Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T16:37:16.588Z Has data issue: false hasContentIssue false

Part IV - Applications to Planetary Surfaces

Published online by Cambridge University Press:  15 November 2019

Janice L. Bishop
Affiliation:
SETI Institute, California
James F. Bell III
Affiliation:
Arizona State University
Jeffrey E. Moersch
Affiliation:
University of Tennessee, Knoxville
Get access

Keywords

gamma-ray spectroscopyChemical Index of AlterationPrincipal Component AnalysisMixing modelsradarradargramgeochemicalisotopicmineralogicradar reflectanceAPXSregolithMoonnear-infrared spectroscopycrustal evolutionpyroxenesolivineplagioclasespinelspace weatheringimaging spectrometersrock typeswaterasteroidsvisibleinfraredteflectance spectroscopyemittance spectroscopyolivinepyroxenephyllosilicatesorganicsregolithasteroidscometsimaging spectroscopymissionsRosettaDawnmineralogyCeresVesta67P/Churyumov–GerasimenkospectroscopyCassiniVIMSicy moonsSaturn moonsNew Horizonsnitrogen icemethane icecarbon monoxide icewater iceLEISALORRIMVICRalphHapke modelsPlutoclimatecompositionseasonsatmospherehazecryovolcanismCharonNixHydraKerberosKuiper Beltsolid solutionSputnik PlanitiaCthulhu Maculanormal albedosublimationMilankovicobliquitytholinMarshematiteolivinepyroxeneanorthositephyllosilicatesmectiteserpentineprehnitezeolitemagnesitecalcitestarkeyitekieseritejarositehydrated silicaopalperchloratechloritechlorideplagioclasereflectance spectroscopyMarsspectroscopymineralogyigneousbasaltalterationwatersilicapyroxeneolivinechloridecarbonateMartian meteoritesMarsmineralogyspectroscopySpiritOpportunityhematitecarbonatesilicaMarsimagingmineralogyphotometrySpiritOpportunityPhoenixCuriositycarbonategoethiteGusev craterhematiteironjarositekamacitemagnetiteMarsMars Exploration RoverMeridiani PlanummineralogyMössbauerOpportunityoxideoxidationstateSpiritsulfatetroiliteweatheringMarsMars Exploration RoverMars Science LaboratorySpiritGusev craterOpportunityMeridiani PlanumCuriosityGale craterAPXSPIXEXRFsulfurSDDcuriumMarsChemCamSuperCamchemistryLIBSCuriosityMSLMars 2020Gale craterX-raysgamma raysneutronsradiationcosmic raysspectroscopyelemental compositionplanetary missionsformation and evolutionMercuryVenusMoonMarsVestaCeresRadarsoundingMarsVenusMooncometasteroidGalilean satellitesTitanMARSISSHARAD
Type
Chapter
Information
Remote Compositional Analysis
Techniques for Understanding Spectroscopy, Mineralogy, and Geochemistry of Planetary Surfaces
, pp. 349 - 623
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Adams, J.B. & McCord, T.B. (1970) Remote sensing of lunar surface mineralogy: Implications from visible and near-infrared reflectivity of Apollo 11 samples. Proceedings of the Apollo 11 Lunar Sci. Conf., 3, 19371945.Google Scholar
Blewett, D.T., Lucey, P.G., Hawke, B.R., & Jolliff, B.L. (1997a) Clementine images of the lunar sample-return stations: Refinement of FeO and TiO2 mapping techniques. Journal of Geophysical Research, 102, 1631916325.CrossRefGoogle Scholar
Blewett, D.T., Lucey, P.G., Hawke, B.R., Ling, G.G., & Robinson, M.S. (1997b) A comparison of mercurian reflectance and spectral quantities with those of the Moon. Icarus, 129, 217231.CrossRefGoogle Scholar
Blewett, D.T., Robinson, M.S., Denevi, B.W., et al. (2009) Multispectral images of Mercury from the first MESSENGER flyby: Analysis of global and regional color trends. Earth and Planetary Science Letters, 285, 272282.Google Scholar
Blewett, D.T., Chabot, N.L., Denevi, B.W., et al. (2011) Hollows on Mercury: Evidence from MESSENGER for geologically recent volatile-related activity. Science, 333, 18561859.Google Scholar
