoelectrical resistivity sounding measurements’, Geophysical Prospecting, 19(2), pp. 192217.Google Scholar
Gish, O. H. and Rooney, W. J. (1925) ‘Measurement of resistivity of large masses of undisturbed earth’, Terrestrial Magnetism and Atmospheric Electricity, 30(4), pp. 161188.Google Scholar
Gisser, D. G., Isaacson, D. and Newell, J. C. (1987) ‘Current topics in impedance imaging’, Clinical Physics and Physiological Measurement, 8(4A), pp. 3946. DOI: 10.1088/0143-0815/8/4A/005Google Scholar
Glover, P. W. J. (2009) ‘What is the cementation exponent? A new interpretation’, The Leading Edge, 28(1), pp. 8285.Google Scholar
Glover, P. W. J. (2010) ‘A generalized Archie’s law for n phases’, Geophysics, 75(6), pp. E247E265.Google Scholar
Glover, P. W. J. (2015) ‘Geophysical properties of the near surface earth: Electrical properties’, in Treatise on Geophysics (Schubert, G. ed.). Elsevier B.V. DOI: 10.1016/B978-0-444-53802-4.00189-5Google Scholar
Glover, P. W. J. (2016) ‘Archie’s law: A reappraisal’, Solid Earth, 7(4), pp. 11571169. DOI: 10.5194/se-7-1157-2016Google Scholar
Gómez-Treviño, E. and Esparza, F. J. (2014) ‘What is the depth of investigation of a resistivity measurement?’, Geophysics, 79(2), pp. W1W10.Google Scholar
Grahame, D. C. (1952) ‘Mathematical theory of the faradaic admittance’, Journal of the Electrochemical Society, 99(12), pp. 370385.Google Scholar
Green, P. J. (1995) ‘Reversible jump Markov chain Monte Carlo computation and Bayesian model determination’, Biometrika, 82(4), pp. 711732.Google Scholar
Greenberg, R. J. and Brace, W. F. (1969) ‘Archie’s law for rocks modeled by simple networks’, Journal of Geophysical Research, 74(8), pp. 20992102. DOI: 10.1029/JB074i008p02099Google Scholar
Greenhalgh, S. A., Zhou, B., Greenhalgh, M., Marescot, L. and Wiese, T. (2009) ‘Explicit expressions for the Fréchet derivatives in 3D anisotropic resistivity inversion’, Geophysics, 74(3), pp. F31F43.Google Scholar
Greenhalgh, S., Wiese, T. and Marescot, L. (2010) ‘Comparison of DC sensitivity patterns for anisotropic and isotropic media’, Journal of Applied Geophysics, 70(2), pp. 103112.Google Scholar
Griffiths, D. H. and Turnbull, J. (1985) ‘A multi-electrode array for resistivity surveying’, First Break, 3(7), pp. 1620.Google Scholar
Griffiths, D. H., Turnbull, J. and Olayinka, A. I. (1990) ‘Two-dimensional resistivity mapping with a computer-controlled array’, First Break, 8(4), pp. 121129.Google Scholar
Guillemoteau, J., Lück, E. and Tronicke, J. (2017) ‘1D inversion of direct current data acquired with a rolling electrode system’, Journal of Applied Geophysics, 146, pp. 167177.Google Scholar
Günther, T., Rücker, C. and Spitzer, K. (2006) ‘Three-dimensional modelling and inversion of dc resistivity data incorporating topography – II. Inversion’, Geophysical Journal International, 166(2), pp. 506517. DOI: 10.1111/j.1365-246X.2006.03011.xGoogle Scholar
Gupta, P. K., Niwas, S. and Gaur, V. K. (1997) ‘Straightforward inversion of vertical electrical sounding data’, Geophysics, 62(3), pp. 775785.Google Scholar
Guptasarma, D. (1982) ‘Optimization of short digital linear filters for increased accuracy’, Geophysical Prospecting, 30(4), pp. 501514.Google Scholar
Gurin, G., Ilyin, Y., Nilov, S., Ivanov, D., Kozlov, E. and Titov, K. (2018) ‘Induced polarization of rocks containing pyrite: Interpretation based on X-ray computed tomography’, Journal of Applied Geophysics, 154, pp. 5063. DOI: 10.1016/j.jappgeo.2018.04.019Google Scholar
Gurin, G., Tarasov, A., Ilyin, Y. and Titov, K. (2013) ‘Time domain spectral induced polarization of disseminated electronic conductors: Laboratory data analysis through the Debye decomposition approach’, Journal of Applied Geophysics, 98, pp. 4453. DOI: 10.1016/j.jappgeo.2013.07.008Google Scholar
Gurin, G., Titov, K., Ilyin, Y. and Tarasov, A. (2015) ‘Induced polarization of disseminated electronically conductive minerals: A semi-empirical model’, Geophysical Journal International, 200, pp. 15551565. DOI: 10.1093/gji/ggu490Google Scholar
Guyot, A., Ostergaard, K. T., Lenkopane, M., Fan, J. and Lockington, D. A. (2013) ‘Using electrical resistivity tomography to differentiate sapwood from heartwood: Application to conifers’, Tree Physiology, 33(2), pp. 187194. DOI: 10.1093/treephys/tps128Google Scholar
Habberjam, G. M. (1972) ‘The effects of anisotropy on square array resistivity measurements’, Geophysical Prospecting, 20(2), pp. 249266.Google Scholar
Hallbauer-Zadorozhnaya, V., Santarato, G. and Abu Zeid, N. (2015) ‘Non-linear behaviour of electrical parameters in porous, water-saturated rocks: A model to predict pore size distribution’, Geophysical Journal International, 202(2), pp. 871886. DOI: 10.1093/gji/ggv161Google Scholar
Hallof, P. G. (1957) ‘On the interpretation of resistivity and induced polarization field measurements’. PhD dissertation thesis, Massachusetts Institute of Technology, p. 200.Google Scholar
Hamdan, H. A. and Vafidis, A. (2013) ‘Joint inversion of 2D resistivity and seismic travel time data to image saltwater intrusion over karstic areas’, Environmental Earth Sciences, 68(7), pp. 18771885. DOI: 10.1007/s12665-012-1875-9Google Scholar
Hanai, T. (1960) ‘Theory of the dielectric dispersion due to the interfacial polarization and its application to emulsions’, Kolloid-Zeitschrift, 171(1), pp. 2331.Google Scholar
Hanai, T. (1968) ‘Electrical properties of emulsions’, in Emulsion Science (Sherman, P. ed.). Academic Press, New York.Google Scholar
Hansen, P. C. (1992) ‘Analysis of discrete ill-posed problems by means of the L-curve’, SIAM Review, 34(4), pp. 561580.Google Scholar
Hao, N., Moysey, S. M. J., Powell, B. A. and Ntarlagiannis, D. (2015) ‘Evaluation of surface sorption processes using spectral induced pPolarization and a 22 Na tracer’, Environmental Science & Technology, 49(16), pp. 98669873. DOI: 10.1021/acs.est.5b01327Google Scholar
Hauck, C. and Kneisel, C. (2006) ‘Application of capacitively-coupled and DC electrical resistivity imaging for mountain permafrost studies’, Permafrost and Periglacial Processes, 17(2), pp. 169177. DOI: 10.1002/ppp.555Google Scholar
Hayley, K., Pidlisecky, A. and Bentley, L. R. (2011) ‘Simultaneous time-lapse electrical resistivity inversion’, Journal of Applied Geophysics, 75(2), pp. 401411.Google Scholar
Heenan, J., Slater, L., Ntarlagiannis, D., Atekwana, E. A., Fathepure, B. Z., Dalvi, S., Ross, C., Werkema, D. D. and Atekwana, , Estella, E. A. (2014) ‘Electrical resistivity imaging for long-term autonomous monitoring of hydrocarbon degradation: Lessons from the Deepwater Horizon oil spill’, Geophysics, 80(1), pp. B1B11. DOI: 10.1190/geo2013-0468.1Google Scholar
Henderson, R. D., Day-Lewis, F. D., Abarca, E., Harvey, C. F., Karam, H. N., Liu, L. and Lane, J. W. (2010) ‘Marine electrical resistivity imaging of submarine groundwater discharge: Sensitivity analysis and application in Waquoit Bay, Massachusetts, USA’, Hydrogeology Journal, 18(1), pp. 173185.Google Scholar
Hennig, T., Weller, A. and Möller, M. (2008) ‘Object orientated focussing of geoelectrical multielectrode measurements’, Journal of Applied Geophysics, 65(2), pp. 5764.Google Scholar
Henry-Poulter, S. (1996) ‘An investigation of transport properties in natural soils using electrical resistance tomography’. PhD thesis, Lancaster University, UK, p. 237.Google Scholar
Hering, A., Misiek, R., Gyulai, A., Ormos, T., Dobroka, M. and Dresen, L. (1995) ‘A joint inversion algorithm to process geoelectric and sutface wave seismic data. Part I: Basic ideas1’, Geophysical Prospecting, 43(2), pp. 135156. DOI: 10.1111/j.1365-2478.1995.tb00128.xGoogle Scholar
Herwanger, J. V., Worthington, M. H., Lubbe, R., Binley, A. and Khazanehdari, J. (2004a) ‘A comparison of cross-hole electrical and seismic data in fractured rock’, Geophysical Prospecting, 52(2), pp. 109121.Google Scholar
Herwanger, J. V., Pain, C. C., Binley, A., De Oliveira, C. R. E. and Worthington, M. H. (2004b) ‘Anisotropic resistivity tomography’, Geophysical Journal International, 158(2), pp. 409425.Google Scholar
Hilbich, C., Hauck, C., Hoelzle, M., Scherler, M., Schudel, L., Völksch, I., Vonder Mühll, D. and Mäusbacher, R. (2008) ‘Monitoring mountain permafrost evolution using electrical resistivity tomography: A 7-year study of seasonal, annual, and long-term variations at Schilthorn, Swiss Alps’, Journal of Geophysical Research: Earth Surface, 113 (1), pp. 112. DOI: 10.1029/2007JF000799Google Scholar
Hilbich, C., Marescot, L., Hauck, C., Loke, M. H. and Mausbacher, R. (2009) ‘Applicability of electrical resistivity tomography monitoring to coarse blocky and ice-rich permafrost landforms’, Permafrost and Periglacial Processes, 20(3), pp. 269284. DOI: 10.1002/ppp.652Google Scholar
Hilchie, D. W. (1984) ‘A new water resistivity versus temperature equation; Technical notes’, The Log Analyst, 25 (04).SPWLA-1984-vXXVn4a3.Google Scholar
Hill, H. J. and Milburn, J. D. (1956) ‘Effect of clay and water salinity on electrochemical behavior of reservoir rocks’, Transactions, AIME, 207, pp. 6572.Google Scholar
Hinnell, A. C., Ferré, T. P. A., Vrugt, J. A., Huisman, J. A., Moysey, S., Rings, J. and Kowalsky, M. B. (2010) ‘Improved extraction of hydrologic information from geophysical data through coupled hydrogeophysical inversion’, Water Resources Research, 46, W00D40, DOI:10.1029/2008WR007060CrossRefGoogle Scholar
Hohmann, G. W. (1973) ‘Electromagnetic coupling between grounded wires at the surface of a two-layer earth’, Geophysics, 38(5), pp. 854863.Google Scholar
Hohmann, G. W. (1975) ‘Three-dimensional induced polarization and electromagnetic modeling’, Geophysics, 40(2), pp. 309324.Google Scholar
Hohmann, G. W. (1988) ‘Numerical modeling for electromagnetic methods of geophysics’, Electromagnetic Methods in Applied Geophysics, 1, pp. 313363.Google Scholar
Hördt, A., Hanstein, T., Hönig, M. and Neubauer, F. M. (2006) ‘Efficient spectral IP-modelling in the time domain’, Journal of Applied Geophysics, 59(2), pp. 152161. DOI: 10.1016/j.jappgeo.2005.09.003Google Scholar
Hördt, A., Blaschek, R., Kemna, A. and Zisser, N. (2007) ‘Hydraulic conductivity estimation from induced polarisation data at the field scale: The Krauthausen case history’, Journal of Applied Geophysics, 62(1), pp. 3346.Google Scholar
Hua, P., Woo, E. J., Webster, J. G. and Tompkins, W. J. (1991) ‘Iterative reconstruction methods using regularization and optimal current patterns in electrical impedance tomography’, IEEE Transactions on Medical Imaging, 10(4), pp. 621628.Google Scholar
Huisman, J. A., Rings, J., Vrugt, J. A., Sorg, J. and Vereecken, H. (2010) ‘Hydraulic properties of a model dike from coupled Bayesian and multi-criteria hydrogeophysical inversion’, Journal of Hydrology, 380(1–2), pp. 6273. DOI: 10.1016/j.jhydrol.2009.10.023Google Scholar
Hunkel, H. (1924) ‘Verfahren zur Feststellung und Lokalisierung von Koerpern im Untergrunde’, German Patent 442,832.Google Scholar
Huntley, D. (1986) ‘Relations between permeability and electrical resistivity in granular aquifers’, Groundwater, 24(4), pp. 466474.Google Scholar
Huntley, D., Bobrowsky, P., Hendry, M., Macciotta, R., Elwood, D., Sattler, K., Best, M., Chambers, J. and Meldrum, P. (2019) ‘Application of multi-dimensional electrical resistivity tomography datasets to investigate a very slow-moving landslide near Ashcroft, British Columbia, Canada’, Landslides, 16, pp. 10331042.Google Scholar
Hupfer, S., Martin, T., Weller, A., Günther, T., Kuhn, K., Djotsa Nguimeya Ngninjio, V. and Noell, U. (2016) ‘Polarization effects of unconsolidated sulphide-sand-mixtures’, Journal of Applied Geophysics, 135, pp. 456465. DOI: 10.1016/j.jappgeo.2015.12.003Google Scholar
Ingeman-Nielsen, T. and Baumgartner, F. (2006) ‘CR1Dmod: A Matlab program to model 1D complex resistivity effects in electrical and electromagnetic surveys’, Computers & Geosciences, 32(9), pp. 14111419.Google Scholar
Inman, J. R. Jr, Ryu, J. and Ward, S. H. (1973) ‘Resistivity inversion’, Geophysics, 38 (6), pp. 10881108.Google Scholar
Inman, J. R. (1975) ‘Resistivity inversion with ridge regression’, Geophysics, 40(5), pp. 798817.Google Scholar
Iseki, S. and Shima, H. (1992) ‘Induced-polarization tomography: A crosshole imaging technique using chargeability and resistivity’, in SEG Technical Program Expanded Abstracts 1992. Society of Exploration Geophysicists, pp. 439442.Google Scholar
Ishizu, K., Goto, T., Ohta, Y., Kasaya, T., Iwamoto, H., Vachiratienchai, C., Siripunvaraporn, W., Tsuji, T., Kumagai, H. and Koike, K. (2019) ‘Internal structure of a seafloor massive sulfide deposit by electrical resistivity tomography, Okinawa Trough’, Geophysical Research Letters, 46(20), pp. 1102511034.Google Scholar
Jackson, P., Smith, D. and Stanford, P. (1978) ‘Resistivity‐porosity‐particle shape relationships for marine sands’, Geophysics, 43(6), pp. 12501268. DOI: 10.1190/1.1440891Google Scholar
JafarGandomi, A. and Binley, A. (2013) ‘A Bayesian trans-dimensional approach for the fusion of multiple geophysical datasets’, Journal of Applied Geophysics, 96, pp. 3854. DOI: 10.1016/j.jappgeo.2013.06.004Google Scholar
Jayawickreme, D. H., Van Dam, R. L. and Hyndman, D. W. (2008) ‘Subsurface imaging of vegetation, climate, and root‐zone moisture interactions’, Geophysical Research Letters, L18404, DOI:10.1029/2008GL034690Google Scholar
Jha, M. K., Kumar, S. and Chowdhury, A. (2008) ‘Vertical electrical sounding survey and resistivity inversion using genetic algorithm optimization technique’, Journal of Hydrology, 359(1–2), pp. 7187.Google Scholar
Johansen, H. K. (1975) ‘An interactive computer/graphic-display-terminal system for interpretation of resistivity soundings’, Geophysical Prospecting, 23(3), pp. 449458.Google Scholar
Johansen, H. K. (1977) ‘A man/computer interpretation system for resistivity soundings over a horizontally strafified earth’, Geophysical Prospecting, 25(4), pp. 667691.Google Scholar
Johansen, H. K. and Sørensen, K. (1979) ‘Fast hankel transforms’, Geophysical Prospecting, 27(4), pp. 876901.Google Scholar
Johnson, D. L., Koplik, J. and Schwartz, L. M. (1986) ‘New pore-size parameter characterizing transport in porous media’, Physical Review Letters, 57(20), pp. 25642567. DOI: 10.1103/PhysRevLett.57.2564Google Scholar
Johnson, H. M. (1962) ‘A history of well logging’, Geophysics, 27(4), pp. 507527.Google Scholar
Johnson, I. M. (1984) ‘Spectral induced polarization parameters as determined through time-domain measurements’, Geophysics, 49(11), pp. 19932003.Google Scholar
Johnson, T. C. and Wellman, D. (2015) ‘Accurate modelling and inversion of electrical resistivity data in the presence of metallic infrastructure with known location and dimension’, Geophysical Journal International, 202(2), pp. 10961108. DOI: 10.1093/gji/ggv206Google Scholar
Johnson, T. C. and Thomle, J. (2018) ‘3-D decoupled inversion of complex conductivity data in the real number domain’, Geophysical Journal International, 212(1), pp. 284296. DOI: 10.1093/gji/ggx416Google Scholar
Johnson, T. C., Versteeg, R. J., Huang, H. and Routh, P. S. (2009) ‘Data-domain correlation approach for joint hydrogeologic inversion of time-lapse hydrogeologic and geophysical data’, Geophysics, 74(6). DOI: 10.1190/1.3237087Google Scholar
Johnson, T. C., Versteeg, R. J., Ward, A., Day-Lewis, F. D. and Revil, A. (2010) ‘Improved hydrogeophysical characterization and monitoring through parallel modeling and inversion of time-domain resistivity and induced-polarization data’, Geophysics, 75(4), pp. WA27WA41.Google Scholar
Johnson, T. C., Slater, L. D., Ntarlagiannis, D., Day-Lewis, F. D. and Elwaseif, M. (2012a) ‘Monitoring groundwater-surface water interaction using time-series and time-frequency analysis of transient three-dimensional electrical resistivity changes’, Water Resources Research, 48(7), pp. 113. DOI: 10.1029/2012WR011893Google Scholar
Johnson, T. C., Versteeg, R. J., Rockhold, M., Slater, L. D., Ntarlagiannis, D., Greenwood, W. J. and Zachara, J. (2012b) ‘Characterization of a contaminated wellfield using 3D electrical resistivity tomography implemented with geostatistical, discontinuous boundary, and known conductivity constraints’, Geophysics, 77 (6), pp. EN85EN96.Google Scholar
