Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T03:01:36.690Z Has data issue: false hasContentIssue false

31 - Radar Remote Sensing of Planetary Bodies

from Part IV - Applications to Planetary Surfaces

Published online by Cambridge University Press:  15 November 2019

Janice L. Bishop
Affiliation:
SETI Institute, California
James F. Bell III
Affiliation:
Arizona State University
Jeffrey E. Moersch
Affiliation:
University of Tennessee, Knoxville
Get access

Summary

Radar has proven to be a powerful tool in planetary exploration. Most of the major solid bodies of the Solar System have been observed with radar, either from Earth or from spacecraft. Planetary radar studies are reviewed in this chapter, with information on the various techniques of radar remote sensing provided along with key results. Recent radar results are emphasized. Concluding remarks are provided on future directions in planetary radar remote sensing.

Type
Chapter
Information
Remote Compositional Analysis
Techniques for Understanding Spectroscopy, Mineralogy, and Geochemistry of Planetary Surfaces
, pp. 604 - 623
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asphaug, E., Belton, M., Bockelee-Morvan, D., et al. (2014) The Comet Radar Explorer mission. DPS Annual Meeting, Abstract # 209.07.Google Scholar
Barsukov, V.L., Basilevsky, A.T., Burba, G.A., et al. (1986) The geology and geomorphology of the Venus surface as revealed by the radar images obtained by Veneras 15 and 16. Journal of Geophysical Research, 91, 378398.Google Scholar
Basilevsky, A. & Head, J.W. (2002) Venus: Timing and rates of geologic activity. Geology, 30, 10151018.Google Scholar
Basilevsky, A.T. & McGill, G.E. (2007) Surface evolution of Venus. In: Exploring Venus as a terrestrial planet (Esposito, L.W., Stofan, E.R., & Cravens, T.E., eds.). American Geophysical Union, Washington, DC, 2343.Google Scholar
Basilevsky, A.T., Head, J.W., & Setyaeva, I.V. (2003) Venus: Estimation of age of impact craters on the basis of degree of preservation of associated radar-dark deposits. Geophysical Research Letters, 30, DOI:10.1029/2003GL017504.Google Scholar
Benner, L.A.M., Nolan, M.C., Ostro, S.J., et al. (2006) Near-Earth Asteroid 2005 CR37: Radar images and photometry of a candidate contact binary. Icarus, 182, 474481.Google Scholar
Benner, L.A.M., Busch, M.W., Giorgini, J.D., Taylor, P.A., & Margot, J.-L. (2015) Radar observations of near-Earth and main-belt asteroids. In: Asteroids IV (Michel, P., DeMeo, F., & Bottke, W., eds.). University of Arizona Press, Tucson, 165182.Google Scholar
Black, G.J., Campbell, D.B., & Nicholson, P.D. (2001) Icy Galilean satellites: Modeling radar reflectivities as a coherent backscatter effect. Icarus, 151, 167180.Google Scholar
Black, G.J., Campbell, D.B., & Carter, L.M. (2007) Arecibo radar observations of Rhea, Dione, Tethys, and Enceladus. Icarus, 191, 702711.Google Scholar
Black, G.J., Campbell, D.B., & Carter, L.M. (2011) Ground-based radar observations of Titan: 2000–2008. Icarus, 212, 300320.Google Scholar
Bondarenko, N.V. & Head, J.W. (2009) Crater-associated dark diffuse features on Venus: Properties of surficial deposits and their evolution. Journal of Geophysical Research, 114, DOI:10.1029/2008JE003163.Google Scholar
Bramson, A.M., Byrne, S., Putzig, N.E., et al. (2015) Widespread excess ice in Arcadia Planitia, Mars. Geophysical Research Letters, 42, 65666574.Google Scholar
Bruzzone, L., Plaut, J.J., Alberti, G., et al. (2013) RIME: Radar for Icy Moon Exploration. IEEE IGARSS, 39073910.Google Scholar
Butler, B.J., Muhleman, D.O., & Slade, M.A. (1993) Mercury: Full-disk radar images and the detection and stability of ice at the north pole. Journal of Geophysical Research, 98, 15,00315,023.Google Scholar