Blewett, D.T., Vaughan, W.V., Xiao, Z., et al. (2013) Mercury’s hollows: Constraints on formation and composition from analysis of geological setting and spectral reflectance. Journal of Geophysical Research, 118, 10131032.CrossRefGoogle Scholar
Braden, S.E. & Robinson, M.S. (2013) Relative rates of optical maturation of regolith on Mercury and the Moon. Journal of Geophysical Research, 118, 19031914.Google Scholar
Charette, M.P., McCord, T.B., Pieters, C.M., & Adams, J.B. (1974) Application of remote spectral reflectance measurements to lunar geology classification and determination of titanium content of lunar soils. Journal of Geophysical Research, 79, 16051613.CrossRefGoogle Scholar
Cloutis, E.A., McCormack, K.A., Bell, J.F., et al. (2008) Ultraviolet spectral reflectance properties of common planetary minerals. Icarus, 197, 321347.Google Scholar
Cloutis, E.A., Hudon, P., Hiroi, T., Gaffey, M.J., & Mann, P. (2011) Spectral reflectance properties of carbonaceous chondrites: 2. CM chondrites. Icarus, 216, 309346.Google Scholar
Denevi, B.W. & Robinson, M.S. (2008) Mercury’s albedo from Mariner 10: Implications for the presence of ferrous iron. Icarus, 197, 239246.Google Scholar
Denevi, B.W., Robinson, M.S., Solomon, S.C., et al. (2009) The evolution of Mercury’s crust: A global perspective from MESSENGER. Science, 324, 613618.Google Scholar
Denevi, B.W., Ernst, C.M., Meyer, H.M., et al. (2013a) The distribution and origin of smooth plains on Mercury. Journal of Geophysical Research, 118, 891907.Google Scholar
Denevi, B.W., Ernst, C.M., Whitten, J.L., et al. (2013b) The volcanic origin of a region of intercrater plains on Mercury. 44th Lunar Planet. Sci. Conf., Abstract #1218.Google Scholar
Denevi, B.W., Chabot, N.L., Murchie, S.L., et al. (2018), Calibration, projection, and final image products of MESSENGER’s Mercury Dual Imaging System, Space Science Reviews, 214, 152.Google Scholar
Denevi, B.W., Ernst, C.M., Prockter, L.M., & Robinson, M.S. (2019) The geologic history of Mercury. In: Mercury: The view after MESSENGER (Solomon, S.C., Nittler, L.R., & Anderson, B. J., eds.). Cambridge University Press, Cambridge.Google Scholar
Domingue, D.L., Chapman, C.R., Killen, R.M., et al. (2014) Mercury’s weather-beaten surface: Understanding Mercury in the context of lunar and asteroidal space weathering studies. Space Science Reviews, 181, 121214.Google Scholar
Domingue, D.L., Denevi, B.W., Murchie, S.L., & Hash, C. (2016) Application of multiple photometric models to disk-resolved measurements of Mercury’s surface: Insights into Mercury’s regolith characteristics. Icarus, 268, 172203.CrossRefGoogle Scholar
Emery, J.P., Sprague, A.L., Witteborn, F.C., Colwell, J.E., Kozlowski, R.W.H., & Wooden, D.H. (1998) Mercury: Thermal modeling and mid-infrared (5–12 µm) observations. Icarus, 136, 104123.CrossRefGoogle Scholar
Ernst, C.M., Murchie, S.L., Barnouin, O.S., et al. (2010) Exposure of spectrally distinct material by impact craters on Mercury: Implications for global stratigraphy. Icarus, 209, 210223.Google Scholar
Ernst, C.M., Denevi, B.W., Barnouin, O.S., et al. (2015) Stratigraphy of the Caloris basin, Mercury: Implications for volcanic history and basin impact melt. Icarus, 250, 413429.Google Scholar
Evans, L.G., Peplowski, P.N., Rhodes, E.A., et al. (2012) Major-element abundances on the surface of Mercury: Results from the MESSENGER Gamma-Ray Spectrometer. Journal of Geophysical Research, 117, E00L07, DOI:10.1029/2012JE004178.Google Scholar
Fassett, C.I., Head, J.W., Baker, D.M.H., et al. (2012) Large impact basins on Mercury: Global distribution, characteristics, and modification history from MESSENGER orbital data. Journal of Geophysical Research, 117, E00L08, DOI:10.1029/2012JE004154.CrossRefGoogle Scholar