Johnson, T. C., Versteeg, R. J., Day‐Lewis, F. D., Major, W. and Lane, J. W. (2015). ‘Time-lapse electrical geophysical monitoring of amendment-based biostimulation’, Groundwater, 53(6), pp. 920932.Google Scholar
Johnson, T. C., Hammond, G. E. and Chen, X. (2017) ‘PFLOTRAN-E4D: A parallel open source PFLOTRAN module for simulating time-lapse electrical resistivity data’, Computers and Geosciences, 99, pp. 7280. DOI: 10.1016/j.cageo.2016.09.006Google Scholar
Jol, H. M. (2008) Ground Penetrating Radar Theory and Applications. Elsevier, p. 544.Google Scholar
Jongmans, D. and Garambois, S. (2007) ‘Geophysical investigation of landslides: A review’, Bulletin de la Société géologique de France, 178(2), pp. 101112.Google Scholar
Kaipio, J. P., Kolehmainen, V., Somersalo, E. and Vauhkonen, M. (2000) ‘Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography’, Inverse Problems, 16(5), p. 1487. DOI: 10.1088/0266-5611/16/5/321Google Scholar
Kang, X., Shi, X., Revil, A., Cao, Z., Li, L., Lan, T. and Wu, J. (2019) ‘Coupled hydrogeophysical inversion to identify non-Gaussian hydraulic conductivity field by jointly assimilating geochemical and time-lapse geophysical data’, Journal of Hydrology, 578, p. 124092. DOI: /10.1016/j.jhydrol.2019.124092Google Scholar
Karaoulis, M. C., Kim, J.-H. and Tsourlos, P. I. (2011) ‘4D active time constrained resistivity inversion’, Journal of Applied Geophysics, 73(1), pp. 2534.Google Scholar
Karaoulis, M., Revil, A., Zhang, J. and Werkema, D. D. (2012) ‘Time-lapse joint inversion of crosswell DC resistivity and seismic data: A numerical investigation’, Geophysics, 77(4). DOI: 10.1190/geo2012-0011.1Google Scholar
Karaoulis, M., Revil, A., Tsourlos, P., Werkema, D. D. and Minsley, B. J. (2013) ‘IP4DI: A software for time-lapse 2D/3D DC-resistivity and induced polarization tomography’, Computers and Geosciences, 54, pp. 164170. DOI: 10.1016/j.cageo.2013.01.008Google Scholar
Karaoulis, M., Tsourlos, P., Kim, J.-H. and Revil, A. (2014) ‘4D time-lapse ERT inversion: introducing combined time and space constraints’, Near Surface Geophysics, 12(1), pp. 2534.Google Scholar
Karhunen, K., Seppänen, A., Lehikoinen, A., Monteiro, P. J. M. and Kaipio, J. P. (2010) ‘Electrical resistance tomography imaging of concrete’, Cement and Concrete Research, 40(1), pp. 137145.Google Scholar
Katz, A. J. and Thompson, A. H. (1986) ‘Quantitative prediction of permeability in porous rock’, Physical Review B, 34(11), pp. 81798181. DOI: 10.1103/PhysRevB.34.8179Google Scholar
Katz, A. J. and Thompson, A. H. (1987) ‘Prediction of rock electrical-conductivity from mercury injection measurements’, Journal of Geophysical Research-Solid Earth and Planets, 92(B1), pp. 599607. DOI: 10.1029/JB092iB01p00599Google Scholar
Kauahikaua, J., Mattice, M. and Jackson, D. (1980) ‘Mise-a-la-masse mapping of the HGP-A geothermal reservoir, Hawaii’, Proc. Geothermal Resources Council 1980 Annual Meeting, September 9–11,1980, Salt Lake City, Utah. Vol. 4. pp. 6568.Google Scholar
Kaufman, A. A. and Wightman, W. E. (1993) ‘A transmission-line model for electrical logging through casing’, Geophysics, 58(12), pp. 17391747.Google Scholar
Kaufman, A. A., Alekseev, D. and Oristaglio, M. (2014) Principles of Electromagnetic Methods in Surface Geophysics. Newnes, p. 794.Google Scholar
Keery, J., Binley, A., Elshenawy, A. and Clifford, J. (2012) ‘Markov-chain Monte Carlo estimation of distributed Debye relaxations in spectral induced polarization’, Geophysics, 77(2). DOI: 10.1190/geo2011-0244.1Google Scholar
Keller, C. (2012) ‘Hydro-geologic spatial resolution using flexible Liners’, The Professional Geologist, 49(3), pp. 4551.Google Scholar
Keller, G. V. and Frischknecht, F. C. (1966) Electrical Methods in Geophysical Prospecting. Pergamon Press, Oxford, p. 517.Google Scholar
Kelter, M., Huisman, J. A., Zimmermann, E. and Vereecken, H. (2018) ‘Field evaluation of broadband spectral electrical imaging for soil and aquifer characterization’, Journal of Applied Geophysics, 159, pp. 484496.Google Scholar
Kelter, M., Huisman, J. A., Zimmermann, E., Kemna, A. and Vereecken, H. (2015) ‘Quantitative imaging of spectral electrical properties of variably saturated soil columns’, Journal of Applied Geophysics, 123, pp. 333344. DOI: 10.1016/j.jappgeo.2015.09.001Google Scholar
Kemna, A. (2000) Tomographic Inversion of Complex Resistivity: Theory and Application. Der Andere Verlag Osnabrück, p. 196.Google Scholar
Kemna, A., Rakers, E. and Binley, A. (1997) ‘Application of complex resistivity tomography to field data from a kerosene-contaminated site’, in Environmental and Engineering Geophysics (EEGS). European Section, pp. 151154.Google Scholar
Kemna, A., Binley, A., Ramirez, A. and Daily, W. (2000) ‘Complex resistivity tomography for environmental applications’, Chemical Engineering Journal, 77(1–2), pp. 1118.Google Scholar
Kemna, A., Vanderborght, J., Kulessa, B. and Vereecken, H. (2002) ‘Imaging and characterisation of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models’, Journal of Hydrology, 267(3–4), pp. 125146.Google Scholar
Kemna, A., Binley, A. and Slater, L. (2004) ‘Crosshole IP imaging for engineering and environmental applications’, Geophysics, 69(1), pp. 97107. DOI: 10.1190/1.1649379Google Scholar
Kemna, A., Binley, A., Cassiani, G., Niederleithinger, E., Revil, A., Slater, L., Williams, K. H., Orozco, A. F., Haegel, F. H., Hördt, A., Kruschwitz, S., Leroux, V., Titov, K. and Zimmermann, E. (2012) ‘An overview of the spectral induced polarization method for near-surface applications’, Near Surface Geophysics, 10(6), pp. 453468. DOI: 10.3997/1873-0604.2012027Google Scholar
Kenkel, J., Hördt, A. and Kemna, A. (2012) ‘2D modelling of induced polarization data with anisotropic complex conductivities’, Near Surface Geophysics, 10(6), pp. 533544.Google Scholar
Ketola, M. (1972) ‘Some points of view concerning mise-a-la-masse measurements’, Geoexploration, 10(1), pp. 121.Google Scholar
Key, K. T. (1977) Nuclear Waste Tank and Pipeline External Leak Detection Systems. Atlantic Richfield Hanford Co., Richland, WA, p. 144.Google Scholar
Keys, W. S. (1989) Borehole Geophysics Applied to Ground-Water Investigations. National Water Well Association Dublin, OH, p. 150.Google Scholar
Kiessling, D., Schmidt-Hattenberger, C., Schuett, H., Schilling, F., Krueger, K., Schoebel, B., Danckwardt, E., Kummerow, J. and Group, C. (2010) ‘Geoelectrical methods for monitoring geological CO2 storage: First results from cross-hole and surface–downhole measurements from the CO2SINK test site at Ketzin (Germany)’, International Journal of Greenhouse Gas Control, 4(5), pp. 816826.Google Scholar
Kiflai, M. E., Whitman, D., Ogurcak, D. E. and Ross, M. (2019) ‘The effect of Hurricane Irma storm surge on the freshwater lens in Big Pine Key, Florida, using electrical resistivity tomography’, Estuaries and Coasts, DOI: 10.1007/s12237-019-00666-3Google Scholar
Kim, J.-H., Yi, M.-J., Cho, S.-J., Son, J.-S. and Song, W.-K. (2006) ‘Anisotropic crosshole resistivity tomography for ground safety analysis of a high-storied building over an abandoned mine’, Journal of Environmental & Engineering Geophysics, 11(4), pp. 225235.Google Scholar
Kim, J.-H., Yi, M.-J., Park, S.-G. and Kim, J. G. (2009) ‘4-D inversion of DC resistivity monitoring data acquired over a dynamically changing earth model’, Journal of Applied Geophysics, 68(4), pp. 522532.Google Scholar
Kim, B., Nam, M. J. and Kim, H. J. (2018) ‘Inversion of time-domain induced polarization data based on time-lapse concept’, Journal of Applied Geophysics, 152, pp. 2637. DOI: 10.1016/j.jappgeo.2018.03.010CrossRefGoogle Scholar
King, M. S., Zimmerman, R. W. and Corwin, R. F. (1988) ‘Seismic and electrical properties of unconsolidated permafrost’, Geophysical Prospecting, 36(4), pp. 349364. DOI: 10.1111/j.1365-2478.1988.tb02168.xGoogle Scholar
Kirkpatrick, S., Gelatt, C. D. and Vecchi, M. P. (1983) ‘Optimization by simulated annealing’, Science, 220(4598), pp. 671680.Google Scholar
Klein, J. D. and Sill, W. R. (1982) ‘Electrical properties of artificial clay-bearing sandstone’, Geophysics, 47(11), pp. 15931605. DOI: 10.1190/1.1441310Google Scholar
Klein, J. D., Biegler, T. and Horne, M. D. (1984) ‘Mineral interfacial processes in the method of induced polarization’, Geophysics, 49(7), pp. 11051114.Google Scholar
Knight, R. J. and Nur, A. (1987) ‘The dielectric constant of sandstones, 60 kHz to 4 MHz’, Geophysics, 52(5), pp. 644654.Google Scholar
Koefoed, O. (1970) ‘A fast method for determining the layer distribution from the raised kernel function in geoelegtrical sounding’, Geophysical Prospecting, 18(4), pp. 564570.Google Scholar
Koefoed, O. (1979) Geosounding Principles, 1, Resistivity Sounding Measurements. Elsevier, p. 276.Google Scholar
Koestel, J., Kemna, A., Javaux, M., Binley, A. and Vereecken, H. (2008) ‘Quantitative imaging of solute transport in an unsaturated and undisturbed soil monolith with 3-D ERT and TDR’, Water Resources Research, 44(12), pp. 117. DOI: 10.1029/2007WR006755Google Scholar
Koestel, J., Vanderborght, J., Javaux, M., Kemna, A., Binley, A. and Vereecken, H. (2009a) ‘Noninvasive 3-D transport characterization in a sandy soil using ERT: 1. Investigating the validity of ERT-derived transport parameters’, Vadose Zone Journal, 8(3), pp. 711722.Google Scholar
Koestel, J., Vanderborght, J., Javaux, M., Kemna, A., Binley, A. and Vereecken, H. (2009b) ‘Noninvasive 3-D transport characterization in a sandy soil using ERT: 2. Transport process inference’, Vadose Zone Journal, 8(3), pp. 723734.Google Scholar
Koestel, J., Kasteel, R., Kemna, A., Esser, O., Javaux, M., Binley, A. and Vereecken, H. (2009c) ‘Imaging brilliant blue stained soil by means of electrical resistivity tomography’, Vadose Zone Journal, 8(4), pp. 963975.Google Scholar
Komarov, V. A. (1980) Electrical Prospecting with the Induced Polarization Method. Nedra, Leningrad, p. 391.Google Scholar
Kormiltsev, V. V. (1963) ‘O vozbuzdenii i spade vyzvannoi polarizatsii v kapillarnoi srede (On excitation and decay of induced polarization in capillary medium). Izvestia AN SSSR’, Seria Geofizicheskaya, 11, pp. 16581666.Google Scholar
Kosinski, W. K. and Kelly, W. E. (1981) ‘Geoelectric soundings for predicting aquifer properties’, Groundwater, 19(2), pp. 163171.Google Scholar
Kowalsky, M. B., Finsterle, S. and Rubin, Y. (2004) ‘Estimating flow parameter distributions using ground-penetrating radar and hydrological measurements during transient flow in the vadose zone’, Advances in Water Resources, 27(6), pp. 583599. DOI: 10.1016/j.advwatres.2004.03.003Google Scholar
Kruschwitz, S. and Yaramanci, U. (2004) ‘Detection and characterization of the disturbed rock zone in claystone with the complex resistivity method’, Journal of Applied Geophysics, 57(1), pp. 6379.Google Scholar
Kruschwitz, S., Binley, A., Lesmes, D. and Elshenawy, A. (2010) ‘Textural controls on low-frequency electrical spectra of porous media’, Geophysics, 75(4), pp. WA113-WA123.Google Scholar
Kuras, O., Meldrum, P. I., Beamish, D., Ogilvy, R. D. and Lala, D. (2007) ‘Capacitive resistivity imaging with towed arrays’, Journal of Environmental and Engineering Geophysics, 12(3), pp. 267279. DOI: 10.2113/JEEG12.3.267Google Scholar
Kuras, O., Pritchard, J. D., Meldrum, P. I., Chambers, J. E., Wilkinson, P. B., Ogilvy, R. D. and Wealthall, G. P. (2009) ‘Monitoring hydraulic processes with automated time-lapse electrical resistivity tomography (ALERT)’, Comptes Rendus Geoscience, 341(10–11), pp. 868885.Google Scholar
LaBrecque, D. J. (1991) ‘IP tomography’, in SEG Technical Program Expanded Abstracts 1991. Society of Exploration Geophysicists, pp. 413416.Google Scholar
LaBrecque, D. and Daily, W. (2008) ‘Assessment of measurement errors for galvanic-resistivity electrodes of different composition’, Geophysics, 73(2), p. F55. DOI: 10.1190/1.2823457Google Scholar
LaBrecque, D. J. and Ward, S. H. (1990) ‘Two-dimensional cross-borehole resistivity model fitting’, in Geotechnical and Environmental Geophysics. Society of Exploration Geophysicists: Tulsa, OK, 1, pp. 5157.Google Scholar
LaBrecque, D. and Yang, X. (2001a), ‘The effects of anisotropy on ERT images for Vadose Zone monitoring’, in Symposium on the Application of Geophysics to Engineering and Environmental Problems 2001. Society of Exploration Geophysicists. pp. VZC2VZC2.Google Scholar
LaBrecque, D. J. and Yang, X. (2001b) ‘Difference inversion of ERT data: A fast inversion method for 3-D in situ monitoring’, Journal of Environmental & Engineering Geophysics, 6(2), pp. 8389.Google Scholar
LaBrecque, D. J., Morelli, G., Daily, W., Ramirez, A. and Lundegard, P. (1999) ‘Occam’s inversion of 3-D electrical resistivity tomography’, in Three-Dimensional Electromagnetics. Society of Exploration Geophysicists, pp. 575590.Google Scholar
LaBrecque, D. J., Ramirez, A. L., Daily, W. D., Binley, A. M. and Schima, S. A. (1996a) ‘ERT monitoring of environmental remediation processes’, Measurement Science and Technology, 7(3), p. 375.Google Scholar
LaBrecque, D. J., Miletto, M., Daily, W., Ramirez, A. and Owen, E. (1996b) ‘The effects of noise on Occam’s inversion of resistivity tomography data’, Geophysics, 61(2), pp. 538548.Google Scholar
LaBrecque, D. J., Heath, G., Sharpe, R. and Versteeg, R. (2004) ‘Autonomous monitoring of fluid movement using 3-D electrical resistivity tomography’, Journal of Environmental & Engineering Geophysics, 9(3), pp. 167176.Google Scholar
Lagabrielle, R. (1983) ‘The effect of water on direct current resistivity measurement from the sea, river or lake floor’, Geoexploration, 21(2), pp. 165170.Google Scholar
Laloy, E., Hérault, R., Jacques, D. and Linde, N. (2018) ‘Training‐image based geostatistical inversion using a spatial generative adversarial neural network’, Water Resources Research, 54(1), pp. 381406.Google Scholar
Landauer, R. (1952) ‘The electrical resistance of binary metallic mixtures’, Journal of Applied Physics, 23(7), pp. 779784.Google Scholar
Lane, J. W. Jr, Haeni, F. P. and Watson, W. M. (1995) ‘Use of a square‐array direct‐current resistivity method to detect fractures in crystalline bedrock in New Hampshire’, Groundwater, 33(3), pp. 476485.Google Scholar
Lapenna, V., Lorenzo, P., Perrone, A., Piscitelli, S., Rizzo, E. and Sdao, F. (2005) ‘2D electrical resistivity imaging of some complex landslides in Lucanian Apennine chain, southern Italy’, Geophysics, 70(3), pp. B11–B18.Google Scholar
Leroy, P. and Revil, A. (2004) ‘A triple-layer model of the surface electrochemical properties of clay minerals’, Journal of Colloid and Interface Science, 270(2), pp. 371380. DOI: 10.1016/j.jcis.2003.08.007Google Scholar
Leroy, P. and Revil, A. (2009) ‘A mechanistic model for the spectral induced polarization of clay materials’, Journal of Geophysical Research: Solid Earth, 114 (10), pp. 121. DOI: 10.1029/2008JB006114Google Scholar
Leroy, P., Revil, A., Kemna, A., Cosenza, P. and Ghorbani, A. (2008) ‘Complex conductivity of water-saturated packs of glass beads’, Journal of Colloid and Interface Science, 321(1), pp. 103–17. DOI: 10.1016/j.jcis.2007.12.031Google Scholar
Leroy, P., Li, S., Jougnot, D., Revil, A. and Wu, Y. (2017) ‘Modelling the evolution of complex conductivity during calcite precipitation on glass beads’, Geophysical Journal International, 209(1), pp. 123140. DOI: 10.1093/gji/ggx001Google Scholar
Leroy, P., Hördt, A., Gaboreau, S., Zimmermann, E., Claret, F., Bücker, M., Stebner, H. and Huisman, J. A. (2019) ‘Spectral induced polarization of low-pH cement and concrete’, Cement and Concrete Composites, p. 103397. DOI: 10.1016/j.cemconcomp.2019.103397Google Scholar
Lesmes, D. P. (1993) ‘Electrical impedance spectroscopy of sedimentary rocks’. PhD dissertation thesis, Texas A&M University, p. 168.Google Scholar
Lesmes, D. P. and Morgan, F. D. (2001) ‘Dielectric spectroscopy of sedimentary rocks’, Journal of Geophysical Research-Solid Earth, 106(B7), 1332913346, DOI:10.1029/2000JB900402Google Scholar