Butrica, A.J. (1996) To see the unseen: A history of planetary radar astronomy. NASA History Office, Washington, DC.Google Scholar
Byrnes, J.M. & Crown, D.A. (2002) Morphology, stratigraphy, and surface roughness properties of Venusian lava flow fields. Journal of Geophysical Research, 107, DOI:10.1029/2001JE001828.Google Scholar
Cahill, J.T.S., Thomson, B.J., Patterson, G.W., et al. (2014) The Miniature Radio Frequency instrument’s (Mini-RF) global observations of Earth’s Moon. Icarus, 243, 173190.CrossRefGoogle Scholar
Campbell, B.A. (2002) Radar remote sensing of planetary surfaces. Cambridge University Press, Cambridge.Google Scholar
Campbell, B.A. (2006) Eagle: A synthetic aperture radar mapper for the Mars Scout Program. 37th Lunar Planet. Sci. Conf., Abstract #2188.Google Scholar
Campbell, B.A. (2012) High circular polarization ratios in radar scattering from geologic targets. Journal of Geophysical Research, 117, DOI:10.1029/2012JE004061.CrossRefGoogle Scholar
Campbell, B., Carter, L., Phillips, R., et al. (2008) SHARAD radar sounding of the Vastitas Borealis Formation in Amazonis Planitia. Journal of Geophysical Research, 113, DOI:10.1029/2008JE003177.Google Scholar
Campbell, B.A., Campbell, D.B., Morgan, G.A., Carter, L.M., Nolan, M.C., & Chandler, J.F. (2015) Evidence for crater ejecta on Venus tessera terrain from Earth-based radar images. Icarus, 250, 123130.Google Scholar
Campbell, D.B. & Burns, B.A. (1980) Earth-based radar imagery of Venus. Journal of Geophysical Research, 85, 82718281.Google Scholar
Campbell, D.B., Chandler, J.F., Pettengill, G.H., & Shapiro, I.I. (1977) Galilean satellites of Jupiter: 12.6-Centimeter radar observations. Science, 196, 650653.Google Scholar
Campbell, D.B., Black, G.J., Carter, L.M., & Ostro, S.J. (2003) Radar evidence for liquid surfaces on Titan. Science, 302, 431434.Google Scholar
Campbell, D.B., Campbell, B.A., Carter, L.M., Margot, J.-L., & Stacy, N.J.S. (2006) No evidence for thick deposits of ice at the lunar south pole. Nature, 443, 835837.Google Scholar
Carter, L.M., Campbell, D.B., & Campbell, B.A. (2004) Impact crater related surficial deposits on Venus: Multipolarization radar observations with Arecibo. Journal of Geophysical Research, 109, DOI:10.1029/2003JE002227.Google Scholar
Carter, L.M., Campbell, D.B., & Campbell, B.A. (2006) Volcanic deposits in shield fields and highland regions on Venus: Surface properties from radar polarimetry. Journal of Geophysical Research, 111, DOI:10.1029/2005JE002519.Google Scholar
Carter, L.M., Campbell, B.A., Watters, T.R., et al. (2009) Shallow Radar (SHARAD) sounding observations of the Medusae Fossae Formation, Mars. Icarus, 199, 295302.Google Scholar
Carter, L.M., Neish, C.D., Bussey, D.B.J., et al. (2012) Initial observations of lunar impact melts and ejecta flows with the Mini-RF radar. Journal of Geophysical Research, 117, DOI:10.1029/2011JE003911.CrossRefGoogle Scholar
Chabot, N.L., Ernst, C., Harmon, J.K., et al. (2012) Craters hosting radar-bright deposits in Mercury’s north polar region: Areas of persistent shadow determined from MESSENGER images. Journal of Geophysical Research, 118, 2636.Google Scholar
Clifford, S.M., Lasue, J., Heggy, E., Boisson, J., McGovern, P., & Max, M.D. (2010) Depth of the martian cryosphere: Revised estimates and implications for the existence and detection of subpermafrost groundwater. Journal of Geophysical Research, 115, DOI:10.1029/2009JE003462.Google Scholar
Cook, C.M., Melosh, H.J., & Bottke, W.F. (2003) Doublet craters on Venus. Icarus, 165, 90100.Google Scholar
Dewitt, J.H. & Stodola, E.K. (1949) Detection of radio signals reflected from the Moon. Proceedings of the IRE, 37(3), 229242.Google Scholar
Eke, V.R., Bartram, S.A., Lane, D.A., Smith, D., & Teodoro, L.F.A. (2014) Lunar polar craters – Icy, rough or just sloping? Icarus, 241, 6678.Google Scholar