Fischer, E.M. & Pieters, C.M. (1994) Remote determination of exposure degree and iron concentration of lunar soils using VIS-NIR spectroscopic methods. Icarus, 111, 475488.Google Scholar
Gaffey, M.J. (2010) Space weathering and the interpretation of asteroid reflectance spectra. Icarus, 209, 564574.Google Scholar
Gillis-Davis, J.J., van Niekerk, D., Scott, E.R.D., McCubbin, F.M., & Blewett, D.T. (2013) Impact darkening: A possible mechanism to explain why Mercury is spectrally dark and featureless. Abstract P11A–07, presented at 2013 Fall Meeting, American Geophysical Union, San Francisco, December 9–13.Google Scholar
Goudge, T.A., Head, J.W., Kerber, L., et al. (2014) Global inventory and characterization of pyroclastic deposits on Mercury: New insights into pyroclastic activity from MESSENGER orbital data. Journal of Geophysical Research, 119, 635658.Google Scholar
Hapke, B. (1977) Interpretations of optical observations of Mercury and the Moon. Physics of the Earth and Planetary Interiors, 15, 264274.Google Scholar
Hapke, B. (2001) Space weathering from Mercury to the asteroid belt. Journal of Geophysical Research, 106, 10,03910,073.Google Scholar
Hapke, B., Danielson, G.E., Klaasen, K., & Wilson, L. (1975) Photometric observations of Mercury from Mariner 10. Journal of Geophysical Research, 80, 24312443.CrossRefGoogle Scholar
Hawkins, S.E. III, Boldt, J.D., Darlington, E.H., et al. (2007) The Mercury Dual Imaging System on the MESSENGER spacecraft. Space Science Reviews, 131, 247338.Google Scholar
Head, J.W., Murchie, S.L., Prockter, L.M., et al. (2008) Volcanism on Mercury: Evidence from the first MESSENGER flyby. Science, 321, 6972.Google Scholar
Head, J.W., Murchie, S.L., Prockter, L.M., et al. (2009) Volcanism on Mercury: Evidence from the first MESSENGER flyby for extrusive and explosive activity and the volcanic origin of plains. Earth and Planetary Science Letters, 285, 227242.Google Scholar
Head, J.W., Chapman, C.R., Strom, R.G., et al. (2011) Flood volcanism in the high northern latitudes of Mercury revealed by MESSENGER. Science, 333, 1853–1856.Google Scholar
Hendrix, A.R. & Vilas, F. (2006) The effects of space weathering at UV wavelengths: S-class asteroids. Astronomical Journal, 132, 13961404.CrossRefGoogle Scholar
Hendrix, A.R., Retherford, K.D., Gladstone, G.R., et al. (2012) The lunar far-UV albedo: Indicator of hydration and weathering. Journal of Geophysical Research, 117, E12001, DOI:10.1029/2012JE004252.Google Scholar
Izenberg, N.R., Klima, R.L., Murchie, S.L., et al. (2014) The low-iron, reduced surface of Mercury as seen in spectral reflectance by MESSENGER. Icarus, 228, 364374.CrossRefGoogle Scholar
Izenberg, N.R., Thomas, R.J., Blewett, D.T., & Nittler, L.R. (2015) Are there compositionally different types of hollows on Mercury? 46th Lunar Planet. Sci. Conf., Abstract #1344.Google Scholar
Kerber, L., Head, J.W., Blewett, D.T., et al. (2011) The global distribution of pyroclastic deposits on Mercury: The view from MESSENGER flybys 1–3. Planetary and Space Science, 59, 18951909.Google Scholar
Klima, R.L., Dyar, M.D., & Pieters, C.M. (2011) Near-infrared spectra of clinopyroxenes: Effects of calcium content and crystal structure. Meteoritics and Planetary Science, 42, 235253.CrossRefGoogle Scholar
Klima, R.L., Izenberg, N.R., Murchie, S.L., et al. (2013) Constraining the ferrous iron content of minerals in Mercury’s crust. 44th Lunar Planet. Sci. Conf., Abstract #1602.Google Scholar