Lesmes, P. and Frye, M. (2001) ‘Influence of pore fluid chemistry on the complex conductivity and induced polarization responses of Berea sandstone’, Journal of Geophysical Research, 106(2000), pp. 40794090.Google Scholar
Lesparre, N., Nguyen, F., Kemna, A., Robert, T., Hermans, T., Daoudi, M. and Flores-Orozco, A. (2017) ‘A new approach for time-lapse data weighting in electrical resistivity tomography’, Geophysics, 82(6), pp. E325E333.Google Scholar
Lesur, V., Cuer, M. and Straub, A. (1999) ‘2-D and 3-D interpretation of electrical tomography measurements, Part 1: The forward problem’, Geophysics, 64(2), pp. 386395.Google Scholar
Lévy, L., Gibert, B., Sigmundsson, F., Flóvenz, Ó. G., Hersir, G. P., Briole, P. and Pezard, P. A. (2018) ‘The role of smectites in the electrical conductivity of active hydrothermal systems: Electrical properties of core samples from Krafla volcano, Iceland’, Geophysical Journal International, 215(3), pp. 15581582. DOI: 10.1093/gji/ggy342Google Scholar
Lewkowicz, A. G., Etzelmüller, B. and Smith, S. L. (2011) ‘Characteristics of discontinuous permafrost based on ground temperature measurements and electrical resistivity tomography, Southern Yukon, Canada’, Permafrost and Periglacial Processes, 22(4), pp. 320342. DOI: 10.1002/ppp.703Google Scholar
Li, T., Isaacson, D., Newell, J. C. and Saulnier, G. J. (2014) ‘Adaptive techniques in electrical impedance tomography reconstruction’, Physiological Measurement, 35(6), pp. 11111124.Google Scholar
Li, Y. and Oldenburg, D. W. (1999) ‘3-D inversion of DC resistivity data using an L-curve criterion’, in SEG Technical Program Expanded Abstracts 1999. Society of Exploration Geophysicists, pp. 251254.Google Scholar
Li, Y. and Oldenburg, D. W. (2000) ‘3-D inversion of induced polarization data’, Geophysics, 65(6), pp. 19311945.Google Scholar
Lichtenecker, K. and Rother, K. (1931) ‘Die Herleitung des logarithmischen Mischungsgesetzes aus allgemeinen Prinzipien der stationaren Stromung’, Physikalische Zeitschrift, 32, pp. 255260.Google Scholar
Lima, O. A. L. De and Sharma, M. M. (1992) ‘A generalized Maxwell-Wagner theory for membrane polarization in shaly sands’, Geophysics, 57(3), pp. 431440.Google Scholar
Linde, N., Binley, A., Tryggvason, A., Pedersen, L. B. and Revil, A. (2006) ‘Improved hydrogeophysical characterization using joint inversion of cross‐hole electrical resistance and ground‐penetrating radar traveltime data’, Water Resources Research, 42, W12404, DOI:10.1029/2006WR005131Google Scholar
Lionheart, W. R. B. (2004) ‘EIT reconstruction algorithms: Pitfalls, challenges and recent developments’, Physiological Measurement, 25(1), p. 125. DOI: 10.1088/0967-3334/25/1/021Google Scholar
Lippmann, R. P. (1987) ‘An introduction to computing with neural nets’, IEEE ASSP Magazine, 4(2), pp. 422.Google Scholar
Liu, B., Li, S. C., Nie, L. C., Wang, J., L. X. and Zhang, Q. S. (2012) ‘3D resistivity inversion using an improved Genetic Algorithm based on control method of mutation direction’, Journal of Applied Geophysics, 87, pp. 18. DOI: 10.1016/j.jappgeo.2012.08.002Google Scholar
LoCoco, J. (2018) ‘Advances in slimline borehole geophysical logging’, in Symposium on the Application of Geophysics to Engineering and Environmental Problems 2018. Society of Exploration Geophysicists and Environment and Engineering, pp. 221222.Google Scholar
Loke, M. H. and Barker, R. D. (1995) ‘Least-squares deconvolution of apparent resistivity pseudosections’, Geophysics, 60(6), pp. 16821690.Google Scholar
Loke, M. H. and Barker, R. D. (1996a) ‘Practical techniques for 3D resistivity surveys and data inversion1’, Geophysical Prospecting, 44(3), pp. 499523.Google Scholar
Loke, M. H. and Barker, R. D. (1996b) ‘Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method’, Geophysical Prospecting, 44(1), pp. 131152.Google Scholar
Loke, M. H., Acworth, I. and Dahlin, T. (2003) ‘A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys’, Exploration Geophysics, 34(3), pp. 182187.Google Scholar
Loke, M. H., Wilkinson, P. B. and Chambers, J. E. (2010) ‘Fast computation of optimized electrode arrays for 2D resistivity surveys’, Computers & Geosciences, 36(11), pp. 14141426.Google Scholar
Loke, M. H., Wilkinson, P. B., Uhlemann, S. S., Chambers, J. E. and Oxby, L. S. (2014a) ‘Computation of optimized arrays for 3-D electrical imaging surveys’, Geophysical Journal International, 199(3), pp. 17511764.Google Scholar
Loke, M. H., Wilkinson, P. B., Chambers, J. E. and Strutt, M. (2014b) ‘Optimized arrays for 2D cross‐borehole electrical tomography surveys’, Geophysical Prospecting, 62(1), pp. 172189.Google Scholar
Looms, M. C., Binley, A., Jensen, K. H., Nielsen, L. and Hansen, T. M. (2008) ‘Identifying unsaturated hydraulic parameters using an integrated data fusion approach on cross-borehole geophysical data’, Vadose Zone Journal, 7(1), p. 238. DOI: 10.2136/vzj2007.0087Google Scholar
Lowry, T., Allen, M. B. and Shive, P. N. (1989) ‘Singularity removal: A refinement of resistivity modeling techniques’, Geophysics, 54(6), pp. 766774.Google Scholar
Lück, E. and Rühlmann, J. (2013) ‘Resistivity mapping with GEOPHILUS ELECTRICUS: Information about lateral and vertical soil heterogeneity’, Geoderma, 199, pp. 211.Google Scholar
Lund, E. D., Christy, C. D. and Drummond, P. E. (1999) ‘Practical applications of soil electrical conductivity mapping’, Precision Agriculture, 99, pp. 771779.Google Scholar
Lundegard, P. D. and LaBrecque, D. (1995) ‘Air sparging in a sandy aquifer (Florence, Oregon, USA): Actual and apparent radius of influence’, Journal of Contaminant Hydrology, 19(1), pp. 127.Google Scholar
Luo, Z., Guan, H. and Zhang, X. (2019) ‘The temperature effect and correction models for using electrical resistivity to estimate wood moisture variations’, Journal of Hydrology, p. 124022. DOI: 10.1016/j.jhydrol.2019.124022Google Scholar
Lytle, R. J. and Dines, K. A. (1978) Impedance camera: A system for determining the spatial variation of electrical conductivity, Report No. UCRL-52413. Lawrence Livermore Lab., 1978. p. 11.Google Scholar
Ma, H., Tan, H. and Guo, Y. (2015) ‘Three-dimensional induced polarization parallel inversion using nonlinear conjugate gradients method’, in Mathematical Problems in Engineering. Hindawi, 2015. DOI: 10.1155/2015/464793Google Scholar
MacDonald, A. M., Davies, J. and Peart, R. J. (2001) ‘Geophysical methods for locating groundwater in low permeability sedimentary rocks: Examples from southeast Nigeria’, Journal of African Earth Sciences, 32(1), pp. 115131.Google Scholar
Macleod, C. J. A., Humphreys, M. W., Whalley, W. R., Turner, L., Binley, A., Watts, C. W., Skøt, L., Joynes, A., Hawkins, S. and King, I. P. (2013) ‘A novel grass hybrid to reduce flood generation in temperate regions’. Scientific Reports, 3, DOI: 10.1038/srep01683Google Scholar
Macnae, J. (2016) ‘Quantifying Airborne Induced Polarization effects in helicopter time domain electromagnetics’, Journal of Applied Geophysics, 135, pp. 495502. DOI: 10.1016/j.jappgeo.2015.10.016Google Scholar
Madden, T. R. (1972) Transmission systems and network analogies to geophysical forward and inverse problems, Department of Defense report, p. 52.Google Scholar
Madsen, L. M., Fiandaca, G., Auken, E. and Christiansen, A. V. (2017) ‘Time-domain induced polarization: An analysis of Cole–Cole parameter resolution and correlation using Markov ChainMonte Carlo inversion’, Geophysical Journal International, 211(3), pp. 13411353. DOI: 10.1093/gji/ggx355Google Scholar
Maineult, A., Revil, A., Camerlynck, C., Florsch, N. and Titov, K. (2017a) ‘Upscaling of spectral induced polarization response using random tube networks’, Geophysical Journal International, 209(2), pp. 948960. DOI: 10.1093/gji/ggx066Google Scholar
Maineult, A., Jougnot, D. and Revil, A. (2017b) ‘Variations of petrophysical properties and spectral induced polarization in response to drainage and imbibition: A study on a correlated random tube network’, Geophysical Journal International, pp. 13981411. DOI: 10.1093/gji/ggx474Google Scholar
Major, J. and Silic, J. (1981) ‘Restrictions on the use of Cole–Cole dispersion models in complex resistivity interpretation’, Geophysics, 46(6), pp. 916931.Google Scholar
Mansinha, L. and Mwenifumbo, C. J. (1983) ‘A mise-a-la-masse study of the Cavendish geophysical test site’, Geophysics, 48(9), pp. 12521257.Google Scholar
Mansoor, N. and Slater, L. (2007) ‘Aquatic electrical resistivity imaging of shallow-water wetlands’, Geophysics, 72(5), p. F211. DOI: 10.1190/1.2750667Google Scholar
Mansoor, N., Slater, L., Artigas, F. and Auken, E. (2006) ‘High-resolution geophysical characterization of shallow-water wetlands’, Geophysics, 71(4). DOI: 10.1190/1.2210307Google Scholar
Mares, R., Barnard, H. R., Mao, D., Revil, A. and Singha, K. (2016) ‘Examining diel patterns of soil and xylem moisture using electrical resistivity imaging’, Journal of Hydrology. 536, pp. 327338.Google Scholar
Marescot, L., Lopes, S. P., Lagabrielle, R. and Chapellier, D. (2002) ‘Designing surface-to-borehole electrical resisitivity tomography surveys using the frechet derivative’, Proceedings of 8th Meeting of the Environmental and Engineering Geophysical Society, European Section, pp. 289292.Google Scholar
Marescot, L., Loke, M. H., Chapellier, D., Delaloye, R., Lambiel, C. and Reynard, E. (2003) ‘Assessing reliability of 2D resistivity imaging in mountain permafrost studies using the depth of investigation index method’, Near Surface Geophysics, 1(2), pp. 5767.Google Scholar
Marshall, D. J. and Madden, T. R. (1959) ‘Induced polarization, a study of its causes’, Geophysics, 24(4), pp. 790816. DOI: 10.1190/1.1438659Google Scholar
Martin, T. (2012) ‘Complex resistivity measurements on oak’, European Journal of Wood and Wood Products, 70(1–3), pp. 4553. DOI: 10.1007/s00107-010-0493-zGoogle Scholar
Martin, T. and Günther, T. (2013) ‘Complex resistivity tomography (CRT) for fungus detection on standing oak trees’, European Journal of Forest Research, 132(5–6), pp. 765776. DOI: 10.1007/s10342-013-0711-4Google Scholar
Mary, B., Peruzzo, L., Boaga, J., Schmutz, M., Wu, Y., Hubbard, S. S. and Cassiani, G. (2018) ‘Small-scale characterization of vine plant root water uptake via 3-D electrical resistivity tomography and mise-à-la-masse method’, Hydrology and Earth System Sciences, 22(10), pp. 54275444. DOI: 10.5194/hess-22-5427-2018Google Scholar
Maurya, P. K., Fiandaca, G., Weigand, M., Kemna, A., Christiansen, A. V. and Auken, E. (2017) ‘Comparison of frequency-domain and time-domain spectral induced polarization methods at field scale’, 23rd European Meeting of Environmental and Engineering Geophysics, (September 2017). DOI: 10.3997/2214-4609.201701977Google Scholar
Maurya, P. K., Balbarini, N., Møller, I., Rønde, V., Christiansen, A. V., Bjerg, P. L., Auken, E. and Fiandaca, G. (2018) ‘Subsurface imaging of water electrical conductivity, hydraulic permeability and lithology at contaminated sites by induced polarization’, Geophysical Journal International, 213(2), pp. 770785. DOI: 10.1093/gji/ggy018Google Scholar
Mboh, C. M., Huisman, J. A., Van Gaelen, N., Rings, J. and Vereecken, H. (2012) ‘Coupled hydrogeophysical inversion of electrical resistances and inflow measurements for topsoil hydraulic properties under constant head infiltration’, Near Surface Geophysics, 10(5), pp. 413426. DOI: 10.3997/1873-0604.2012009Google Scholar
McClatchey, A. (1901a) ‘Apparatus for locating metals, minerals, ores, etc.,’ U.S. Patent 681,654.Google Scholar
McClatchey, A. (1901b) ‘Electric prospecting apparatus’, U.S. Patent 681,654.Google Scholar
McCollum, B. and Logan, K. H. (1915) Earth resistance and its relation to electrolysis of underground structures. Technical Papers of the Bureau of Standards, U.S. Dept. Commerse, p. 48.Google Scholar
McCulloch, W. S. and Pitts, W. (1943) ‘A logical calculus of the ideas immanent in nervous activity’, The Bulletin of Mathematical Biophysics, 5(4), pp. 115133.Google Scholar
McLachlan, P. J. (2020) ‘Geophysical characterisation of the groundwater-surface water interface’. PhD thesis, Lancaster University, UK.Google Scholar
McLachlan, P. J., Chambers, J. E., Uhlemann, S. S. and Binley, A. (2017) ‘Geophysical characterisation of the groundwater–surface water interface’, Advances in Water Resources, 109. DOI: 10.1016/j.advwatres.2017.09.016Google Scholar
Macnae, J. (2015) ‘Comment on: Tarasov, A. & Titov, K., 2013, On the use of the Cole–Cole equations in spectral induced polarization, Geophys. J. Int., 195, 352–356’, Geophysical Journal International, 202(1), pp. 529532.Google Scholar
McNeil, J. D. (1980) Electromagnetic terrain conductivity measurement at low induction numbers: Technical Note TN-6. GEONICS Limited, Ontario, Canada, p. 15.Google Scholar
Meister, R., Rajani, M. S., Ruzicka, D. and Schachtman, D. P. (2014) ‘Challenges of modifying root traits in crops for agriculture’, Trends in Plant Science, 19(12), pp. 779788.Google Scholar
Mejus, L. (2015) ‘Using multiple geophysical techniques for improved assessment of aquifer vulnerability’. PhD thesis, Lancaster University, UK, p. 307.Google Scholar
Melo, A. and Li, Y. (2016) ‘Geological characterization applying k-means clustering to 3D magnetic, gravity gradient, and DC resistivity inversions: A case study at an iron oxide copper gold (IOCG) deposit’, SEG Technical Program Expanded Abstracts. September 2016, pp. 21802184.Google Scholar
Mendelson, K. S. and Cohen, M. H. (1982) ‘The effect of grain anisotropy on the electrical properties of sedimentary rocks’, Geophysics, 47(2), pp. 257263.Google Scholar
Mendonça, C. A., Doherty, R., Amaral, N. D., McPolin, B., Larkin, M. J. and Ustra, A. (2015) ‘Resistivity and induced polarization monitoring of biogas combined with microbial ecology at a brownfield site’, Interpretation, 3(4), pp. SAB43SAB56.Google Scholar
Menke, W. (2015) ‘Review of the generalized least squares method’, Surveys in Geophysics, 36(1), pp. 125.Google Scholar
Mester, A., van der Kruk, J., Zimmermann, E. and Vereecken, H. (2011) ‘Quantitative two-layer conductivity inversion of multi-configuration electromagnetic induction measurements’, Vadose Zone Journal, 10(4), pp. 13191330.Google Scholar
Metherall, P., Barber, D. C., Smallwood, R. H. and Brown, B. H. (1996) ‘Three-dimensional electrical impedance tomography’, Nature, 380(6574), p. 509.Google Scholar
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and Teller, E. (1953) ‘Equation of state calculations by fast computing machines’, The Journal of Chemical Physics. 21(6), pp. 10871092.Google Scholar
Michot, D., Benderitter, Y., Dorigny, A., Nicoullaud, B., King, D. and Tabbagh, A. (2003) ‘Spatial and temporal monitoring of soil water content with an irrigated corn crop cover using surface electrical resistivity tomography’, Water Resources Research, 39, 1138, DOI:10.1029/2002WR001581Google Scholar
Miller, C. R. and Routh, P. S. (2007) ‘Resolution analysis of geophysical images: Comparison between point spread function and region of data influence measures’, Geophysical Prospecting, 55(6), pp. 835852.Google Scholar
Millett, F. B. Jr. (1967) ‘Electromagnetic coupling of collinear dipoles on a uniform half-space’, in Mining Geophysics Vol. II (Hansen, D. A. et al. eds.). Society of Exploration Geophysicists, pp. 401419.Google Scholar
Minsley, B. J., Sogade, J. and Morgan, F. D. (2007) ‘Three-dimensional source inversion of self-potential data’, Journal of Geophysical Research: Solid Earth, 112(2), B02202. DOI: 10.1029/2006JB004262Google Scholar
Misiek, R., Liebig, A., Gyulai, A., Ormos, T., Dobroka, M. and Dresen, L. (1997) ‘A joint inversion algorithm to process geoelectric and surface wave seismic data. Part II: Applications’, Geophysical Prospecting, 43(2), pp. 135156.Google Scholar
Misra, S., Torres-Verdín, C., Revil, A., Rasmus, J. and Homan, D. (2016) ‘Interfacial polarization of disseminated conductive minerals in absence of redox-active species – Part 1: Mechanistic model and validation’, Geophysics, 81(2), pp. E139E157. DOI: 10.1190/geo2015-0346.1Google Scholar