Elachi, C., Wall, S., Allison, M., et al. (2005) Cassini radar views the surface of Titan. Science, 308, 970974.Google Scholar
Elachi, C., Wall, S., Janssen, M., et al. (2006) Titan Radar Mapper observations from Cassini’s TA and T3 flybys. Nature, 441, 709713.Google Scholar
Fa, W. & Cai, Y. (2013) Circular polarization ratio characteristics of impact craters from Mini-RF observations and implications for ice detection at the polar regions of the Moon. Journal of Geophysical Research, 118, 15821608.Google Scholar
Ford, J.P., Plaut, J.J., Weitz, C.M., et al. (1993) Guide to Magellan image interpretation. JPL Publication #93-24.Google Scholar
Ghent, R.R., Hayne, P.O., Bandfield, J.L., et al. (2014) Constraints on the recent rate of lunar ejecta breakdown and implications for crater ages. Geology, 42, 10591062.Google Scholar
Gurnett, D.A., Kirchner, D.L., Huff, R.L., et al. (2005) Radar soundings of the ionosphere of Mars. Science, 310, 19291933.Google Scholar
Gurnett, D.A., Huff, R.L., Morgan, D.D., et al. (2008) An overview of radar soundings of the martian ionosphere from the Mars Express spacecraft. Advances in Space Research, 41, 13351346.Google Scholar
Gurnett, D.A., Morgan, D.D., Persoon, A.M., et al. (2015) An ionized layer in the upper atmosphere of Mars caused by dust impacts from comet Siding Spring. Geophysical Research Letters, 42, 47454751.Google Scholar
Harmon, J.K. & Nolan, M.C. (2017) Arecibo radar imagery of Mars: II. Chryse–Xanthe, polar caps, and other regions. Icarus, 281, 162199.Google Scholar
Harmon, J.K., Slade, M.A., Vélez, R.A., Crespo, A., Dryer, M.J., & Johnson, J.M. (1994) Radar mapping of Mercury’s polar anomalies. Nature, 369, 213215.CrossRefGoogle Scholar
Harmon, J.K., Slade, M.A., & Rice, M.S. (2011) Radar imagery of Mercury’s putative polar ice: 1999–2005 Arecibo results. Icarus, 211, 3750.CrossRefGoogle Scholar
Harmon, J.K., Nolan, M.C., Husmann, D.I., & Campbell, B.A. (2012) Arecibo radar imagery of Mars: The major volcanic provinces. Icarus, 220, 9901030.Google Scholar
Hayes, A., Aharonson, O., Callahan, P., et al. (2008) Hydrocarbon lakes on Titan: Distribution and interaction with a porous regolith. Geophysical Research Letters, 35, DOI:10.1029/2008GL033409.Google Scholar
Head, J.W., Neukum, G., Jaumann, R., et al. (2005) Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars. Nature, 434, 346351.Google Scholar
Hensley, S., Smrekar, S.E., Nunes, D.C., & The_VERITAS_Science_Team. (2016) VERITAS: Towards the next generation of cartography for the planet Venus. 47th Lunar Planet. Sci. Conf., Abstract #1965.Google Scholar
Holt, J.W., Safaeinili, A., Plaut, J.J., et al. (2008) Radar sounding evidence for buried glaciers in the southern mid-latitudes of Mars. Science, 322, 12351238.Google Scholar
Holt, J.W., Fishbaugh, K.E., Byrne, S., et al. (2010) The construction of Chasma Boreale on Mars. Nature, 465, 446449.Google Scholar
Janssen, M., Le Gall, A., Lopes, R.M., et al. (2016) Titan’s surface at 2.2-cm wavelength imaged by the Cassini RADAR radiometer: Results and interpretations through the first ten years of observation. Icarus, 270, 443459.Google Scholar
Jordan, R., Picardi, G., Plaut, J., et al. (2009) The Mars express MARSIS sounder instrument. Planetary and Space Science, 57, 19751986.Google Scholar
Jurgens, R.F., Slade, M.A., & Saunders, R.S. (1988a) Evidence for highly reflecting materials on the surface and subsurface of Venus. Science, 240, 10211023.Google Scholar
Jurgens, R.F., Slade, M.A., Robinett, L., et al. (1988b) High resolution images of Venus from ground-based radar. Geophysical Research Letters, 15, 577580.CrossRefGoogle Scholar
Kofman, W., Barbin, Y., Klinger, J., et al. (1998) Comet nucleus sounding experiment by radiowave transmission. Advances in Space Research, 21, 15891598.Google Scholar