Klima, R.L., Denevi, B.W., Ernst, C.M., Murchie, S.L., & Peplowski, P.N. (2018) Global distribution and spectral properties of low-reflectance material on Mercury. Geophysical Research Letters, 45, 29452953.CrossRefGoogle Scholar
Lucey, P.G., Taylor, G.J., & Malaret, E. (1995) Abundance and distribution of iron on the Moon. Science, 268, 11501153.Google Scholar
Lucey, P.G., Blewett, D.T., & Hawke, B.R. (1998) Mapping the FeO and TiO2 content of the lunar surface with multispectral imaging. Journal of Geophysical Research, 103, 36793699.CrossRefGoogle Scholar
Lucey, P.G., Blewett, D.T., Taylor, G.J., & Hawke, B.R. (2000) Imaging of lunar surface maturity. Journal of Geophysical Research, 105, 2037720386.Google Scholar
Maxwell, R.E., Izenberg, N.R., & Holsclaw, G.M. (2016) Implications for iron and carbon in Mercury surface materials from ultraviolet reflectance. 47th Lunar Planet. Sci. Conf., Abstract #1606.Google Scholar
McClintock, W.E. & Lankton, M.R. (2007) The Mercury Atmospheric and Surface Composition Spectrometer for the MESSENGER mission. Space Science Reviews, 131, 481522.Google Scholar
McClintock, W.E., Izenberg, N.R., Holsclaw, G.M., et al. (2008) Spectroscopic observations of Mercury’s surface reflectance during MESSENGER’s first Mercury flyby. Science, 321, 6265.CrossRefGoogle ScholarPubMed
McCord, T.B. & Adams, J.B. (1972a) Mercury: Surface composition from the reflection spectrum. Science, 178, 745747.Google Scholar
McCord, T.B. & Adams, J.B. (1972b) Mercury: Interpretation of optical observations. Icarus, 17, 585588.Google Scholar
McCord, T.B. & Clark, R.N. (1979) The Mercury soil: Presence of Fe2+. Journal of Geophysical Research, 84, 76647668.Google Scholar
Murchie, S.L., Watters, T.R., Robinson, M.S., et al. (2008) Geology of the Caloris basin, Mercury: A view from MESSENGER. Science, 321, 7377.Google Scholar
Murchie, S.L., Klima, R.L., Denevi, B.W., et al. (2015) Orbital multispectral mapping of Mercury with the MESSENGER Mercury Dual Imaging System: Evidence for the origins of plains units and low-reflectance material. Icarus, 254, 287305.Google Scholar
Murchie, S.L, Klima, R.L., Domingue, D.L., Izenberg, N.R., Blewett, D.T., & Helbert, J. (2019) Spectral reflectance constraints on the composition and evolution of Mercury’s surface. In: Mercury: The view after MESSENGER (Solomon, S.C., Nittler, L.R., & Anderson, B.J., eds.). Cambridge University Press, Cambridge.Google Scholar
Murray, B.C., Belton, M.J.S., Danielson, G.E., et al. (1974) Venus: Atmosphere motion and structure from Mariner 10 pictures. Science, 183, 13071315.Google Scholar
Nittler, L.R., Starr, R.D., Weider, S.Z., et al. (2011) The major-element composition of Mercury’s surface from MESSENGER X-ray spectrometry. Science, 333, 18471850.CrossRefGoogle ScholarPubMed
Peplowski, P.N., Klima, R.L., Lawrence, D.J., et al. (2016) Remote sensing evidence for an ancient carbon-bearing crust on Mercury. Nature Geoscience, 9, 273276.CrossRefGoogle Scholar
Pieters, C.M. (1993) Compositional diversity and stratigraphy of the lunar crust derived from reflectance spectroscopy. In: Remote geochemical analysis: Elemental and mineralogic composition (Pieters, C.M. & Englert, P.A.J., eds.). Cambridge University Press, Cambridge, 309340.Google Scholar
Rava, B. & Hapke, B. (1987) An analysis of the Mariner 10 color ratio map of Mercury. Icarus, 71, 397429.Google Scholar
Rivera-Valentin, E.G. & Barr, A.C. (2014) Impact-induced compositional variations on Mercury. Earth and Planetary Science Letters, 391, 234242.CrossRefGoogle Scholar
Robinson, M.S. & Lucey, P.G. (1997) Recalibrated Mariner 10 color mosaics: Implications for mercurian volcanism. Science, 275, 197200.Google Scholar