Mitchell, N., Nyquist, J. E., Toran, L., Rosenberry, D. O. and Mikochik, J. S. (2008) ‘Electrical resistivity as a tool for identifying geologic heterogeneities which control seepage at Mirror Lake, NH’, in Symposium on the Application of Geophysics to Engineering and Environmental Problems 2008. Society of Exploration Geophysicists, pp. 749759.Google Scholar
Monteiro Santos, F. A., Andrade Afonso, A. R. and Dupis, A. (2007) ‘2D joint inversion of dc and scalar audio-magnetotelluric data in the evaluation of low enthalpy geothermal fields’, Journal of Geophysics and Engineering, 4(1), pp. 5362. DOI: 10.1088/1742-2132/4/1/007Google Scholar
Morelli, G. and LaBrecque, D. J. (1996) ‘Advances in ERT inverse modelling’, European Journal of Environmental and Engineering Geophysics, 1(2), pp. 171186.Google Scholar
Morris, G., Binley, A. M. and Ogilvy, R. D. (2004) ‘Comparison of different electrode materials for induced polarization measurements’, in Proceedings of the 2004 Symposium on the Application of Geophysics to Engineering and Environmental Problems. Environmental and Engineering Geophysical Society (EEGS), p. 4.Google Scholar
Mosteller, F. and Tukey, J. W. (1977) ‘Data analysis and regression: A second course in statistics’, Addison-Wesley Series in Behavioral Science: Quantitative Methods, p. 588.Google Scholar
Mualem, Y. and Friedman, S. P. (1991) ‘Theoretical prediction of electrical conductivity in saturated and unsaturated soil’, Water Resources Research, 27(10), pp. 27712777. DOI: 10.1029/91WR01095Google Scholar
Mudler, J., Hördt, A., Przyklenk, A., Fiandaca, G., Kumar Maurya, P. and Hauck, C. (2019) ‘Two-dimensional inversion of wideband spectral data from the capacitively coupled resistivity method: First applications in periglacial environments’, Cryosphere, 13(9), pp. 24392456. DOI: 10.5194/tc-13-2439-2019Google Scholar
Musgrave, H. and Binley, A. (2011) ‘Revealing the temporal dynamics of subsurface temperature in a wetland using time-lapse geophysics’, Journal of Hydrology, 396(3–4), pp. 258266. DOI: 10.1016/j.jhydrol.2010.11.008Google Scholar
Mustopa, E. J., Srigutomo, W. and Sutarno, D. (2011) ‘Resistivity imaging of mataloko geothermal field by Mise-Á-La-Masse method’, Indonesian Journal of Physics, 22(2), pp. 4551.Google Scholar
Mwakanyamale, K., Slater, L., Binley, A. and Ntarlagiannis, D. (2012) ‘Lithologic imaging using complex conductivity: Lessons learned from the Hanford 300 Area’, Geophysics, 77(6), p. E397. DOI: 10.1190/geo2011-0407.1Google Scholar
Nabighian, M. N. and Elliot, C. L. (1976) ‘Negative induced-polarization effects from layered media’, Geophysics, 41(6), pp. 12361255.Google Scholar
Nabighian, M. N. and Macnae, J. C. (1991) ‘Time domain electromagnetic prospecting methods’, Electromagnetic Methods in Applied Geophysics, 2 (Part A), pp. 427509.Google Scholar
Nadler, A. and Frenkel, H. (1980) ‘Determination of soil solution electrical conductivity from bulk soil electrical conductivity measurements by the four-electrode method1’, Soil Science Society of America Journal, 44, pp. 12161221. DOI: 10.2136/sssaj1980.03615995004400060017xGoogle Scholar
Nagy, V., Milics, G., Smuk, N., Kovács, A. J., Balla, I., Jolánkai, M., Deákvári, J., Szalay, K. D., Fenyvesi, L. and Štekauerová, V. (2013) ‘Continuous field soil moisture content mapping by means of apparent electrical conductivity (ECa) measurement’, Journal of Hydrology and Hydromechanics, 61(4), pp. 305312.Google Scholar
Nath, S. K., Shahid, S. and Dewangan, P. (2000) ‘SEISRES: A visual C++ program for the sequential inversion of seismic refraction and geoelectric data’, Computers & Geosciences, 26(2), pp. 177200.Google Scholar
Newman, G. A. and Alumbaugh, D. L. (1997) ‘Three-dimensional massively parallel electromagnetic inversion – I. Theory’, Geophysical Journal International, 128(2), pp. 345354.Google Scholar
Neyamadpour, A. (2019) ‘3D electrical resistivity tomography as an aid in investigating gravimetric water content and shear strength parameters’, Environmental Earth Sciences, Springer, 78(19), p. 583.Google Scholar
Neyamadpour, A., Abdullah, W. A. T. W., Taib, S. and Niamadpour, D. (2010) ‘3D inversion of DC data using artificial neural networks’, Studia Geophysica et Geodaetica, 54(3), pp. 465485.Google Scholar
Nguyen, F., Garambois, S., Jongmans, D., Pirard, E. and Loke, M. H. (2005) ‘Image processing of 2D resistivity data for imaging faults’, Journal of Applied Geophysics, 57(4), pp. 260277.Google Scholar
Nguyen, F., Kemna, A., Robert, T. and Hermans, T. (2016) ‘Data-driven selection of the minimum-gradient support parameter in time-lapse focused electric imaging’, Geophysics, 81(1), pp. A1A5.Google Scholar
Nimmer, R. E. and Osiensky, J. L. (2002) ‘Using mise-a-la-masse to delineate the migration of a conductive tracer in partially saturated basalt’, Environmental Geosciences, 9(2), pp. 8187.Google Scholar
Nimmer, R. E., Osiensky, J. L., Binley, A. M. and Williams, B. C. (2008) ‘Three-dimensional effects causing artifacts in two-dimensional, cross-borehole, electrical imaging’, Journal of Hydrology, 359(1–2), pp. 5970. DOI: 10.1016/j.jhydrol.2008.06.022Google Scholar
Niu, Q. and Revil, A. (2016) ‘Connecting complex conductivity spectra to mercury porosimetry of sedimentary rocks’, Geophysics, 81(1), pp. E17E32. DOI: 10.1190/geo2015-0072.1Google Scholar
Niu, Q. and Zhang, C. (2018) ‘Physical explanation of Archie’s porosity exponent in granular materials: A process-based, pore-scale numerical study’, Geophysical Research Letters, 45 (4), pp. 18701877. DOI: 10.1002/2017GL076751Google Scholar
Niu, Q., Prasad, M., Revil, A. and Saidian, M. (2016a) ‘Textural control on the quadrature conductivity of porous media’, Geophysics, 81(5), pp. E297E309. DOI: 10.1190/geo2015-0715.1Google Scholar
Niu, Q., Revil, A. and Saidian, M. (2016b) ‘Salinity dependence of the complex surface conductivity of the Portland sandstone’, Geophysics, 81 (2). DOI: 10.1190/geo2015-0426.1Google Scholar
Niwas, S. and Israil, M. (1986) ‘Computation of apparent resistivities using an exponential approximation of kernel functions’, Geophysics, 51(8), pp. 15941602.Google Scholar
Nordsiek, S. and Weller, A. (2008) ‘A new approach to fitting induced-polarization spectra’, Geophysics, 73(6), pp. F235F245. DOI: 10.1190/1.2987412Google Scholar
Ntarlagiannis, D., Yee, N. and Slater, L. (2005a) ‘On the low-frequency electrical polarization of bacterial cells in sands’, Geophysical Research Letters, 32(24), pp. 14. DOI: 10.1029/2005GL024751Google Scholar
Ntarlagiannis, D., Williams, K. H., Slater, L. and Hubbard, S. (2005b) ‘Low-frequency electrical response to microbial induced sulfide precipitation’, Journal of Geophysical Research, 110(G2), pp. 112. DOI: 10.1029/2005JG000024Google Scholar
Nunn, K. R., Barker, R. D. and Bamford, D. (1983) ‘In situ seismic and electrical measurements of fracture anisotropy in the Lincolnshire Chalk’, Quarterly Journal of Engineering Geology and Hydrogeology, 16(3), pp. 187195.Google Scholar
Nyquist, J. E. and Roth, M. J. S. (2005) ‘Improved 3D pole‐dipole resistivity surveys using radial measurement pairs’, Geophysical Research Letters, 32, L21416, DOI:10.1029/2005GL024153Google Scholar
Nyquist, J. E., Heaney, M. J. and Toran, L. (2009) ‘Characterizing lakebed seepage and geologic heterogeneity using resistivity imaging and temperature measurements’, Near Surface Geophysics, 7(5–6), pp. 487498.Google Scholar
Nyquist, J. E., Toran, L., Fang, A. C., Ryan, R. J. and Rosenberry, D. O. (2010) ‘Tracking tracer breakthrough in the hyporheic zone using time-lapse DC resistivity, Crabby Creek, Pennsylvania’, in 23rd EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems.Google Scholar
O’Neill, D. J. (1975) ‘Improved linear filter coefficients for application in apparent resistivity computations’, Exploration Geophysics, 6(4), pp. 104109.Google Scholar
Ochs, J. and Klitzsch, N. (2020) ‘Considerations regarding small-scale surface and borehole-to-surface electrical resistivity tomography’, Journal of Applied Geophysics, 172, p. 103862. DOI: 10.1016/j.jappgeo.2019.103862Google Scholar
Okay, G., Leroy, P., Ghorbani, A., Cosenza, P., Camerlynck, C., Cabrera, J., Florsch, N. and Revil, A. (2014) ‘Spectral induced polarization of clay-sand mixtures: Experiments and modeling’, Geophysics, 79(6), pp. E353-375.Google Scholar
Oldenborger, G. A. and LeBlanc, A. M. (2018) ‘Monitoring changes in unfrozen water content with electrical resistivity surveys in cold continuous permafrost’, Geophysical Journal International, 215(2), pp. 965977. DOI: 10.1093/GJI/GGY321Google Scholar
Oldenborger, G. A. and Routh, P. S. (2009) ‘The point-spread function measure of resolution for the 3-D electrical resistivity experiment’, Geophysical Journal International, 176(2), pp. 405414. DOI: 10.1111/j.1365-246X.2008.04003.xGoogle Scholar
Oldenborger, G. A., Routh, P. S. and Knoll, M. D. (2005) ‘Sensitivity of electrical resistivity tomography data to electrode position errors’, Geophysical Journal International, UK, 163(1), pp. 19.Google Scholar
Oldenborger, G. A., Routh, P. S. and Knoll, M. D. (2007) ‘Model reliability for 3D electrical resistivity tomography: Application of the volume of investigation index to a time-lapse monitoring experiment’, Geophysics, 72(4). DOI: 10.1190/1.2732550Google Scholar
Oldenburg, D. W. and Li, Y. (1994) ‘Inversion of induced polarization data’, Geophysics, 59(9), pp. 13271341.Google Scholar
Oldenburg, D. W. and Li, Y. (1999) ‘Estimating depth of investigation in dc resistivity and IP surveys’, Geophysics, 64(2), pp. 403416.Google Scholar
Oldenburg, D. W., Mcgillivray, P. R. and Ellis, R. G. (1993) ‘Generalized subspace methods for large‐scale inverse problems’, Geophysical Journal International, 114(1), pp. 1220. DOI: 10.1111/j.1365-246X.1993.tb01462.xGoogle Scholar
Olhoeft, G. R. (1974) ‘Electrical properties of rocks’, Physical Properties of Rocks and Minerals, 2, pp. 257297.Google Scholar
Olhoeft, G. R. (1979) ‘Nonlinear electrical properties’, in Nonlinear Behavior of Molecules, Atoms and Ions in Electric, Magnetic, or Electromagnetic Fields (Neel, L. ed.). Elsevier Science Publishing Co, pp. 395410.Google Scholar
Olhoeft, G. R. (1985) ‘Low‐frequency electrical properties’, Geophysics, 50(12), pp. 24922503. DOI: 10.1190/1.1441880Google Scholar
Olsen, P. A., Binley, A., Henry‐Poulter, S. and Tych, W. (1999) ‘Characterizing solute transport in undisturbed soil cores using electrical and X‐ray tomographic methods’, Hydrological Processes, 13(2), pp. 211221.Google Scholar
Olsson, P. I., Fiandaca, G., Larsen, J. J., Dahlin, T. and Auken, E. (2016) ‘Doubling the spectrum of time-domain induced polarization by harmonic de-noising, drift correction, spike removal, tapered gating and data uncertainty estimation’, Geophysical Journal International, 207(2), pp. 774784. DOI: 10.1093/gji/ggw260Google Scholar
Olsson, P.-I. I., Dahlin, T., Fiandaca, G. and Auken, E. (2015) ‘Measuring time-domain spectral induced polarization in the on-time: Decreasing acquisition time and increasing signal-to-noise ratio’, Journal of Applied Geophysics, 123, pp. 611. DOI: 10.1016/j.jappgeo.2015.08.009Google Scholar
Orlando, L. (2013) ‘Some considerations on electrical resistivity imaging for characterization of waterbed sediments’, Journal of Applied Geophysics, 95, pp. 7789.Google Scholar
Osiensky, J. L., Nimmer, R. and Binley, A. M. (2004) ‘Borehole cylindrical noise during hole-surface and hole-hole resistivity measurements’, Journal of Hydrology, 289(1–4), pp. 7894. DOI: 10.1016/j.jhydrol.2003.11.003Google Scholar
Osterman, G., Keating, K., Binley, A. and Slater, L. (2016) ‘A laboratory study to estimate pore geometric parameters of sandstones using complex conductivity and nuclear magnetic resonance for permeability prediction’, Water Resources Research, 52(6), pp. 43214337. DOI: 10.1002/2015WR018472Google Scholar
Osterman, G., Sugand, M., Keating, K., Binley, A. and Slater, L. (2019) ‘Effect of clay content and distribution on hydraulic and geophysical properties of synthetic sand-clay mixtures’, Geophysics, 84(4), pp. E239E253.Google Scholar
Oware, E. K., Moysey, S. M. J. and Khan, T. (2013) ‘Physically based regularization of hydrogeophysical inverse problems for improved imaging of process-driven systems’, Water Resources Research, 49(10), pp. 62386247. DOI: 10.1002/wrcr.20462Google Scholar
Pandit, B. I. and King, M. S. (1979) ‘A study of the effects of pore-water salinity on some physical properties of sedimentary rocks at permafrost temperatures’, Canadian Journal of Earth Sciences, 16(8), pp. 15661580. DOI: 10.1139/e79-143Google Scholar
Panissod, C., Dabas, M., Hesse, A., Jolivet, A., Tabbagh, J. and Tabbagh, A. (1998) ‘Recent developments in shallow-depth electrical and electrostatic prospecting using mobile arrays’, Geophysics, 63(5), pp. 15421550.Google Scholar
Pape, H., Clauser, C. and Iffland, J. (1999) ‘Permeability prediction based on fractal pore-space geometry’, Geophysics, 64(5), pp. 14471460.Google Scholar
Pape, H., Riepe, L. and Schopper, J. R. (1987) ‘Theory of self‐similar network structures in sedimentary and igneous rocks and their investigation with microscopical and physical methods’, Journal of Microscopy, 148(2), pp. 121147. DOI: 10.1111/j.1365-2818.1987.tb02861.xGoogle Scholar
Parasnis, D. (1988) ‘Reciprocity theorems in geoelectric and geoelectromagnetic work’, Geoexploration, 25(3), pp. 177198.Google Scholar
Parasnis, D. S. (1967) ‘Three‐dimensional electric mise‐a‐la‐masse survey of an irregular lead‐zinc‐copper deposit in central Sweden’, Geophysical Prospecting, 15(3), pp. 407437.Google Scholar
Park, S. (1998) ‘Fluid migration in the vadose zone from 3-D inversion of resistivity monitoring data’, Geophysics, 63(1), pp. 4151.Google Scholar
Park, S. K. and Fitterman, D. V. (1990) ‘Sensitivity of the telluric monitoring array in Parkfield, California, to changes of resistivity’, Journal of Geophysical Research: Solid Earth, 95(B10), pp. 1555715571.Google Scholar
Park, S. K. and Van, G. P. (1991) ‘Inversion of pole-pole data for 3-D resistivity structure beneath arrays of electrodes’, Geophysics, 56(7), pp. 951960.Google Scholar
Parra, J. O. (1988) ‘Electrical response of a leak in a geomembrane liner’, Geophysics, 53(11), pp. 14451452.Google Scholar
Parsekian, A. D., Claes, N., Singha, K., Minsley, B. J., Carr, B., Voytek, E., Harmon, R., Kass, A., Carey, A. and Thayer, D. (2017) ‘Comparing measurement response and inverted results of electrical resistivity tomography instruments’, Journal of Environmental and Engineering Geophysics, 22(3), pp. 249266.Google Scholar
Passaro, S. (2010) ‘Marine electrical resistivity tomography for shipwreck detection in very shallow water: A case study from Agropoli (Salerno, southern Italy)’, Journal of Archaeological Science, 37(8), pp. 19891998.Google Scholar
Patella, D. (1972) ‘An interpretation theory for induced polarization vertical soundings (time‐domain)’, Geophysical Prospecting, 20(3), pp. 561579.Google Scholar
Pelton, W. H., Rijo, L. and Swift, C Jr. M. (1978) ‘Inversion of two-dimensional resistivity and induced-polarization data’, Geophysics, 43(4), pp. 788803.Google Scholar
Pelton, W. H., Ward, S. H., Hallof, P. G., Sill, W. R. and Nelson, P. H. (1978) ‘Mineral discrimination and removal of inductive coupling with multifrequency IP’, Geophysics, 43(3), pp. 588609.Google Scholar
Perri, M. T., De Vita, P., Masciale, R., Portoghese, I., Chirico, G. B. and Cassiani, G. (2018) ‘Time-lapse Mise-à-la-Masse measurements and modeling for tracer test monitoring in a shallow aquifer’, Journal of Hydrology, 561, pp. 461477.Google Scholar
Perrone, A., Lapenna, V. and Piscitelli, S. (2014) ‘Electrical resistivity tomography technique for landslide investigation: A review’, Earth-Science Reviews, 135, pp. 6582.Google Scholar
Pessel, M. and Gibert, D. (2003) ‘Multiscale electrical impedance tomography’, Journal of Geophysical Research, 108, p. 2054, DOI:10.1029/2001JB000233, B1Google Scholar
Petiau, G. (2000) ‘Second generation of lead-lead chloride electrodes for geophysical applications’, Pure and Applied Geophysics, 157(3), pp. 357382. DOI: 10.1007/s000240050004Google Scholar