Kofman, W., Herique, A., Barbin, Y., et al. (2015) Properties of the 67P/Churyumov–Gerasimenko interior revealed by CONSERT radar. Science, 349, aab0639.Google Scholar
Lai, J., Xu, Y., Zhang, X., & Tang, Z. (2016) Structural analysis of lunar subsurface with Chang׳E-3 lunar penetrating radar. Planetary and Space Science, 120, 96102.Google Scholar
Lawrence, D.J., Feldman, W.C., Goldsten, J.O., et al. (2012) Evidence for water ice near Mercury’s north pole from MESSENGER neutron spectrometer measurements. Science, 339, 292296.Google Scholar
Lorenz, R.D., Stiles, B.W., Aharonson, O., et al. (2013) A global topographic map of Titan. Icarus, 225, 367377.Google Scholar
Magri, C., Nolan, M.C., Ostro, S.J., & Giorgini, J.D. (2007) A radar survey of main-belt asteroids: Arecibo observations of 55 objects during 1999–2003. Icarus, 186, 126151.Google Scholar
Mastrogiuseppe, M., Poggiali, V., Hayes, A., et al. (2014) The bathymetry of a Titan sea. Geophysical Research Letters, 41, 14321437.Google Scholar
Morgan, G.A., Campbell, B.A., Carter, L.M., Plaut, J.J., & Phillips, R.J. (2013) 3D Reconstruction of the source and scale of buried young flood channels on Mars. Science, 340, 607610.Google Scholar
Morgan, G.A., Campbell, B.A., Carter, L.M., & Plaut, J.J. (2015) Evidence for the episodic erosion of the Medusae Fossae Formation preserved within the youngest volcanic province on Mars. Geophysical Research Letters, 42, 73367342.Google Scholar
Mouginis-Mark, P.J. (2016) Geomorphology and volcanology of Maat Mons, Venus. Icarus, 277, 433441.Google Scholar
Muhleman, D.O., Butler, B.J., Grossman, A.W., & Slade, M.A. (1991) Radar images of Mars. Science, 253, 15081513.Google Scholar
Neish, C.D., Bussey, D.B.J., Spudis, P., et al. (2011) The nature of lunar volatiles as revealed by Mini-RF observations of the LCROSS impact site. Journal of Geophysical Research, 116, DOI:10.1029/2010JE003647.Google Scholar
Neish, C.D., Madden, J., Carter, L.M., et al. (2014) Global distribution of lunar impact melt flows. Icarus, 239, 105117.Google Scholar
Nozette, S., Spudis, P., Bussey, B., et al. (2010) The lunar Reconnaissance Orbiter Miniature Radio Frequency (Mini-RF) technology demonstration. Space Science Reviews, 150, 285302.Google Scholar
Ono, T., Kumamoto, A., Nakagawa, H., et al. (2009) Lunar Radar Sounder observations of subsurface layers under the nearside Maria of the Moon. Science, 323, 909912.Google Scholar
Orosei, R., Lauro, S.E., Pettinelli, E., et al. (2018) Radar evidence of subglacial liquid water on Mars. Science, 361, 490493.CrossRefGoogle ScholarPubMed
Oshigami, S., Watanabe, S., Yamaguchi, Y., et al. (2014) Mare volcanism: Reinterpretation based on Kaguya Lunar Radar Sounder data. Journal of Geophysical Research, 119, 10371045.Google Scholar
Ostro, S.J. (1982) Radar properties of Europa, Ganymede, and Callisto. In: Satellites of Jupiter (Morrison, D., ed.). University of Arizona Press, Tucson, 213236.Google Scholar
Ostro, S.J. (1989) Radar observations of asteroids. In: Asteroids II (Binzel, R.P., Gehrels, T., & Matthews, M.S., eds.). University of Arizona Press, Tucson, 192212.Google Scholar
Ostro, S.J., Campbell, D.B., Simpson, R.A., et al. (1992) Europa, Ganymede, and Callisto: New radar results from Arecibo and Goldstone. Journal of Geophysical Research, 97, 1822718244.Google Scholar
Ostro, S.J., Hudson, R.S., Benner, L.A.M., et al. (2002) Asteroid radar astronomy. In: Asteroids III (Bottke, W., Cellino, A., Paolicchi, P., & Binzel, R.P., eds.). University of Arizona Press, Tucson, 151168.Google Scholar
Patterson, G.W., Blankenship, D., Moussessian, A., et al. (2015) REASON for Europa. DPS Annual Meeting, Abstract #312.09.Google Scholar