Robinson, M.S. & Taylor, G.J. (2001) Ferrous oxide in Mercury’s crust and mantle. Meteoritics and Planetary Science, 36, 841847.Google Scholar
Robinson, M.S., Murchie, S.L., Blewett, D.T., et al. (2008) Reflectance and color variations on Mercury: Regolith processes and compositional heterogeneity. Science, 321, 6669.Google Scholar
Solomon, S.C., McNutt, R.L. Jr., Gold, R.E., et al. (2001) The MESSENGER mission to Mercury: Scientific objectives and implementation. Planetary and Space Science, 49, 14451465.Google Scholar
Sprague, A.L., Kozlowski, R.W.H., Witteborn, F.C., Cruikshank, D.P., & Wooden, D.H. (1994) Mercury: Evidence for anorthosite and basalt from mid-infrared (7.3–13.5 micrometers) spectroscopy. Icarus, 109, 156167.Google Scholar
Sprague, A.L., Hunten, D.M., & Lodders, K. (1995) Sulfur at Mercury, elemental at the poles and sulfides in the regolith. Icarus, 118, 211215.Google Scholar
Sprague, A.L., Emery, J.P., Donaldson, K.L., Russell, R.W., Lynch, D.K., & Mazuk, A.L. (2002) Mercury: Mid-infrared (3–13.5 µm) observations show heterogeneous composition, presence of intermediate and basic soil types, and pyroxene. Meteoritics and Planetary Science, 37, 12551268.Google Scholar
Thomas, R.J., Rothery, D.A., Conway, S.J., & Anand, M. (2014a) Hollows on Mercury: Materials and mechanisms involved in their formation. Icarus, 229, 221235.Google Scholar
Thomas, R.J., Rothery, D.A., Conway, S.J., & Anand, M. (2014b) Mechanisms of explosive volcanism on Mercury: Implications from its global distribution and morphology. Journal of Geophysical Research, 119, 22392254.Google Scholar
Trang, D., Lucey, P.G., & Izenberg, N.R. (2016) Mapping of submicroscopic carbon and iron on Mercury with radiative transfer modeling of MESSENGER VIRS reflectance spectra. 47th Lunar Planet. Sci. Conf., Abstract #1396.Google Scholar
Trask, N.J. & Guest, J.E. (1975) Preliminary geologic terrain map of Mercury. Journal of Geophysical Research, 80, 24612477.Google Scholar
Vander Kaaden, K.E., & McCubbin, F.M. (2015) Exotic crust formation on Mercury: Consequences of a shallow, FeO-poor mantle. Journal of Geophysical Research, 120, 195209.Google Scholar
Vilas, F. & McCord, T.B. (1976) Mercury: Spectral reflectance measurements (0.33–1.06 μm) 1974/75. Icarus, 28, 593599.Google Scholar
Vilas, F., Leake, M.A., & Mendell, W.W. (1984) The dependence of reflectance spectra of Mercury on surface terrain. Icarus, 59, 6068.Google Scholar
Vilas, F., Domingue, D.L., Helbert, J., et al. (2016) Mineralogical indicators of Mercury’s hollows composition in MESSENGER color observations. Geophysical Research Letters, 43, 14501456, DOI:10.1002/2015GL067515.Google Scholar
Wänke, H. (1981) Constitution of terrestrial planets. Philosophical Transactions of the Royal Society of London A, 303, 287302.Google Scholar
Wänke, H. & Dreibus, G. (1994) Water abundance and accretion history of terrestrial planets. Conference on Deep Earth and Planetary Volatiles, Lunar and Planetary Institute, Houston, TX, 46.Google Scholar
Warell, J. & Blewett, D.T. (2004) Properties of the hermean regolith: V. New optical reflectance spectra, comparison with lunar anorthosites, and mineralogical modeling. Icarus, 168, 257276.Google Scholar
Warell, J., Sprague, A.L., Emery, J.P., Kozlowski, R.W.H., & Long, A. (2006) The 0.7–5.3 μm spectra of Mercury and the Moon: Evidence for high-Ca pyroxene on Mercury. Icarus, 180, 281291.Google Scholar
Weider, S.Z., Nittler, L.R., Starr, R.D., et al. (2012) Chemical heterogeneity on Mercury’s surface revealed by the MESSENGER X-Ray Spectrometer. Journal of Geophysical Research, 117, E00L05, DOI:10.1029/2012JE004153.CrossRefGoogle Scholar