Phuong Tran, A., Dafflon, B., Hubbard, S. S., Kowalsky, M. B., Long, P., Tokunaga, T. K. and Williams, K. H. (2016) ‘Quantifying shallow subsurface water and heat dynamics using coupled hydrological-thermal-geophysical inversion’, Hydrology and Earth System Sciences, 20(9), pp. 34773491.Google Scholar
Pidlisecky, A. and Knight, R. (2008) ‘FW2_5D: A MATLAB 2.5-D electrical resistivity modeling code’, Computers & Geosciences, 34(12), pp. 16451654.Google Scholar
Pidlisecky, A., Haber, E. and Knight, R. (2007) ‘RESINVM3D: A 3D resistivity inversion package’, Geophysics, 72(2), pp. H1H10.Google Scholar
Pidlisecky, A., Rowan Cockett, A. and Knight, R. (2013) ‘Electrical conductivity probes for studying vadose zone processes: Advances in data acquisition and analysis’, Vadose Zone Journal, 12(1), pp. 112. DOI: 10.2136/vzj2012.0073Google Scholar
Pinheiro, P. A. T., Loh, W. W. and Dickin, F. J. (1998) ‘Optimal sized electrodes for electrical resistance tomography’, Electronics Letters, 34(1), pp. 6970.Google Scholar
Placencia-Gómez, E., Parviainen, A., Slater, L. and Leveinen, J. (2015) ‘Spectral induced polarization (SIP) response of mine tailings’, Journal of Contaminant Hydrology, 173, pp. 824. DOI: 10.1016/j.jconhyd.2014.12.002Google Scholar
Portniaguine, O. and Zhdanov, M. S. (1999) ‘Focusing geophysical inversion images’, Geophysics, 64(3), pp. 874887.Google Scholar
Potapenko, G. (1940) ‘Method of determining the presence of oil’, U.S. Patent 2,190,320.Google Scholar
Powell, H. M., Barber, D. C. and Freeston, I. L. (1987) ‘Impedance imaging using linear electrode arrays’, Clinical Physics and Physiological Measurement, 8(4A), p. 109.Google Scholar
Power, C., Tsourlos, P., Ramasamy, M., Nivorlis, A. and Mkandawire, M. (2018), ‘Combined DC resistivity and induced polarization (DC-IP) for mapping the internal composition of a mine waste rock pile in Nova Scotia, Canada’, Journal of Applied Geophysics, 150, pp. 4051.Google Scholar
Pride, S. (1994) ‘Governing equations for the coupled electromagnetics and acoustics of porous media’, Physical Review B, 50(21), p. 15678.Google Scholar
Pridmore, D. F., Hohmann, G. W., Ward, S. H. and Sill, W. R. (1981) ‘An investigation of finite-element modeling for electrical and electromagnetic data in three dimensions’, Geophysics, 46(7), pp. 10091024.Google Scholar
Prodan, C. and Bot, C. (2009) ‘Correcting the polarization effect in very low frequency dielectric spectroscopy’, Journal of Physics D: Applied Physics, 42(17), p. 175505.Google Scholar
Pullen, M. W. (1929) Tentative Method for Making Resistivity Measurements of Drill Cores and Hand Specimens of Rocks and Ores. US Department of Commerce, Bureau of Mines.Google Scholar
Puls, R. W., Paul, C. J. and Powell, R. M. (1999) ‘The application of in situ permeable reactive (zero-valent iron) barrier technology for the remediation of chromate-contaminated groundwater: A field test’, Applied Geochemistry, 14(8), pp. 9891000.Google Scholar
Purvance, D. T. and Andricevic, R. (2000) ‘On the electrical-hydraulic conductivity correlation in aquifers’, Water Resources Research, 36(10), pp. 29052913.Google Scholar
Qing, C., Pardo, D., Hong-bin, L. and Fu-rong, W. (2017) ‘New post-processing method for interpretation of through casing resistivity (TCR) measurements’, Journal of Applied Geophysics, 74, pp. 1925.Google Scholar
Radic, T. (2004) ‘Elimination of cable effects while multi-channel SIP measurements’, Near Surface 2004 – 10th EAGE European Meeting of Environmental and Engineering Geophysics, pp. 14.Google Scholar
Radic, T. and Klitzsch, N. (2012) ‘Compensation technique to minimize capacitive cable coupling effects in multi-channel IP systems’, Near Surface Geoscience 2012, (September 2012), pp. 35. DOI: 10.3997/2214-4609.20143487Google Scholar
Radic, T., Kretzschmar, D. and Niederleithinger, E. (1998) ‘Improved characterization of unconsolidated sediments under field conditions based on complex resistivity measurements’, in Proceedings of the 4th Environmental and Engineering Geophysical Society (EEGS) Meeting.Google Scholar
Raffelli, G., Previati, M., Canone, D., Gisolo, D., Bevilacqua, I., Capello, G., Biddoccu, M., Cavallo, E., Deiana, R. and Cassiani, G. (2017) ‘Local-and plot-scale measurements of soil moisture: Time and spatially resolved field techniques in plain, hill and mountain sites’, Water, 9(9), p. 706.Google Scholar
Ramirez, A. and Daily, W. (2001) ‘Electrical imaging at the large block test: Yucca Mountain, Nevada’, Journal of Applied Geophysics, 46(2), pp. 85100.Google Scholar
Ramirez, A. L., Nitao, J. J., Hanley, W. G., Aines, R., Glaser, R. E., Sengupta, S. K., Dyer, K. M., Hickling, T. L. and Daily, W. D. (2005) ‘Stochastic inversion of electrical resistivity changes using a Markov Chain Monte Carlo approach’, Journal of Geophysical Research, 110, B02101, DOI:10.1029/2004JB003449Google Scholar
Ramirez, A., Daily, W., Binley, A., LaBrecque, D. and Roelant, D. (1996) ‘Detection of leaks in underground storage tanks using electrical resistance methods’, Journal of Environmental and Engineering Geophysics, 1(3), pp. 189203.Google Scholar
Ramirez, A., Daily, W., LaBrecque, D., Owen, E. and Chesnut, D. (1993) ‘Monitoring an underground steam injection process using electrical resistance tomography’, Water Resources Research, 29(1), pp. 7387.Google Scholar
Randles, J. E. B. (1947) ‘Kinetics of rapid electrode reactions’, Discussions of the Faraday Society, 1, pp. 1119.Google Scholar
Ray, A. and Myer, D. (2019) ‘Bayesian geophysical inversion with trans-dimensional Gaussian process machine learning’, Geophysical Journal International, 217(3), pp. 17061726.Google Scholar
Razavirad, F., Schmutz, M. and Binley, A. (2018) ‘Estimation of the permeability of hydrocarbon reservoir samples using induced polarization (ip) and nuclear magnetic resonance (nmr) methods’, Geophysics, pp. 176. DOI: 10.1190/geo2017-0745.1Google Scholar
Ren, Z. and Tang, J. (2010) ‘3D direct current resistivity modeling with unstructured mesh by adaptive finite-element method’, Geophysics, 75(1), pp H1-H17, DOI: 10.1190/1.3298690Google Scholar
Revil, A. (2012) ‘Spectral induced polarization of shaly sands: Influence of the electrical double layer’, Water Resources Research, 48(2). DOI: 10.1029/2011WR011260Google Scholar
Revil, A. (2013) ‘On charge accumulation in heterogeneous porous rocks under the influence of an external electric field’, Geophysics, 78(4), pp. D271D291.Google Scholar
Revil, A. and Florsch, N. (2010) ‘Determination of permeability from spectral induced polarization in granular media’, Geophysical Journal International, 181(3), pp. 14801498. DOI: 10.1111/j.1365-246X.2010.04573.xGoogle Scholar
Revil, A. and Glover, P. W. J. (1997) ‘Theory of ionic-surface electrical conduction in porous media’, Physical Review B, 55(3), p. 1757.Google Scholar
Revil, A. and Glover, P. W. J. (1998) ‘Nature of surface electrical conductivity in natural sands, sandstones, and clays’, Geophysical Research Letters, 25(5), pp. 691694.Google Scholar
Revil, A. and Jardani, A. (2013) The Self-Potential Method: Theory and Applications in Environmental Geosciences. Cambridge University Press, p. 369.Google Scholar
Revil, A. and Skold, M. (2011) ‘Salinity dependence of spectral induced polarization in sands and sandstones’, Geophysical Journal International, 187(2), pp. 813824. DOI: 10.1111/j.1365-246X.2011.05181.xGoogle Scholar
Revil, A., Abdel Aal, G. Z., Atekwana, E. A., Mao, D. and Florsch, N. (2015c) ‘Induced polarization response of porous media with metallic particles – Part 2: Comparison with a broad database of experimental data’, Geophysics, 80(5), pp. D539D552. DOI: 10.1190/geo2014-0578.1Google Scholar
Revil, A., Binley, A., Mejus, L. and Kessouri, P. (2015b) ‘Predicting permeability from the characteristic relaxation time and intrinsic formation factor of complex conductivity spectra’, Water Resources Research, 51(8). DOI: 10.1002/ 2015WR017074Google Scholar
Revil, A., Coperey, A., Mao, D., Abdulsamad, F., Ghorbani, A., Rossi, M. and Gasquet, D. (2018a) ‘Induced polarization response of porous media with metallic particles – Part 8. Influence of temperature and salinity’, Geophysics, 83(6), pp. 178. DOI: 10.1190/geo2018-0089.1Google Scholar
Revil, A., Coperey, A., Shao, Z., Florsch, N., Fabricius, I. L., Deng, Y., Delsman, J. R., Pauw, P. S., Karaoulis, M., de Louw, P. G. B., van Baaren, E. S., Dabekaussen, W., Menkovic, A. and Gunnink, J. L. (2017a) ‘Complex conductivity of soils’, Water Resources Research, 53(8), pp. 71217147. DOI: 10.1002/2017WR020655Google Scholar
Revil, A., Florsch, N. and Camerlynck, C. (2014) ‘Spectral induced piorosimetry’, Geophysical Journal International, pp. 10161033. DOI: 10.1093/gji/ggu180Google Scholar
Revil, A., Florsch, N. and Mao, D. (2015a) ‘Induced polarization response of porous media with metallic particles – Part 1: A theory for disseminated semiconductors’, Geophysics, 80(5), D525D538.Google Scholar
Revil, A., Johnson, T. C. and Finizola, A. (2010) ‘Three‐dimensional resistivity tomography of Vulcan’s forge, Vulcano Island, southern Italy’, Geophysical Research Letters, 37(15).Google Scholar
Revil, A., Murugesu, M., Prasad, M. and Le Breton, M. (2017b) ‘Alteration of volcanic rocks: A new non-intrusive indicator based on induced polarization measurements’, Journal of Volcanology and Geothermal Research, 341, pp. 351362. DOI: 10.1016/j.jvolgeores.2017.06.016Google Scholar
Revil, A., Qi, Y., Ghorbani, A., Soueid Ahmed, A., Ricci, T. and Labazuy, P. (2018b) ‘Electrical conductivity and induced polarization investigations at Krafla volcano, Iceland’, Journal of Volcanology and Geothermal Research, 368, pp. 7390. DOI: 10.1016/j.jvolgeores.2018.11.008Google Scholar
Rhoades, J. D., Manthegi, N. A., Shouse, P. J. and Alves, W. J. (1989) ‘Soil electrical conductivity and soil salinity: New formulations and falibrations’, Soil Science Society of America Journal, 53(2), pp. 433439.Google Scholar
Rhoades, J. D., Ratts, P. A. C. and Prather, R. J. (1976) ‘Effects of liquid-phase electrical conductivity, water content and surface conductivity on bulk electrical conductivity’, Soil Science Society of America Journal, 40, pp. 651655.Google Scholar
Rink, M. and Schopper, J. R. (1974) ‘Interface conductivity and its implications to electric logging’, Transactions of the SPWLA 15th Annual Logging Symposium, 15, p. 15.Google Scholar
Robinson, J., Slater, L., Johnson, T., Shapiro, A., Tiedeman, C., Ntarlagiannis, D., Johnson, C., Day-Lewis, F., Lacombe, P., Imbrigiotta, T. and Lane, J. (2016) ‘Imaging pathways in fractured rock using three-dimensional electrical resistivity tomography’, Groundwater, 54(2). DOI: 10.1111/gwat.12356Google Scholar
Robinson, J., Slater, L., Weller, A., Keating, K., Robinson, T., Rose, C. and Parker, B. (2018) ‘On permeability prediction from complex conductivity measurements using polarization magnitude and relaxation time’, Water Resources Research, 54(5), pp. 34363452. DOI: 10.1002/2017WR022034Google Scholar
Rödder, A. and Junge, A. (2016) ‘The influence of anisotropy on the apparent resistivity tensor: A model study’, Journal of Applied Geophysics, 135, pp. 270280.Google Scholar
Routh, P. S. and Oldenburg, D. W. (2001) ‘Electromagnetic coupling in frequency‐domain induced polarization data: A method for removal’, Geophysical Journal International, 145(1), pp. 5976.Google Scholar
Roy, A. and Apparao, A. (1971) ‘Depth of investigation in direct current methods’, Geophysics, 36(5), pp. 943959.Google Scholar
Roy, K. K. and Elliott, H. M. (1980) ‘Resistivity and IP survey for delineating saline water and fresh water zones’, Geoexploration, 18(2), pp. 145162.Google Scholar
Rücker, C. and Günther, T. (2011) ‘The simulation of finite ERT electrodes using the complete electrode model’, Geophysics, 76(4), pp. F227F238.Google Scholar
Rücker, C., Günther, T. and Spitzer, K. (2006) ‘Three-dimensional modelling and inversion of dc resistivity data incorporating topography – I. Modelling’, Geophysical Journal International, 166(2), pp. 495505. DOI: 10.1111/j.1365-246X.2006.03010.xGoogle Scholar
Rücker, C., Günther, T. and Wagner, F. M. (2017) ‘pyGIMLi: An open-source library for modelling and inversion in geophysics’, Computers & Geosciences, 109, pp. 106123.Google Scholar
Rucker, D. F., Fink, J. B. and Loke, M. H. (2011) ‘Environmental monitoring of leaks using time-lapsed long electrode electrical resistivity’, Journal of Applied Geophysics, 74(4), pp. 242254.Google Scholar
Rucker, D. F., Loke, M. H., Levitt, M. T. and Noonan, G. E. (2010) ‘Electrical-resistivity characterization of an industrial site using long electrodes’, Geophysics, 75(4), pp. WA95WA104.Google Scholar
Rucker, D. F., Noonan, G. E. and Greenwood, W. J. (2011) ‘Electrical resistivity in support of geological mapping along the Panama Canal’, Engineering Geology, 117(1–2), pp. 121133.Google Scholar
Russell, B. (2019) ‘Machine learning and geophysical inversion: A numerical study’, Leading Edge, 38(7), pp. 512519. DOI: 10.1190/tle38070512.1Google Scholar
Rust, W. M. Jr (1938) ‘A historical review of electrical prospecting methods’, Geophysics, 3(1), pp. 16.Google Scholar
Sambuelli, L., Comina, C., Bava, S. and Piatti, C. (2011) ‘Magnetic, electrical, and GPR waterborne surveys of moraine deposits beneath a lake: A case history from Turin, Italy’, Geophysics, 76(6), pp. B213B224.Google Scholar
Samouëlian, A., Richard, G., Cousin, I., Guerin, R., Bruand, A. and Tabbagh, A. (2004) ‘Three‐dimensional crack monitoring by electrical resistivity measurement’, European Journal of Soil Science, 55(4), pp. 751762.Google Scholar
Saneiyan, S., Ntarlagiannis, D., Ohan, J., Lee, J., Colwell, F. and Burns, S. (2019) ‘Induced polarization as a monitoring tool for in-situ microbial induced carbonate precipitation (MICP) processes’, Ecological Engineering, 127, pp. 3647. DOI: 10.1016/j.ecoleng.2018.11.010Google Scholar
Santini, R. and Zambrano, R. (1981) ‘A numerical method of calculating the kernel function from Schlumberger apparent resistivity data’, Geophysical Prospecting, 29(1), pp. 108127. DOI: 10.1111/j.1365-2478.1981.tb01014.xGoogle Scholar
Sasaki, Y. (1989) ‘Two-dimensional joint inversion of magnetotelluric and dipole-dipole resistivity data’, Geophysics, 54(2), pp. 254262.Google Scholar
Sasaki, Y. (1992) ‘Resolution of resistivity tomography inferred from numercial simulation’, Geophysical Prospecting, 40(4), pp. 453463.Google Scholar
Sasaki, Y. (1993) ‘Surface-to-tunnel resistivity tomography at the Kamaishi Mine’, Butsuri-Tansa, Geophysics, 46, pp. 128134.Google Scholar
Sasaki, Y. (1994) ‘3-D resistivity inversion using the finite-element method’, Geophysics, 59(12), pp. 18391848.Google Scholar
Sauck, W. A. (2000) ‘A model for the resistivity structure of LNAPL plumes and their environs in sandy sediments’, Journal of Applied Geophysics, 44(2–3), pp. 151165. DOI: 10.1016/S0926-9851(99)00021-XGoogle Scholar
Sauer, U., Watanabe, N., Singh, A., Dietrich, P., Kolditz, O. and Schütze, C. (2014) ‘Joint interpretation of geoelectrical and soil-gas measurements for monitoring CO2 releases at a natural analogue’, Near Surface Geophysics, 12(1), pp. 165187.Google Scholar
Schenkel, C. J. (1991) ‘The electrical resistivity method in cased boreholes’. PhD thesis, University of California.Google Scholar
Schenkel, C. J. (1994) ‘DC resistivity imaging using a steel cased well’, in SEG Technical Program Expanded Abstracts 1994. Society of Exploration Geophysicists, pp. 403406.Google Scholar
Schenkel, C. J. and Morrison, H. F. (1990) ‘Effects of well casing on potential field measurements using downhole current sources’, Geophysical Prospecting, 38(6), pp. 663686.Google Scholar
Schima, S., LaBrecque, D. J. and Lundegard, P. D. (1993) ‘Monitoring air sparging using resistivity tomography’, Groundwater Monitoring & Remediation, 16(2), pp. 131138.Google Scholar
Schlumberger, C. (1912) ‘Verfahren zur Bestimmung der Beshaffenheit des Erbodens mittels Elektrizität’, German Patent 269,928.Google Scholar
Schlumberger, C. (1915) ‘Process for determining the nature of the subsoil by the aid of electricity’, U.S. Patent 1,163,468.Google Scholar