Patterson, G.W., Stickle, A.M., Turner, F.S., et al. (2017) Bistatic radar observations of the Moon using Mini-RF on LRO and the Arecibo Observatory. Icarus, 283, 219.Google Scholar
Peeples, W.J., Sill, W.R., May, T.W., et al. (1978) Orbital radar evidence for lunar subsurface layering in Maria Serenitatis and Crisium. Journal of Geophysical Research, 83, 34593470.Google Scholar
Pettengill, G.H., Eliason, E., Ford, P.G., Loriot, G.B., Masursky, H., & McGill, G.E. (1980) Pioneer Venus radar results altimetry and surface properties. Journal of Geophysical Research, 85, 82618270.Google Scholar
Phillips, R.J., Adams, G.F., Brown, W.E. Jr., et al. (1973) Apollo Lunar Sounder experiment. In: Apollo 17 Preliminary Science Report. NASA, Washington, DC.Google Scholar
Phillips, R.J., Zuber, M.T., Smrekar, S.E., et al. (2008) Mars north polar deposits: Stratigraphy, age, and geodynamical response. Science, 320, 11821185.Google Scholar
Picardi, G., Plaut, J.J., Biccari, D., et al. (2005) Radar soundings of the subsurface of Mars. Science, 310, 19251928.Google Scholar
Plaut, J.J., Ivanov, A., Safaeinili, A., et al. (2007a) Radar sounding of subsurface layers in the south polar plains of Mars: Correlation with the Dorsa Argentea formation. 39th Lunar Planet. Sci. Conf., Abstract #2144.Google Scholar
Plaut, J.J., Picardi, G., Safaeinili, A., et al. (2007b) Subsurface radar sounding of the south polar layered deposits of Mars. Science, 316, 9295.Google Scholar
Plaut, J.J., Safaeinili, A., Holt, J.W., et al. (2009a) Radar evidence for ice in lobate debris aprons in the mid-northern latitudes of Mars. Geophysical Research Letters, 36, DOI:10.1029/2008GL036379.Google Scholar
Plaut, J.J., Safaeinili, A., Campbell, B.A., et al. (2009b) A widespread radar-transparent layer detected by SHARAD in Arcadia Planitia, Mars. 40th Lunar Planet. Sci. Conf., Abstract #2312.Google Scholar
Pommerol, A., Kofman, W., Audouard, J., et al. (2010) Detectability of subsurface interfaces in lunar maria by the LRS/SELENE sounding radar: Influence of mineralogical composition. Geophysical Research Letters, 37, DOI:10.1029/2009GL041681.Google Scholar
Porcello, L.J., Jordan, R.L., Zelenka, J.S., et al. (1974) The Apollo lunar sounder radar system. Proceedings of the IEEE, 62, 769783.Google Scholar
Putzig, N.E., Phillips, R.J., Campbell, B.A., et al. (2009) Subsurface structure of Planum Boreum from Mars Reconnaissance Orbiter Shallow Radar soundings. Icarus, 204, 443457.Google Scholar
Romeo, I. & Turcotte, D.L. (2009) The frequency-area distribution of volcanic units on Venus: Implications for planetary resurfacing. Icarus, 203, 1319.Google Scholar
Saunders, R.S. (1992) Foreword to special section on Magellan at Venus. Journal of Geophysical Research, 97, 15921, DOI:10.1029/92JE02288.Google Scholar
Saunders, R.S., Spear, A.J., Allin, P.C., et al. (1992) Magellan mission summary. Journal of Geophysical Research, 97, 13,06713,090.Google Scholar
Selvans, M.M., Plaut, J.J., Aharonson, O., & Safaeinili, A. (2010) Internal structure of Planum Boreum, from Mars advanced radar for subsurface and ionospheric sounding data. Journal of Geophysical Research, 115, DOI:10.1029/2009JE003537.Google Scholar
Seu, R., Phillips, R.J., Biccari, D., et al. (2007) SHARAD sounding radar on the Mars Reconnaissance Orbiter. Journal of Geophysical Research, 112, DOI:10.1029/2006JE002745.Google Scholar
Shepard, M.K., Taylor, P.A., Nolan, M.C., et al. (2015) A radar survey of M- and X-class asteroids. III. Insights into their composition, hydration state, & structure. Icarus, 245, 3855.Google Scholar
Simpson, R.A., Harmon, J.K., Zisk, S.H., Thompson, T., & Muhleman, D.O. (1992) Radar determination of Mars surface properties. In: Mars (Kieffer, H.H., Jakosky, B., Snyder, C.W., & Matthews, M.S., eds.). University of Arizona Press, Tucson, 652685.Google Scholar