Weider, S.Z., Nittler, L.R., Starr, R.D., McCoy, T.J., & Solomon, S.C. (2014) Variations in the abundance of iron on Mercury’s surface from MESSENGER X-Ray Spectrometer observations. Icarus, 235, 170186.Google Scholar
Weider, S.Z., Nittler, L.R., Starr, R.D., et al. (2015) Evidence for geochemical terranes on Mercury: Global mapping of major elements with MESSENGER’s X-Ray Spectrometer. Earth and Planetary Science Letters, 416, 109120.Google Scholar
Weider, S.Z., Nittler, L.R., Murchie, S.L., et al. (2016) Evidence from MESSENGER for sulfur- and carbon-driven explosive volcanism on Mercury. Geophysical Research Letters, 43, 36533661, DOI:10.1002/2016GL068325.Google Scholar
Whitten, J.L., Head, J.W., Denevi, B.W., & Solomon, S.C. (2014) Intercrater plains on Mercury: Insights into unit definition, characterization, and origin from MESSENGER datasets. Icarus, 241, 97113.Google Scholar
Zolotov, M. (2011) On the chemistry of mantle and magmatic volatiles on Mercury. Icarus, 212, 2441.Google Scholar
Zolotov, M., Sprague, A.L., Hauck, S.A. II, Nittler, L.R., Solomon, S.C., & Weider, S.Z. (2013) The redox state, FeO content, and origin of sulfur-rich magmas on Mercury. Journal of Geophysical Research, 118, 138146.Google Scholar

References

Adams, J. & McCord, T. (1970) Remote sensing of lunar surface mineralogy: Implications from visible and near-infrared reflectivity of Apollo 11 samples. Geochimica et Cosmochimica Acta Supplement, 1, 1937.Google Scholar
Adams, J.B. (1974) Visible and near-infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the Solar System. Journal of Geophysical Research, 79, 48294836.Google Scholar
Adams, J.B. & Jones, R.L. (1970) Spectral reflectivity of lunar samples. Science, 167, 737739.Google Scholar
Adams, J.B., Pieters, C., & McCord, T.B. (1974) Orange glass: Evidence for regional deposits of pyroclastic origin on the moon. Proceedings of the 5th Lunar Planet. Sci. Conf., 171186.Google Scholar
Bandfield, J.L., Poston, M.J., Klima, R.L., & Edwards, C.S. (2018) Widespread distribution of OH/H2O on the lunar surface inferred from spectral data. Nature Geoscience, 11(3), 173177.Google Scholar
Bell, P., Mao, H., & Weeks, R. (1976) Optical spectra and electron paramagnetic resonance of lunar and synthetic glasses: A study of the effects of controlled atmosphere, composition, and temperature. Proceedings of the Lunar Planet. Sci. Conf., 25432559.Google Scholar
Bell, P.M. & Mao, H.K. (1973) Optical and chemical analysis of iron in Luna 20 plagioclase. Geochimica et Cosmochimica Acta, 37, 755759.Google Scholar
Bender, H.A., Mouroulis, P., Smith, C.D., et al. (2015) Snow and water imaging spectrometer (SWIS): Optomechanical and system design for a CubeSat-compatible instrument. In: Imaging Spectrometry XX (Pagano, T.S. & Silny, J.F, eds.). SPIE Proceedings, 9611.Google Scholar
Besse, S., Sunshine, J., & Gaddis, L. (2014) Volcanic glass signatures in spectroscopic survey of newly proposed lunar pyroclastic deposits. Journal of Geophysical Research, 119, 355372.Google Scholar
Bhattacharya, S., Saran, S., Dagar, A., et al. (2013) Endogenic water on the Moon associated with non-mare silicic volcanism: Implications for hydrated lunar interior. Current Science, 105, 685691.Google Scholar
Blewett, D.T., Coman, E.I., Hawke, B.R., Gillis-Davis, J.J., Purucker, M.E., & Hughes, C.G. (2011) Lunar swirls: Examining crustal magnetic anomalies and space weathering trends. Journal of Geophysical Research, 116, E02002, DOI:10.1029/2010JE003656.Google Scholar