Schlumberger, C. (1920) Etude sur la prospection electrique du sous-sol. Gauthier-Villars.Google Scholar
Schlumberger, C. (1926) ‘Method for the location of oil bearing formation’, U.S. Patent 1,719,786.Google Scholar
Schlumberger, C. (1933) ‘Electrical process for the geological investigation of the porous strata traversed by drill holes’, U.S. Patent 1,913,293.Google Scholar
Schlumberger, C. (1939) ‘Method and apparatus for identifying the nature of the formations in a borehole’, U.S. Patent 2,165,013.Google Scholar
Schlumberger, C., Schlumberger, M. and Leonardon, E. G. (1934) ‘Electrical exploration of water-covered areas’, Transactions of the American Institute of Mining and Metallurgical Engineers, 110, pp. 122134.Google Scholar
Schmidt-Hattenberger, C., Bergmann, P., Labitzke, T. and Wagner, F. (2014) ‘CO2 migration monitoring by means of electrical resistivity tomography (ERT)–Review on five years of operation of a permanent ERT system at the Ketzin pilot site’, Energy Procedia, 63, pp. 43664373.Google Scholar
Schmutz, M., Revil, A., Vaudelet, P., Batzle, M., Viñao, P. F. and Werkema, D. D. (2010) ‘Influence of oil saturation upon spectral induced polarization of oil-bearing sands’, Geophysical Journal International, 183(1), pp. 211224. DOI: 10.1111/j.1365-246X.2010.04751.xGoogle Scholar
Schnaidt, S. and Heinson, G. (2015) ‘Bootstrap resampling as a tool for uncertainty analysis in 2-D magnetotelluric inversion modelling’, Geophysical Journal International, 203(1), pp. 92106. DOI: 10.1093/gji/ggv264Google Scholar
Schön, J. H. (2011) Physical Properties of Rocks: A Workbook. Elsevier B.V., p. 494.Google Scholar
Schulmeister, M. K., Butler, J. J. Jr, Healey, J. M., Zheng, L., Wysocki, D. A. and McCall, G. W. (2003) ‘Direct‐push electrical conductivity logging for high‐resolution hydrostratigraphic characterization’, Groundwater Monitoring & Remediation, 23(3), pp. 5262.Google Scholar
Schurr, J. M. (1964) ‘On the theory of the dielectric dispersion of spherical colloidal particles in electrolyte solution’, Journal of Physical Chemistry, 68(9), pp. 24072413. DOI: 10.1021/j100791a004Google Scholar
Schwarz, G. (1962) ‘A theory of the low-frequency dielectric dispersion of colloidal particles in electrolyte solution1,2’, The Journal of Physical Chemistry, 66(12), pp. 26362642. DOI: 10.1021/j100818a067Google Scholar
Schwarz, H. R. (1991) FORTRAN-Programme zur Methode der finiten Elemente. Springer, p. 224.Google Scholar
Schwarzbach, C., Börner, R.-U. and Spitzer, K. (2005) ‘Two-dimensional inversion of direct current resistivity data using a parallel, multi-objective genetic algorithm’, Geophysical Journal International, 162(3), pp. 685695.Google Scholar
Schwarze, F., Engels, J., Mattheck, C. and others (1999) Holzzersetzende Pilze in Baumen – Strategien der Holzzersetzung. Rombach Verlag.Google Scholar
Scott, J. B. T. and Barker, R. D. (2003) ‘Determining pore-throat size in Permo-Triassic sandstones from low-frequency electrical spectroscopy’, Geophysical Research Letters, 30(9), p. 1450. DOI: 10.1029/2003GL016951Google Scholar
Scott, W. J., Sellmann, P. and Hunter, J. A. (1990) ‘Geophysics in the study of permafrost’, in Geotechnical and Environmental Geophysics (Ward, S. ed.). Society of Exploration Geophysicists, 1, pp. 355384.Google Scholar
Searle, G. F. C. (1911) ‘On resistances with current and potential terminals’, Electrician, 66, p. 999.Google Scholar
Sears, R. (1998) ‘The British Nuclear Fuels Drigg low-level waste site characterization programme’, Geological Society, London, Special Publications, 130(1), pp. 3746.Google Scholar
Segesman, F. F. (1980) ‘Well-logging method’, Geophysics, 45(11), pp. 16671684.Google Scholar
Seigel, H. et al. (2007) ‘The early history of the induced polarization method’, The Leading Edge, 26(3), pp. 312321.Google Scholar
Seigel, H. O. (1949) ‘Theoretical and experimental investigations into the applications of the phenomenon of overvoltage to geophysical prospecting,’ Toronto, Unpublished doctoral dissertation, University of Toronto.Google Scholar
Seigel, H. O. (1959) ‘Mathematical formulation and type curves for induced polarization’, Geophysics, 24(3), pp. 547565.Google Scholar
Seigel, H., Nabighian, M., Parasnis, D. S. and Vozoff, K. (2007) ‘The early history of the induced polarization method’, The Leading Edge, 26(3), pp. 312321.Google Scholar
Sen, M. K. and Stoffa, P. L. (2013) Global Optimization Methods in Geophysical Inversion. Cambridge University Press, p. 279.Google Scholar
Sen, M. K., Bhattacharya, B. B. and Stoffa, P. L. (1993) ‘Nonlinear inversion of resistivity sounding data’, Geophysics, 58(4), pp. 496507.Google Scholar
Sen, P. N. (1984) ‘Grain shape effects on dielectric and electrical properties of rocks’, Geophysics, 49(5), pp. 586587.Google Scholar
Sen, P. N. and Goode, P. A. (1992) ‘Influence of temperature on electrical conductivity on shaly sands’, Geophysics, 57(1), pp. 8996.Google Scholar
Sen, P. N., Scala, C. and Cohen, M. H. (1981) ‘A self-similar model for sedimentary rocks with application to the dielectric constant of fused glass beads’, Geophysics, 46(5), pp. 781795.Google Scholar
Shah, P. H. and Singh, D. N. (2005) ‘Generalized Archie’s law for estimation of soil electrical conductivity’, Journal of ASTM International, 2(5), pp. 120.Google Scholar
Shanahan, P. W., Binley, A., Whalley, W. R. and Watts, C. W. (2015) ‘The use of electromagnetic induction to monitor changes in soil moisture profiles beneath different wheat genotypes’, Soil Science Society of America Journal, 79(2). DOI: 10.2136/sssaj2014.09.0360Google Scholar
Shaw, R. and Srivastava, S. (2007) ‘Particle swarm optimization: A new tool to invert geophysical data’, Geophysics, 72(2). DOI: 10.1190/1.2432481Google Scholar
Sheriff, S. D. (1992) ‘Spreadsheet modeling of electrical sounding experiments’, Groundwater, 30(6), pp. 971974.Google Scholar
Sherrod, L., Sauck, W. and Werkema, D. D. J. (2012) ‘A low-cost, in situ resistivity and temperature monitoring system’, Groundwater Monitoring and Remediation, 32(2), pp. 3139. DOI: 10.1111/j1745Google Scholar
Shigo, A. L. and Shigo, A. (1974) ‘Detection of discoloration and decay in living trees and utility poles’, Res. Pap. NE-294. Upper Darby, PA: US Department of Agriculture, Forest Service, Northeastern Forest Experiment Station. 11p.Google Scholar
Shima, H. (1990) ‘Two-dimensional automatic resistivity inversion technique using alpha centers’, Geophysics, 55(6), pp. 682694.Google Scholar
Shima, H. (1992) ‘2-D and 3-D resistivity image reconstruction using crosshole data’, Geophysics, 57(10), pp. 12701281.Google Scholar
Simms, J. E. and Morgan, F. D. (1992) ‘Comparison of four least-squares inversion schemes for studying equivalence in one-dimensional resistivity interpretation’, Geophysics, 57(10), pp. 12821293.Google Scholar
Simpson, D., Van Meirvenne, M., Lück, E., Bourgeois, J. and Rühlmann, J. (2010) ‘Prospection of two circular Bronze Age ditches with multi-receiver electrical conductivity sensors (North Belgium)’, Journal of Archaeological Science, 37(9), pp. 21982206.Google Scholar
Simyrdanis, K., Tsourlos, P., Soupios, P. and Tsokas, G. (2016) ‘Simulation of ERT surface-to-tunnel measurements’, Bulletin of the Geological Society of Greece, 47(3), p. 1251. DOI: 10.12681/bgsg.10981Google Scholar
Singha, K. and Gorelick, S. M. (2005) ‘Saline tracer visualized with three‐dimensional electrical resistivity tomography: Field‐scale spatial moment analysis’, Water Resources Research, 41(5).Google Scholar
Singha, K., Day-Lewis, F. D. and Lane, J. W. (2007) ‘Geoelectrical evidence of bicontinuum transport in groundwater’, Geophysical Research Letters, 34(12), pp. 15. DOI: 10.1029/2007GL030019Google Scholar
Skutt, H. R., Shigo, A. L. and Lessard, R. A. (1972) ‘Detection of discolored and decayed wood in living trees using a pulsed electric current’, Canadian Journal of Forest Research, 2(1), pp. 5456.Google Scholar
Slater, L. and Binley, A. (2003) ‘Evaluation of permeable reactive barrier (PRB) integrity using electrical imaging methods’, Geophysics, 68(3), pp. 911921.Google Scholar
Slater, L. and Binley, A. M. (2006) ‘Synthetic and field-based electrical imaging of a zerovalent iron barrier: Implications for monitoring long-term barrier performance’, Geophysics, 71(5). DOI: 10.1190/1.2235931Google Scholar
Slater, L. and Lesmes, D. (2002a) ‘IP interpretation in environmental investigations’, Geophysics, 67(1), pp. 7788. DOI: 10.1190/1.1451353Google Scholar
Slater, L. and Lesmes, D. P. (2002b) ‘Electrical-hydraulic relationships observed for unconsolidated sediments’, Water Resources Research, 38(10), pp. 113. DOI: 10.1029/2001WR001075Google Scholar
Slater, L. D. and Glaser, D. R. (2003) ‘Controls on induced polarization in sandy unconsolidated sediments and application to aquifer characterization’, Geophysics, 68(5), pp. 15471558. DOI: 10.1190/1.1620628Google Scholar
Slater, L. D., Binley, A. and Brown, D. (1997a) ‘Electrical imaging of fractures using ground-water salinity change’, Ground Water, 35(3), pp. 436442. DOI: 10.1111/j.1745-6584.1997.tb00103.xGoogle Scholar
Slater, L. D., Choi, J. and Wu, Y. (2005) ‘Electrical properties of iron-sand columns: Implications for induced polarization investigation and performance monitoring of iron-wall barriers’, Geophysics, 70(4), p. G87. DOI: 10.1190/1.1990218Google Scholar
Slater, L. D., Ntarlagiannis, D., Day-Lewis, F. D., Mwakanyamale, K., Versteeg, R. J., Ward, A., Strickland, C., Johnson, C. D., Lane, J. Jr. W. and Lane, J. W. (2010) ‘Use of electrical imaging and distributed temperature sensing methods to characterize surface water-groundwater exchange regulating uranium transport at the Hanford 300 Area, Washington’, Water Resources Research, 46(10), pp. 113. DOI: 10.1029/2010WR009110Google Scholar
Slater, L., Barrash, W., Montrey, J. and Binley, A. (2014) ‘Electrical-hydraulic relationships observed for unconsolidated sediments in the presence of a cobble framework’, Water Resources Research, 50(7), pp. 57215742. DOI: 10.1002/2013WR014631Google Scholar
Slater, L., Binley, A., Versteeg, R., Cassiani, G., Birken, R. and Sandberg, S. (2002) ‘A 3D ERT study of solute transport in a large experimental tank’, Journal of Applied Geophysics, 49(4), pp. 211229. DOI: 10.1016/S0926-9851(02)00124-6Google Scholar
Slater, L., Binley, A. M., Daily, W. and Johnson, R. (2000) ‘Cross-hole electrical imaging of a controlled saline tracer injection’, Journal of Applied Geophysics, 44(2–3), pp. 85102.Google Scholar
Slater, L., Brown, D. and Binley, A. (1996) ‘Determination of hydraulically conductive pathways in fractured limestone using cross-borehole electrical resistivity tomography’, European Journal of Environmental and Engineering Geophysics, 1(1), pp. 3552.Google Scholar
Slater, L., Ntarlagiannis, D., Personna, Y. R. and Hubbard, S. (2007) ‘Pore-scale spectral induced polarization signatures associated with FeS biomineral transformations’, Geophysical Research Letters, 34(21), pp. 37. DOI: 10.1029/2007GL031840Google Scholar
Slater, L., Ntarlagiannis, D., Yee, N., O’Brien, M., Zhang, C. and Williams, K. H. (2008) ‘Electrodic voltages in the presence of dissolved sulfide: Implications for monitoring natural microbial activity’, Geophysics, 73(2). DOI: 10.1190/1.2828977Google Scholar
Slater, L., Zaidman, M. D., Binley, A. M. and West, L. J. (1997b) ‘Electrical imaging of saline tracer migration for the investigation of unsaturated zone transport mechanisms’, Hydrology and Earth System Sciences, 1(2), pp. 291302.Google Scholar
Slichter, L. B. (1933) ‘The interpretation of the resistivity prospecting method for horizontal structures’, Physics, 4(9), pp. 307322.Google Scholar
Smith, R. S. and Klein, J. (1996) ‘A special circumstance of airborne induced-polarization measurements’, Geophysics, 61(1), pp. 6673.Google Scholar
Snyder, D. D. and Merkel, R. M. (1973) ‘Analytic models for the interpretation of electrical surveys using buried current electrodes’, Geophysics, 38(3), pp. 513529.Google Scholar
Song, L. (1984) ‘A new IP decoupling scheme’, Exploration Geophysics, 15(2), pp. 99112.Google Scholar
Sørensen, K. (1996) ‘Pulled array continuous electrical profiling’, First Break, 14(3), pp. 8590. DOI: 10.3997/1365-2397.1996005Google Scholar
Sparacino, M. S., Rathburn, S. L., Covino, T. P., Singha, K. and Ronayne, M. J. (2019) ‘Form‐based river restoration decreases wetland hyporheic exchange: Lessons learned from the Upper Colorado River’, Earth Surface Processes and Landforms, 44(1), pp. 191203.Google Scholar
Sparrenbom, C. J., Åkesson, S., Johansson, S., Hagerberg, D. and Dahlin, T. (2017) ‘Investigation of chlorinated solvent pollution with resistivity and induced polarization’, Science of the Total Environment, 575, pp. 767778. DOI: 10.1016/j.scitotenv.2016.09.117Google Scholar
Stamm, A. J. (1930) ‘An electrical conductivity method for determining the moisture content of wood’, Industrial & Engineering Chemistry Analytical Edition, 2(3), pp. 240244.Google Scholar
Stefanesco, S., Schlumberger, C. and Schlumberger, M. (1930) ‘Sur la distribution électrique potentielle autour d’une prise de terre ponctuelle dans un terrain à couches horizontales, homogènes et isotropes’, Journal de Physique et le Radium. Société Française de Physique, 1(4), pp. 132140.Google Scholar
Stummer, P., Maurer, H. and Green, A. G. (2004) ‘Experimental design: Electrical resistivity data sets that provide optimum subsurface information’, Geophysics, 69(1), pp. 120139.Google Scholar
Stummer, P., Maurer, H., Horstmeyer, H. and Green, A. G. (2002) ‘Optimization of DC resistivity data acquisition: Real-time experimental design and a new multielectrode system’, IEEE Transactions on Geoscience and Remote Sensing, 40(12), pp. 27272735.Google Scholar
Sudduth, K. A., Kitchen, N. R., Bollero, G. A., Bullock, D. G. and Wiebold, W. J. (2003) ‘Comparison of electromagnetic induction and direct sensing of soil electrical conductivity’, Agronomy Journal, 95(3), pp. 472482.Google Scholar
Suman, R. J. and Knight, R. J. (1997) ‘Effects of pore structure and wettability on the electrical resistivity of partially saturated rocks: A network study’, Geophysics, 62(4), pp. 11511162. DOI: 10.1190/1.1444216Google Scholar
Sumner, J. S. (1976) Principles of Induced Polarization for Geophysical Exploration. Elsevier Scientific Publishing Company, p. 277.Google Scholar
Sundberg, K. (1932) ‘Effect of impregnating waters on electrical conductivity of soil and rocks’, Trans. Am. Inst. Mining Metall. Petrol. Eng., 97, pp. 367391.Google Scholar
Swift, C. M. Jr (1973) ‘The L/M parameter of time-domain IP measurements: A computational analysis’, Geophysics, 38(1), pp. 6167.Google Scholar
Szalai, S. and Szarka, L. (2008) ‘On the classification of surface geoelectric arrays’, Geophysical Prospecting, 56(2), pp. 159175.Google Scholar
Tarasov, A. and Titov, K. (2007) ‘Relaxation time distribution from time domain induced polarization measurements’, Geophysical Journal International, 170(1), pp. 3143.Google Scholar
Tarasov, A. and Titov, K. (2013) ‘On the use of the Cole–Cole equations in spectral induced: polarization’, Geophysical Journal International, 195(1), pp. 352356. DOI: 10.1093/gji/ggt251Google Scholar
Taylor, R. W. and Fleming, A. H. (1988) ‘Characterizing jointed systems by azimuthal resistivity surveys’, Groundwater, 26(4), pp. 464474.Google Scholar
Taylor, S. and Barker, R. (2002) ‘Resistivity of partially saturated Triassic sandstone’, Geophysical Prospecting, 50(6), pp. 603613.Google Scholar
Telford, W. M., Geldart, L. P. and Sheriff, R. E. (1990) Applied Geophysics. 2nd edn. Cambridge: Cambridge University Press,Google Scholar
Terrón, J. M., Mayoral, V., Salgado, J. Á., Galea, F. A., Pérez, V. H., Odriozola, C., Mateos, P. and Pizzo, A. (2015) ‘Use of soil apparent electrical resistivity contact sensors for the extensive study of archaeological sites’, Archaeological Prospection, 22(4), pp. 269281.Google Scholar
Terzaghi, K. (1943) Theoretical Soil Mechanics. John Wiley & Sons, New York, pp. 1115.Google Scholar