Slade, M.A., Butler, B.J., & Muhleman, D.O. (1992) Mercury radar imaging: Evidence for polar ice. Science, 258, 635640.Google Scholar
Smith, I.B. & Holt, J.W. (2010) Onset and migration of spiral troughs on Mars revealed by orbital radar. Nature, 465, 450453.Google Scholar
Spudis, P.D., Bussey, D.B.J., Baloga, S.M., et al. (2010) Initial results for the north pole of the Moon from Mini-SAR, Chandrayaan-1 mission. Geophysical Research Letters, 37, DOI:10.1029/2009GL042259.Google Scholar
Spudis, P.D., Bussey, D.B.J., Baloga, S.M., et al. (2013) Evidence for water ice on the Moon: Results for anomalous polar craters from the LRO Mini-RF imaging radar. Journal of Geophysical Research, 118, 20162029.Google Scholar
Stacy, N.J.S., Campbell, D.B., & Ford, P.G. (1997) Arecibo radar mapping of the lunar poles: A search for ice deposits. Science, 276, 15271530.Google Scholar
Stillman, D.E. & Grimm, R.E. (2011) Radar penetrates only the youngest geological units on Mars. Journal of Geophysical Research, 116, DOI:10.1029/2010JE003661.Google Scholar
Stofan, E.R., Lunine, J.I., Lopes, R., et al. (2006) Mapping of Titan: Results from the first Titan radar passes. Icarus, 185, 443456.Google Scholar
Stofan, E.R., Elachi, C., Lunine, J.I., et al. (2007) The lakes of Titan. Nature, 445, 6164.Google Scholar
Stuurman, C.M., Osinski, G.R., Holt, J.W., et al. (2016) SHARAD detection and characterization of subsurface water ice deposits in Utopia Planitia, Mars. Geophysical Research Letters, 43, 94849491.Google Scholar
Su, Y., Fang, G.-Y., Feng, J.-Q., et al. (2014) Data processing and initial results of Chang’e-3 lunar penetrating radar. Research in Astronomy and Astrophysics, 14, 16231632.Google Scholar
Talpe, M.J., Zuber, M.T., Yang, D., et al. (2012) Characterization of the morphometry of impact craters hosting polar deposits in Mercury’s north polar region. Journal of Geophysical Research, 117, DOI:10.1029/2012JE004155.Google Scholar
Thompson, T.W. (1978) High resolution lunar radar map at 7.5 meter wavelength. Icarus, 36, 174188.Google Scholar
Thompson, T.W. (1987) High-resolution lunar radar map at 70-cm wavelength. Earth, Moon, and Planets, 37, 5970.Google Scholar
Thompson, T.W., Pollack, J.B., Campbell, M.J., & O’Leary, B.T. (1970) Radar maps of the moon at 70-cm wavelength and their interpretation. Radio Science, 5, 253262.Google Scholar
Thomson, B.J., Bussey, D.B.J., Neish, C.D., et al. (2012) An upper limit for ice in Shackleton crater as revealed by LRO Mini-RF orbital radar. Geophysical Research Letters, 39, DOI:10.1029/2012GL052119.Google Scholar
Victor, W.K. & Stevens, R. (1961) Exploration of Venus by radar. Science, 134, 4648.Google Scholar
Watters, T.R., Campbell, B., Carter, L., et al. (2007) Radar sounding of the Medusae Fossae Formation Mars: Equatorial ice or dry, low-density deposits? Science, 318, 11251128.CrossRefGoogle ScholarPubMed
Whitten, J.L. & Campbell, B.A. (2016) Recent volcanic resurfacing of Venusian craters. Geology, 44, 519522.Google Scholar
Wye, L.C., Zebker, H.A., Ostro, S.J., & the Cassini Research Team. (2007) Electrical properties of Titan’s surface from Cassini RADAR scatterometer measurements. Icarus, 188, 367385.Google Scholar
Yan, S., Guang-You, F., Jian-Qing, F., et al. (2014) Data processing and initial results of Chang’e-3 lunar penetrating radar. Research in Astronomy and Astrophysics, 14, 1623.Google Scholar
Zimbelman, J.R. (2003) Flow field stratigraphy surrounding Sekmet Mons Volcano, Kawelu Planitia, Venus. Journal of Geophysical Research, 108, DOI:10.1029/2002JE001965.Google Scholar
Zisk, S.H., Pettengill, G.H., & Catuna, G.W. (1974) High-resolution radar maps of the lunar surface at 3.8-cm wavelength. The Moon, 10, 1750.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×