Boardman, J.W., Pieters, C.M., Green, R.O., et al. (2011) Measuring moonlight: An overview of the spatial properties, lunar coverage, selenolocation, and related Level 1B products of the Moon Mineralogy Mapper. Journal of Geophysical Research, 116, E00G14, DOI:10.1029/2010JE003730.Google Scholar
Boyd, A.K., Robinson, M.S., & Sato, H. (2012) Lunar Reconnaissance Orbiter wide angle camera photometry: An empirical solution. 43rd Lunar Planet. Sci. Conf., Abstract # 2795.Google Scholar
Burns, R.G. (1993) Mineralogical applications of crystal field theory. Cambridge University Press, Cambridge.Google Scholar
Cahill, J.T., Lucey, P.G., Gillis, J.J., & Steutel, D. (2004) Verification of quality and compatibility for the newly calibrated Clementine NIR data set. 35th Lunar Planet. Sci., Abstract #1469.Google Scholar
Charette, M.P., McCord, T.B., Pieters, C., & Adams, J.B. (1974) Application of remote spectral reflectance measurements to lunar geology classification and determination of titanium content of lunar soils. Journal of Geophysical Research, 79, 16051613.Google Scholar
Cheek, L., Pieters, C.M., Parman, S., Dyar, M.D., Speicher, E.A., & Cooper, R.F. (2011a) Spectral characteristics of plagioclase with variable iron content: Applications to remote sensing of the lunar crust. 42nd Lunar Planet. Sci. Conf., Abstract #1617.Google Scholar
Cheek, L.C. & Pieters, C.M. (2014) Reflectance spectroscopy of plagioclase-dominated mineral mixtures: Implications for characterizing lunar anorthosites remotely. American Mineralogist, 99, 18711892.Google Scholar
Cheek, L.C., Pieters, C.M., Boardman, J.W., et al. (2011) Goldschmidt crater and the Moon’s north polar region: Results from the Moon Mineralogy Mapper (M3). Journal of Geophysical Research, 116, E00G02, DOI:10.1029/2010je003702.Google Scholar
Cheek, L.C., Donaldson, H.K.L., Pieters, C.M., Head, J.W., & Whitten, J.L. (2013) The distribution and purity of anorthosite across the Orientale Basin: New perspectives from Moon Mineralogy Mapper data. Journal of Geophysical Research, 118, 18051820.Google Scholar
Clark, R.N. (1979) Planetary reflectance measurements in the region of planetary thermal emission. Icarus, 40, 94103.Google Scholar
Clark, R.N. (2009) Detection of adsorbed water and hydroxyl on the Moon. Science, 326, 562564.Google Scholar
Clark, R.N., Pieters, C.M., Green, R.O., Boardman, J.W., & Petro, N.E. (2011) Thermal removal from near-infrared imaging spectroscopy data of the Moon. Journal of Geophysical Research, 116, E00G16, DOI:10.1029/2010JE003751.Google Scholar
Cloutis, E.A. & Gaffey, M.J. (1991) Spectral-compositional variations in the constituent minerals of mafic and ultramafic assemblages and remote sensing implications. Earth, Moon, and Planets, 53, 1153.Google Scholar
Cloutis, E.A., Sunshine, J.M., & Morris, R.V. (2004) Spectral reflectance–compositional properties of spinels and chromites: Implications for planetary remote sensing and geothermometry. Meteoritics and Planetary Science, 39, 545565.Google Scholar
Conel, J.E. & Nash, D.B. (1970) Spectral reflectance and albedo of Apollo 11 lunar samples: Effects of irradiation and vitrification and comparison with telescopic observations. Apollo 11 Lunar Sci. Conf., 2013–2023.Google Scholar
Crites, S.T., Lucey, P.G., & Taylor, G.J. (2015) The mafic component of the lunar crust: Constraints on the crustal abundance of mantle and intrusive rock, and the mineralogy of lunar anorthosites. American Mineralogist, 100, 17081716.Google Scholar
Denevi, B.W., Robinson, M.S., Boyd, A.K., Sato, H., Hapke, B.W., & Hawke, B.R. (2014) Characterization of space weathering from Lunar Reconnaissance Orbiter Camera ultraviolet observations of the Moon. Journal of Geophysical Research, 119, 976997.Google Scholar