Thomas, E. C. (1992) ‘50th anniversary of the Archie equation: Archie left more than just an equation’, The Log Analyst (May–June 1992), 199.Google Scholar
Thomsen, R., Søndergaard, V. H. and Sørensen, K. I. (2004) ‘Hydrogeological mapping as a basis for establishing site-specific groundwater protection zones in Denmark’, Hydrogeology Journal, 12(5), pp. 550562.Google Scholar
Tikhonov, A. N. and Arsenin, V. I. (1977) Solutions of Ill-Posed Problems. Winston, Washington, DC, p. 258.Google Scholar
Titov, K., Kemna, A., Tarasov, A. and Vereecken, H. (2010a) ‘Induced polarization of unsaturated sands determined through time domain measurements’, Vadose Zone Journal, 3(4), p. 1160. DOI: 10.2136/vzj2004.1160Google Scholar
Titov, K., Komarov, V., Tarasov, V. and Levitski, A. (2002) ‘Theoretical and experimental study of time domain-induced polarization in water-saturated sands’, Journal of Applied Geophysics, 50(4), pp. 417433. DOI: 10.1016/S0926-9851(02)00168-4Google Scholar
Titov, K., Tarasov, A., Ilyin, Y., Seleznev, N. and Boyd, A. (2010b) ‘Relationships between induced polarization relaxation time and hydraulic properties of sandstone’, Geophysical Journal International, 180(3), pp. 10951106. DOI: 10.1111/j.1365-246X.2009.04465.xGoogle Scholar
Tombs, J. M. C. (1981) ‘The feasibility of making spectral IP measurements in the time domain’, Geoexploration, 19(2), pp. 91102. DOI: 10.1016/0016-7142(81)90022-3Google Scholar
Tong, M., Li, L., Wang, W. and Jiang, Y. (2006) ‘Determining capillary-pressure curve, pore-size distribution, and permeability from induced polarization of shaley sand’, Geophysics, 71(3), pp. N33N40.Google Scholar
Toran, L., Hughes, B., Nyquist, J. and Ryan, R. (2012) ‘Using hydrogeophysics to monitor change in hyporheic flow around stream restoration structures’, Environmental & Engineering Geoscience, 18(1), pp. 8397.Google Scholar
Truffert, C., Gance, J., Leite, O. and Texier, B. (2019) ‘New instrumentation for large 3D electrical resistivity tomography and induced polarization surveys’, pp. 124127. DOI: 10.1190/gem2019-032.1Google Scholar
Ts, M.-E., Lee, E., Zhou, L., Lee, K. H. and Seo, J. K. (2016) ‘Remote real time monitoring for underground contamination in Mongolia using electrical impedance tomography’, Journal of Nondestructive Evaluation, 35(1), p. 8.Google Scholar
Tso, C. H. M., Kuras, O. and Binley, A. (2019) ‘On the field estimation of moisture content using electrical geophysics: The impact of petrophysical model uncertainty’, Water Resources Research, 55(8), pp. 71967211. DOI: 10.1029/2019WR024964Google Scholar
Tso, C. H. M., Kuras, O., Wilkinson, P. B., Uhlemann, S., Chambers, J. E., Meldrum, P. I., Graham, J., Sherlock, E. F. and Binley, A. (2017) ‘Improved characterisation and modelling of measurement errors in electrical resistivity tomography (ERT) surveys’, Journal of Applied Geophysics, 146, pp. 103119. DOI: 10.1016/j.jappgeo.2017.09.009Google Scholar
Tsokas, G. N., Tsourlos, P. I. and Szymanski, J. E. (1997) ‘Square array resistivity anomalies and inhomogeneity ratio calculated by the finite-element method’, Geophysics, 62(2), pp. 426435.Google Scholar
Tsourlos, P., Ogilvy, R., Meldrum, P. and Williams, G. (2003) ‘Time-lapse monitoring in single boreholes using electrical resistivity tomography’, Journal of Environmental & Engineering Geophysics, 8(1), pp. 114.Google Scholar
Tsourlos, P., Ogilvy, R., Papazachos, C. and Meldrum, P. (2011) ‘Measurement and inversion schemes for single borehole-to-surface electrical resistivity tomography surveys’, Journal of Geophysics and Engineering, 8(4), pp. 487497.Google Scholar
Udphuay, S., Günther, T., Everett, M. E., Warden, R. R. and Briaud, J.-L. (2011) ‘Three-dimensional resistivity tomography in extreme coastal terrain amidst dense cultural signals: Application to cliff stability assessment at the historic D-Day site’, Geophysical Journal International, UK, 185(1), pp. 201220.Google Scholar
Uhlemann, S. (2018) ‘Geoelectrical monitoring of moisture driven processes in natural and engineered slopes’. PhD thesis, ETH Zurich, Switzerland. p. 446.Google Scholar
Uhlemann, S., Chambers, J., Wilkinson, P., Maurer, H., Merritt, A., Meldrum, P., Kuras, O., Gunn, D., Smith, A. and Dijkstra, T. (2017) ‘Four-dimensional imaging of moisture dynamics during landslide reactivation’, Journal of Geophysical Research: Earth Surface, 122 (1), pp. 398418. DOI: 10.1002/2016JF003983Google Scholar
Uhlemann, S., Wilkinson, P. B., Chambers, J. E., Maurer, H., Merritt, A. J., Gunn, D. A. and Meldrum, P. I. (2015) ‘Interpolation of landslide movements to improve the accuracy of 4D geoelectrical monitoring’, Journal of Applied Geophysics, 121, pp. 93105.Google Scholar
Ulrich, C. and Slater, L. (2004) ‘Induced polarization measurements on unsaturated, unconsolidated sands’, Geophysics, 69(3), p. 762. DOI: 10.1190/1.1759462Google Scholar
Ulrych, T. J., Sacchi, M. D. and Woodbury, A. (2001) ‘A Bayes tour of inversion: A tutorial’, Geophysics, 66(1), pp. 5569.Google Scholar
Ustra, A., Mendonça, Carlos Alberto, Ntarlagiannis, D. and Slater, L. D. (2015) ‘Relaxation time distribution obtained from a Debye decomposition of spectral induced polarization data’, Geophysics, 81(2). DOI: 10.1190/GEO2015-0095.1Google Scholar
Vacquier, V. et al. (1957) ‘Prospecting for ground water by induced electrical polarization’, Geophysics, 22(3), pp. 660687.Google Scholar
Van der Baan, M. and Jutten, C. (2000) ‘Neural networks in geophysical applications’, Geophysics, 65(4), pp. 10321047.Google Scholar
Vanella, D., Consoli, S., Cassiani, G., Busato, L., Boaga, J., Barbagallo, S. and Binley, A. (2018) ‘The use of small scale electrical resistivity tomography to identify trees root water uptake patterns’, Journal of Hydrology, 556, pp 310324.Google Scholar
Van Nostrand, R. G. and Cook, K. L. (1966) ‘Interpretation of resistivity data’, Geological Survey Professional Paper, 499, p. 310.Google Scholar
Van Schoor, M. and Binley, A. (2010) ‘In‐mine (tunnel‐to‐tunnel) electrical resistance tomography in South African platinum mines’, Near Surface Geophysics, 8(6), pp. 563574.Google Scholar
Van, G. P., Park, S. K. and Hamilton, P. (1991) ‘Monitoring leaks from storage ponds using resistivity methods’, Geophysics, 56(8), pp. 12671270.Google Scholar
Vanhala, H. and Soininen, H. (1995) ‘Laboratory technique for measurement of spectral induced polarization (SIP) response of soil samples’, Geophysical Prospecting, 43, pp. 655676.Google Scholar
Vaudelet, P., Revil, A., Schmutz, M., Franceschi, M. and Bégassat, P. (2011) ‘Induced polarization signatures of cations exhibiting differential sorption behaviors in saturated sands’, Water Resources Research, 47(2), pp. 121. DOI: 10.1029/2010WR009310Google Scholar
Veeken, P. C., Legeydo, P. J., Davidenko, Y. A., Kudryavceva, E. O., Ivanov, S. A., Chuvaev, A. (2009) ‘Benefits of the induced polarization geoelectric method to hydrocarbon exploration’, Geophysics, 74(2), pp. B47B59.Google Scholar
Verdet, C., Anguy, Y., Sirieix, C., Clément, R. and Gaborieau, C. (2018) ‘On the effect of electrode finiteness in small-scale electrical resistivity imaging’, Geophysics, 83(6), pp. EN39EN52.Google Scholar
Vernon, R. W. (2008) ‘Alfred Williams, Leo Daft and “The Electrical Ore-Finding Company Limited”’, British Mining, 86, pp. 430.Google Scholar
Vinciguerra, A., Aleardi, M. and Costantini, P. (2019) ‘Full-waveform inversion of complex resistivity IP spectra: Sensitivity analysis and inversion tests using local and global optimization strategies on synthetic datasets: Sensitivity’, Near Surface Geophysics, 17(2), pp. 109125. DOI: 10.1002/nsg.12034Google Scholar
Vinegar, H. and Waxman, M. (1984) ‘Induced polarization of shaly sands’, Geophysics, 49(8), pp. 12671287. DOI: 10.1190/1.1441755Google Scholar
Wagner, F. M., Bergmann, P., Rücker, C., Wiese, B., Labitzke, T., Schmidt-Hattenberger, C. and Maurer, H. (2015) ‘Impact and mitigation of borehole related effects in permanent crosshole resistivity imaging: An example from the Ketzin CO2 storage site’, Journal of Applied Geophysics, 123, pp. 102111.Google Scholar
Wainwright, H. M., Flores Orozco, A., Bücker, M., Dafflon, B., Chen, J., Hubbard, S. S. and Williams, K. H. (2016) ‘Hierarchical Bayesian method for mapping biogeochemical hot spots using induced polarization imaging’, Water Resources Research, 52(1), pp. 533551. DOI: 10.1002/2015WR017763Google Scholar
Wait, J. R. and Gruszka, T. P. (1986) ‘On electromagnetic coupling “removal” from induced polarization surveys’, Geoexploration, 24(1), pp. 2127.Google Scholar
Walker, J. P. and Houser, P. R. (2002) ‘Evaluation of the OhmMapper instrument for soil moisture measurement’, Soil Science Society of America Journal, 66(3), pp. 728734.Google Scholar
Walker, S. E. (2008) ‘Should we care about negative transients in helicopter TEM data?’, in SEG Technical Program Expanded Abstracts 2008. Society of Exploration Geophysicists, pp. 11031107.Google Scholar
Wang, C. and Slater, L. D. (2019) ‘Extending accurate spectral induced polarization measurements into the kHz range: Modelling and removal of errors from interactions between the parasitic capacitive coupling and the sample holder’, Geophysical Journal International, 218(2), pp. 895912. DOI: 10.1093/gji/ggz199Google Scholar
Wang, M. (2015) ‘Electrical impedance tomography’, in Industrial Tomography (Wang, M. ed.). Woodhead Publishing, pp. 2359. DOI: https://DOI.org/10.1016/B978-1-78242-118-4.00002-2Google Scholar
Wang, M., Dickin, F. J. and Beck, M. S. (1993) ‘Improved electrical impedance tomography data collection system and measurement protocols’, in Tomographic Techniques for Process Design and Operation. Computational Mechanics, Billerica, MA, pp. 7588.Google Scholar
Ward, A. S., Gooseff, M. N. and Singha, K. (2010) ‘Imaging hyporheic zone solute transport using electrical resistivity’, Hydrological Processes, 24(7), pp. 948953.Google Scholar
Ward, A. S., Fitzgerald, M., Gooseff, M. N., Voltz, T. J., Binley, A. M. and Singha, K. (2012) ‘Hydrologic and geomorphic controls on hyporheic exchange during baseflow recession in a headwater mountain stream’, Water Resources Research, 48, W04513.Google Scholar
Ward, A. S., Kurz, M. J., Schmadel, N. M., Knapp, J. L. A., Blaen, P. J., Harman, C. J., Drummond, J. D., Hannah, D. M., Krause, S. and Li, A. (2019) ‘Solute transport and transformation in an intermittent, headwater mountain stream with diurnal discharge fluctuations’, Water, 11(11), p. 2208.Google Scholar
Ward, S. H. (1980) ‘Electrical, electromagnetic, and magnetotelluric methods’, Geophysics, 45(11), pp. 16591666. DOI: 10.1190/1.1441056Google Scholar
Ward, S. H. and Fraser, D. C. (1967) ‘Part B: Conduction of electricity in rocks’, Mining Geophysics, 2, pp. 197223.Google Scholar
Ward, S. H., Sternberg, B. K., LaBrecque, D. J. and Poulton, M. M. (1995) ‘Recommendations for IP research’, The Leading Edge, 14(April), p. 243. DOI: 10.1190/1.1437120Google Scholar
Watson, K. A. and Barker, R. D. (1999) ‘Differentiating anisotropy and lateral effects using azimuthal resistivity offset Wenner soundings’, Geophysics, 64(3), pp. 739745.Google Scholar
Waxman, M. H. and Smits, L. J. M. (1968) ‘Electrical conductivities in oil-bearing shaly sands’, Society of Petroleum Engineers Journal, 8(02), pp. 107122.Google Scholar
Webster, J. G. (1990) Electrical Impedance Tomography. Taylor & Francis Group, p. 224.Google Scholar
Wehrer, M. and Slater, L. D. (2015) ‘Characterization of water content dynamics and tracer breakthrough by 3‐D electrical resistivity tomography (ERT) under transient unsaturated conditions’, Water Resources Research, 51, 97124, DOI:10.1002/2014WR016131Google Scholar
Wehrer, M., Binley, A. and Slater, L. D. (2016) ‘Characterization of reactive transport by 3-D electrical resistivity tomography (ERT) under unsaturated conditions’, Water Resources Research, 52(10). DOI: 10.1002/2016WR019300Google Scholar
Weigand, M. and Kemna, A. (2016a) ‘Debye decomposition of time-lapse spectral induced polarisation data’, Computers and Geosciences, 86, pp. 3445. DOI: 10.1016/j.cageo.2015.09.021Google Scholar
Weigand, M. and Kemna, A. (2016b) ‘Relationship between Cole–Cole model parameters and spectral decomposition parameters derived from SIP data’, Geophysical Journal International, 205(3), pp. 14141419. DOI: 10.1093/gji/ggw099Google Scholar
Weigand, M. and Kemna, A. (2017) ‘Multi-frequency electrical impedance tomography as a non-invasive tool to characterize and monitor crop root systems’, Biogeosciences, 14(4), pp. 921939. DOI: 10.5194/bg-14-921-2017Google Scholar
Weigand, M. and Kemna, A. (2019) ‘Imaging and functional characterization of crop root systems using spectroscopic electrical impedance measurements’, Plant and Soil, 435(1–2), pp. 201224. DOI: 10.1007/s11104-018-3867-3Google Scholar
Weigand, M., Orozco, A. F. and Kemna, A. (2017) ‘Reconstruction quality of SIP parameters in multi-frequency complex resistivity imaging’, Near Surface Geophysics, 15(2), pp. 187199. DOI: 10.3997/1873-0604.2016050Google Scholar
Weiss, O. (1933) ‘The limitations of geophysical methods and the new possibilities opened up by an electrochemical method for determining geological formations at great depths’, in Proceeding of the 1st World Petroleum Congress. London.Google Scholar
Weller, A. and Slater, L. (2012) ‘Salinity dependence of complex conductivity of unconsolidated and consolidated materials: Comparisons with electrical double layer models’, Geophysics, 77(5), pp. 185198. DOI: 10.1190/geo2012-0030.1Google Scholar
Weller, A. and Slater, L. (2019) ‘Permeability estimation from induced polarization: An evaluation of geophysical length scales using an effective hydraulic radius concept’, Near Surface Geophysics, pp. 114. DOI: 10.1002/nsg.12071Google Scholar
Weller, A., Breede, K., Slater, L. and Nordsiek, S. (2011) ‘Effect of changing water salinity on complex conductivity spectra of sandstones’, Geophysics, 76(5), p. F315. DOI: 10.1190/geo2011-0072.1Google Scholar
Weller, A., Gruhne, M., Seichter, M. and Börner, F. D. (1996b), ‘Monitoring hydraulic experiments by complex conductivity tomography,’ European Journal of Environmental and Engineering Geophysics, 1, pp. 209228.Google Scholar
Weller, A., Lewis, R., Canh, T., Möller, M. and Scholz, B. (2014) ‘Geotechnical and geophysical long-term monitoring at a levee of Red River in Vietnam’, Journal of Environmental and Engineering Geophysics, 19(3), pp. 183192.Google Scholar
Weller, A., Nordsiek, S. and Debschütz, W. (2010) ‘Estimating permeability of sandstone samples by nuclear magnetic resonance and spectral-induced polarization’, Geophysics, 75(6), pp. E215E226. DOI: 10.1190/1.3507304Google Scholar
Weller, A., Seichter, M. and Kampke, A. (1996a) ‘Induced-polarization modelling using complex electrical conductivities’, Geophysical Journal International, 127(2), pp. 387398. DOI: 10.1111/j.1365-246X.1996.tb04728.xGoogle Scholar
Weller, A., Slater, L., Binley, A., Nordsiek, S. and Xu, S. (2015b) ‘Permeability prediction based on induced polarization: Insights from measurements on sandstone and unconsolidated samples spanning a wide permeability range’, Geophysics, 80(2), pp. D161D173. DOI: 10.1190/GEO2014-0368.1Google Scholar
Weller, A., Slater, L., Nordsiek, S. and Ntarlagiannis, D. (2010a) ‘On the estimation of specific surface per unit pore volume from induced polarization: A robust empirical relation fits multiple data sets’, Geophysics, 75 (4), pp. WA105WA112. DOI: 10.1190/1.3471577Google Scholar
Weller, A., Zhang, Z. and Slater, L. (2015a) ‘High-salinity polarization of sandstones’, Geophysics, 80(3), pp. 110. DOI: 10.1190/GEO2014-0483.1Google Scholar
Weller, A., Zhang, Z., Slater, L., Kruschwitz, S. and Halisch, M. (2016) ‘Induced polarization and pore radius: A discussion’, Geophysics, 81(5). DOI: 10.1190/GEO2016-0135.1Google Scholar
Weller, Andreas, Slater, L. and Nordsiek, S. (2013) ‘On the relationship between induced polarization and surface conductivity: Implications for petrophysical interpretation of electrical measurements’, Geophysics, 78(5), pp. 315325. DOI: 10.1190/geo2013-0076.1Google Scholar
Wenner, F. (1912) ‘Characteristics and applications of vibration galvanometers’, Proceedings of the American Institute of Electrical Engineers. IEEE, 31(6), pp. 10731084.Google Scholar
Wenner, F. (1912) ‘The four-terminal conductor and the Thomson bridge’, Bulletin of the Bureau of Standards, 8, pp. 559610.Google Scholar
Wenner, F. (1915) ‘A method for measuring Earth resistivity’, Journal of the Washington Academy of Sciences, 5(16), pp. 561563.Google Scholar
West, S. S. (1940) ‘Three-layer resistivity curves for the Eltran electrode configuration’, Geophysics, 5(1), pp. 4346.Google Scholar
Wetzel, W. W. and McMurry, H. V (1937) ‘A set of curves to assist in the interpretation of the three layer resistivity problem’, Geophysics, 2(4), pp. 329341.Google Scholar
Wexler, A., Fry, B. and Neuman, M. R. (1985) ‘Impedance-computed tomography algorithm and system’, Applied Optics, 24(23), pp. 39853992.Google Scholar
Whalley, W. R., Binley, A., Watts, C. W., Shanahan, P., Dodd, I. C., Ober, E. S., Ashton, R. W., Webster, C. P., White, R. P. and Hawkesford, M. J. (2017) ‘Methods to estimate changes in soil water for phenotyping root activity in the field’, Plant and Soil, 415 (1–2). DOI: 10.1007/s11104-016-3161-1Google Scholar
White, C. C. and Barker, R. D. (1997) ‘Electrical leak detection system for landfill liners: A case history’, Groundwater Monitoring & Remediation, 17(3), pp. 153159.Google Scholar
Whiteley, J. S., Chambers, J. E., Uhlemann, S., Wilkinson, P. B. and Kendall, J. M. (2019) ‘Geophysical monitoring of moisture‐induced landslides: A review’, Reviews of Geophysics, 57(1), pp. 106145.Google Scholar
Whitney, W., Gardner, F. D. and Briggs, L. J. (1897) An Electrical Method of Determining the Moisture Content of Arable Soils, Bulletin No.6. U.S. Department of Agriculture, Washington, D.C.Google Scholar
Wilkinson, P. B., Chambers, J. E., Lelliott, M., Wealthall, G. P. and Ogilvy, R. D. (2008) ‘Extreme sensitivity of crosshole electrical resistivity tomography measurements to geometric errors’, Geophysical Journal International, 173(1), pp. 4962.Google Scholar
Wilkinson, P. B., Chambers, J. E., Meldrum, P. I., Ogilvy, R. D. and Caunt, S. (2006a) ‘Optimization of array configurations and panel combinations for the detection and imaging of abandoned mineshafts using 3D cross-hole electrical resistivity tomography’, Journal of Environmental & Engineering Geophysics, 11(3), pp. 213221.Google Scholar
Wilkinson, P. B., Fromhold, T. M., Tench, C. R., Taylor, R. P. and Micolich, A. P. (2001) ‘Compact fourth-order finite difference method for solving differential equations’, Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 64 (4), p. 4. DOI: 10.1103/PhysRevE.64.047701Google Scholar
Wilkinson, P. B., Loke, M. H., Meldrum, P. I., Chambers, J. E., Kuras, O., Gunn, D. A. and Ogilvy, R. D. (2012) ‘Practical aspects of applied optimized survey design for electrical resistivity tomography’, Geophysical Journal International, 189(1), pp. 428440.Google Scholar
Wilkinson, P. B., Meldrum, P. I., Chambers, J. E., Kuras, O. and Ogilvy, R. D. (2006b) ‘Improved strategies for the automatic selection of optimized sets of electrical resistivity tomography measurement configurations’, Geophysical Journal International, 167(3), pp. 11191126.Google Scholar
Wilkinson, P. B., Meldrum, P. I., Kuras, O., Chambers, J. E., Holyoake, S. J. and Ogilvy, R. D. (2010) ‘High-resolution electrical resistivity tomography monitoring of a tracer test in a confined aquifer’, Journal of Applied Geophysics, 70(4), pp. 268276.Google Scholar
Wilkinson, P. B., Uhlemann, S., Meldrum, P. I., Chambers, J. E., Carrière, S., Oxby, L. S. and Loke, M. H. (2015) ‘Adaptive time-lapse optimized survey design for electrical resistivity tomography monitoring’, Geophysical Journal International, 203(1), pp. 755766.Google Scholar
Wilkinson, P., Chambers, J., Uhlemann, S., Meldrum, P., Smith, A., Dixon, N. and Loke, M. H. (2016) ‘Reconstruction of landslide movements by inversion of 4‐D electrical resistivity tomography monitoring data’, Geophysical Research Letters, 43(3), pp. 11661174.Google Scholar
Williams, B. A., Brown, C. F., Um, W., Nimmons, M. J., Peterson, R. E., Bjornstad, B. N., Lanigan, D. C., Serne, R. J., Spane, F. A. and Rockhold, M. L. (2007) Limited field investigation report for uranium contamination in the 300 Area, 300-FF-5 operable unit, Hanford Site, Washington, Report PNNL-16435.Google Scholar
Williams, K. H, Ntarlagiannis, D., Slater, L. D, Dohnalkova, A., Hubbard, S. S. and Banfield, J. F. (2005) ‘Geophysical imaging of stimulated microbial biomineralization’, Environmental Science & Technology, 39(19), pp. 7592–600. DOI: 10.1021/es0504035Google Scholar
Williams, K. H., Kemna, A., Wilkins, M. J., Druhan, J., Arntzen, E., N’Guessan, A. L., Long, P. E., Hubbard, S. S. and Banfield, J. F. (2009) ‘Geophysical monitoring of coupled microbial and geochemical processes during stimulated subsurface bioremediation’, Environmental Science and Technology, 43(17), pp. 67176723. DOI: 10.1021/es900855jGoogle Scholar
Winsauer, W. O., Shearin, H. M. Jr, Masson, P. H. and Williams, M. (1952) ‘Resistivity of brine-saturated sands in relation to pore geometry’, AAPG Bulletin, 36(2), pp. 253277.Google Scholar
Winship, P., Binley, A. and Gomez, D. (2006) ‘Flow and transport in the unsaturated Sherwood sandstone: Characterization using cross-borehole geophysical methods’, Geological Society, London, Special Publications, 263(1), pp. 219231.Google Scholar
Wong, J. (1979) ‘An electrochemical model of the induced-polarization phenomenon in disseminated sulfide ores’, Geophysics, 44(7), pp. 12451265. DOI: 10.1190/1.1441005Google Scholar
Wong, J. and Strangway, D. W. (1981) ‘Induced polarization in disseminated sulfide ores containing elongated mineralization’, Geophysics, 46(9), pp. 12581268.Google Scholar
Wood, J. (2017) ‘Roman Lancaster: The archaeology of Castle Hill’, British Archaeology, Nov–Dec 2017, pp. 3845.Google Scholar
Worthington, P. F. (1993) ‘The uses and abuses of the Archie equations, 1: The formation factor-porosity relationship’, Journal of Applied Geophysics, 30(3), pp. 215228. DOI: 10.1016/0926-9851(93)90028-WGoogle Scholar
Wu, Y., Hubbard, S., Williams, K. H. and Ajo-Franklin, J. (2010) ‘On the complex conductivity signatures of calcite precipitation’, Journal of Geophysical Research, 115, p. G00G04. DOI: 10.1029/2009JG001129Google Scholar
Wu, Y., Slater, L. D. and Korte, N. (2006) ‘Low frequency electrical properties of corroded iron barrier cores’, Environmental Science & Technology, 40(7), pp. 2254–2261Google Scholar
Wyllie, M. R. J. and Rose, W. D. (1950) ‘Some theoretical considerations related to the quantitative evaluation of the physical characteristics of reservoir rock from electrical log data’, Journal of Petroleum Technology, 2(04), pp. 105118.Google Scholar
Wyllie, M. R. J. and Southwick, P. F. (1954) ‘An experimental investigation of the SP and resistivity phenomena in dirty sands’, Journal of Petroleum Technology, 6(02), pp. 4457.Google Scholar
Xiang, J., Jones, N. B., Cheng, D. and Schlindwein, F. S. (2001) ‘Direct inversion of the apparent complex-resistivity spectrum’, Geophysics, 66(5), pp. 13991404.Google Scholar
Xu, B. and Noel, M. (1993) ‘On the completeness of data sets with multielectrode systems for electrical resistivity survey’, Geophysical Prospecting, 41(6), pp. 791801.Google Scholar
Yamashita, Y. and Lebert, François (2015a) ‘The characteristic and practical issue of resistivity measurement by multiple-current injection based on CDMA technique’, in Proceedings of the 12th SEGJ International Symposium. Tokyo, Japan, 1820 November 2015, pp. 912. DOI: 10.1190/segj122015-003Google Scholar
Yamashita, Y. and Lebert, Francois (2015b) ‘The characteristic of multiple current resistivity profile using Code-Division Multiple-Access technique regarding data quality’, in Near-Surface Asia Pacific Conference, Waikoloa, Hawaii, 7–10 July 2015, pp. 367370.Google Scholar
Yamashita, Y. Y., Kobayashi, T., Saito, H. S., Sugii, T., Kodaka, T., Maeda, K. M. and Cui, Y. C. (2017) ‘3D ERT monitoring of levee flooding experiment using multi-current transmission technique’, 23rd European Meeting of Environmental and Engineering Geophysics, (September 2017), pp. 37. DOI: 10.3997/2214-4609.201701980Google Scholar
Yamashita, Y., Lebert, F., Gourry, J. C., Bourgeois, B. and Texier, B. (2014) ‘A method to calculate chargeability on multiple-transmission resistivity profile using Code-Division Multiple-Access’, Society of Exploration Geophysicists International Exposition and 84th Annual Meeting SEG 2014, (2), pp. 38923897. DOI: 10.1190/SEG-2014-1270.pdfGoogle Scholar
Yang, X., Chen, X., Carrigan, C. R. and Ramirez, A. L. (2014) ‘Uncertainty quantification of CO2 saturation estimated from electrical resistance tomography data at the Cranfield site’, International Journal of Greenhouse Gas Control, 27, pp. 5968. DOI: 10.1016/j.ijggc.2014.05.006Google Scholar
Yang, X., Lassen, R. N., Jensen, K. H. and Looms, M. C. (2015) ‘Monitoring CO2 migration in a shallow sand aquifer using 3D crosshole electrical resistivity tomography’, International Journal of Greenhouse Gas Control, 42, pp. 534544.Google Scholar
Yerworth, R. J., Bayford, R. H., Brown, B., Milnes, P., Conway, M. and Holder, D. S. (2003) ‘Electrical impedance tomography spectroscopy (EITS) for human head imaging’, Physiological Measurement, 24(2), p. 477.Google Scholar
Yi, M.-J., Kim, J.-H. and Chung, S.-H. (2003) ‘Enhancing the resolving power of least-squares inversion with active constraint balancing’, Geophysics, 68(3), pp. 931941.Google Scholar
Yukselen, Y. and Kaya, A. (2008) ‘Suitability of the methylene blue test for surface area, cation exchange capacity and swell potential determination of clayey soils’, Engineering Geology, 102(1–2), pp. 3845. DOI: 10.1016/j.enggeo.2008.07.002Google Scholar
Yuval, D. and Oldenburg, D. W. (1997) ‘Computation of Cole–Cole parameters from IP data’, Geophysics, 62(2), pp. 436448.Google Scholar
Yuval, D. and Oldenburg, W. (1996) ‘DC resistivity and IP methods in acid mine drainage problems: Results from the Copper Cliff mine tailings impoundments’, Journal of Applied Geophysics, 34(3), pp. 187198.Google Scholar
Zaidman, M. D., Middleton, R. T., West, L. J. and Binley, A. M. (1999) ‘Geophysical investigation of unsaturated zone transport in the Chalk in Yorkshire’, Quarterly Journal of Engineering Geology and Hydrogeology, 32(2), pp. 185198.Google Scholar
Zarif, F., Kessouri, P. and Slater, L. (2017) ‘Recommendations for field-scale Induced Polarization (IP) data acquisition and interpretation’, Journal of Environmental and Engineering Geophysics, 22(4). DOI: 10.2113/JEEG22.4.395Google Scholar
Zarif, F., Slater, L., Mabrouk, M., Youssef, A., Al-Temamy, A., Mousa, S., Farag, K. and Robinson, J. (2018) ‘Groundwater resources evaluation in calcareous limestone using geoelectrical and VLF-EM surveys (El Salloum Basin, Egypt)’, Hydrogeology Journal, 26(4), pp. 11691185.Google Scholar
Zhang, C., Revil, A., Fujita, Y., Munakata-Marr, J. and Redden, G. (2014) ‘Quadrature conductivity: A quantitative indicator of bacterial abundance in porous media’, Geophysics, 79(6), pp. D363D375. DOI: 10.1190/geo2014-0107.1Google Scholar
Zhang, J. and Revil, A. (2015) ‘Cross-well 4-D resistivity tomography localizes the oil–water encroachment front during water flooding’, Geophysical Journal International, 201(1), pp. 343354.Google Scholar
Zhang, J., Mackie, R. L. and Madden, T. R. (1995) ‘3-D resistivity forward modeling and inversion using conjugate gradients’, Geophysics, 60(5), pp. 13131325.Google Scholar
Zhao, S. and Yedlin, M. J. (1996) ‘Some refinements on the finite-difference method for 3-D dc resistivity modeling’, Geophysics, 61(5), pp. 13011307.Google Scholar
Zhao, Y., Zimmermann, E., Huisman, J. A., Treichel, A., Wolters, B., van Waasen, S. and Kemna, A. (2013) ‘Broadband EIT borehole measurements with high phase accuracy using numerical corrections of electromagnetic coupling effects’, Measurement Science and Technology, 24(8), p. 85005.Google Scholar
Zhao, Y., Zimmermann, E., Huisman, J. A., Treichel, A., Wolters, B., van Waasen, S. and Kemna, A. (2014) ‘Phase correction of electromagnetic coupling effects in cross-borehole EIT measurements’, Measurement Science and Technology, 26(1), p. 15801, DOI: 10.1088/0957-0233/26/1/015801Google Scholar
Zhou, B. and Greenhalgh, S. A. (2002) ‘Rapid 2-D/3-D crosshole resistivity imaging using the analytic sensitivity function’, Geophysics, 67(3), pp. 755765. DOI: 10.1190/1.1484518Google Scholar
Zhou, B., Greenhalgh, M. and Greenhalgh, S. A. (2009) ‘2.5-D/3-D resistivity modelling in anisotropic media using Gaussian quadrature grids’, Geophysical Journal International, 176(1), pp. 6380.Google Scholar
Zhou, J., Revil, A., Karaoulis, M., Hale, D., Doetsch, J. and Cuttler, S. (2014) ‘Image-guided inversion of electrical resistivity data’, Geophysical Journal International, 197(1), pp. 292309.Google Scholar
Zhou, Q. Y. (2007) ‘A sensitivity analysis of DC resistivity prospecting on finite, homogeneous blocks and columns’, Geophysics, 72(6), pp. F237F247.Google Scholar
Zhou, X., Bhat, P., Ouyang, H. and Yu, J. (2017) ‘Localization of cracks in cementitious materials under uniaxial tension with electrical resistance tomography’, Construction and Building Materials, 138, pp. 4555.Google Scholar
Zimmermann, E., Kemna, A., Berwix, J., Glaas, W. and Vereecken, H. (2008b) ‘EIT measurement system with high phase accuracy for the imaging of spectral induced polarization properties of soils and sediments’, Measurement Science and Technology, 19 (9), p. 094010. DOI: 10.1088/0957-0233/19/9/094010Google Scholar
Zimmermann, E., Kemna, , a, Berwix, J., Glaas, W., Münch, H. M. and Huisman, J. A. (2008a) ‘A high-accuracy impedance spectrometer for measuring sediments with low polarizability’, Measurement Science and Technology, 19 (10), p. 105603. DOI: 10.1088/0957-0233/19/10/105603Google Scholar
Zisser, N., Kemna, A. and Nover, G. (2010a) ‘Dependence of spectral-induced polarization response of sandstone on temperature and its relevance to permeability estimation’, Journal of Geophysical Research: Solid Earth, 115 (9), pp. 115. DOI: 10.1029/2010JB007526Google Scholar
Zisser, N., Kemna, A. and Nover, G. (2010b) ‘Relationship between low-frequency electrical properties and hydraulic permeability of low-permeability sandstones’, Geophysics, 75 (3). DOI: 10.1190/1.3413260Google Scholar
Zohdy, A. A. R. (1975) Automatic interpretation of Schlumberger sounding curves, using modified Dar Zarrouk functions. US Geological Survey Bulletin 1313-E. US Govt. Print. Off., p. 39. DOI: 10.3133/b1313EGoogle Scholar
Zohdy, A. A. R. (1989) ‘A new method for the automatic interpretation of Schlumberger and Wenner sounding curves’, Geophysics, 54(2), pp. 245253.Google Scholar
Zonge, K. L. and Wynn, J. C. (1975) ‘Recent advances and applications in complex resistivity measurements’, Geophysics, 40(5), pp. 851864. DOI: 10.1190/1.1440572Google Scholar
Zonge, K. L., Sauck, W. A. and Sumner, J. S. (1972) ‘Comparison of time, frequency, and phase measurements in induced polarization’, Geophysical Prospecting, 20(3), pp. 626648. DOI: 10.1111/j.1365-2478.1972.tb00658.xGoogle Scholar
Zonge, K., Wynn, J. and Urquhart, S. (2005) ‘Resistivity, induced polarization, and complex resistivity’, in Near-Surface Geophysics (Butler, D. K. ed.). Society of Exploration Geophysicists, pp. 265300.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Andrew Binley, Lancaster University, Lee Slater, Rutgers University, New Jersey
  • Book: Resistivity and Induced Polarization
  • Online publication: 17 December 2020
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Andrew Binley, Lancaster University, Lee Slater, Rutgers University, New Jersey
  • Book: Resistivity and Induced Polarization
  • Online publication: 17 December 2020
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Andrew Binley, Lancaster University, Lee Slater, Rutgers University, New Jersey
  • Book: Resistivity and Induced Polarization
  • Online publication: 17 December 2020
Available formats
×