Dhingra, D., Pieters, C.M., & Head, J.W. (2015) Multiple origins for olivine at Copernicus crater. Earth and Planetary Science Letters, 420, 95101.Google Scholar
Donaldson Hanna, K.L., Cheek, L.C., Pieters, C.M., et al. (2014) Global assessment of pure crystalline plagioclase across the Moon and implications for the evolution of the primary crust. Journal of Geophysical Research, 119, 15161545.Google Scholar
Dyar, M.D., Hibbitts, C.A., & Orlando, T.M. (2010) Mechanisms for incorporation of hydrogen in and on terrestrial planetary surfaces. Icarus, 208, 425437.Google Scholar
Eliason, E., Isbell, C., Lee, E., et al. (1999) Mission to the Moon: The Clementine UVVIS Global Mosaic. PDS CL_4001–4078. www.lpi.usra.edu/lunar/tools/clementine/instructions/UVVIS_DIM_Info.htmlGoogle Scholar
Eliason, E.M., Lee, E.M., Becker, T.L., et al. (2003) A near-infrared (NIR) global multispectral map of the Moon from Clementine. 34th Lunar Planet. Sci. Conf., Abstract #2093.Google Scholar
Feldman, W.C., Maurice, S., Binder, A.B., Barraclough, B.L., Elphic, R.C., & Lawrence, D.J. (1998) Fluxes of fast and epithermal neutrons from lunar Prospector: Evidence for water ice at the lunar poles. Science, 281, 14961500.Google Scholar
Gaddis, L.R., Staid, M.I., Tyburczy, J.A., Hawke, B.R., & Petro, N.E. (2003) Compositional analyses of lunar pyroclastic deposits. Icarus, 161, 262280.Google Scholar
Giguere, T.A., Taylor, G.J., Hawke, B.R., & Lucey, P.G. (2000) The titanium contents of lunar mare basalts. Meteoritics and Planetary Science, 35, 193200.Google Scholar
Green, R. (2016) 30 years of thermally controlled imaging spectrometers for Earth and planetary science. 46th International Conference on Environmental Systems.Google Scholar
Green, R., Pieters, C.M., Mouroulis, P., et al. (2011) The Moon Mineralogy Mapper (M3) imaging spectrometer for lunar science: Instrument description, calibration, on-orbit measurements, science data calibration and on-orbit validation. Journal of Geophysical Research, 116, E00G19, DOI:10.1029/2011JE003797.Google Scholar
Hapke, B. (2001) Space weathering from Mercury to the asteroid belt. Journal of Geophysical Research, 106, 1003910073.Google Scholar
Hawke, B.R., Peterson, C.A., Blewett, D.T., et al. (2003) Distribution and modes of occurrence of lunar anorthosite. Journal of Geophysical Research, 108, 5050, DOI:10.1029/2002JE001890.Google Scholar
Hazen, R.M., Bell, P.M., & Mao, H.K. (1978) Effects of compositional variation on absorption spectra of lunar pyroxenes. Proceedings of the 9th Lunar Planet. Sci. Conf., 29192934.Google Scholar
Heiken, G., Vaniman, D., & French, B.M. (1991) Lunar sourcebook: A user’s guide to the Moon. Cambridge University Press, New York.Google Scholar
Hiroi, T., Pieters, C., & Morris, R. (1997) New considerations for estimating lunar soil maturity from VIS-NIR reflectance spectroscopy. 28th Lunar Planet. Sci. Conf., Abstract #1152.Google Scholar
Hook, S.J., Johnson, W.R., & Abrams, M.J. (2013) NASA’s Hyperspectral Thermal Emission Spectrometer (HyTES). In: Thermal infrared remote sensing: Sensors, methods, applications (Kuenzer, C. & Dech, S., eds.). Springer, Dordrecht, 93115.Google Scholar
Isaacson, P.J. & Pieters, C.M. (2009) Northern Imbrium noritic anomaly. Journal of Geophysical Research, 114, E09007, DOI:10.1029/2008JE003293.Google Scholar
Isaacson, P.J., Sarbadhikari, A.B., Pieters, C.M., et al. (2011a) The lunar rock and mineral characterization consortium: Deconstruction and integrated mineralogical, petrologic, and spectroscopic analyses of mare basalts. Meteoritics and Planetary Science, 46, 228251.Google Scholar
Isaacson, P.J., Pieters, C.M., Besse, S., et al. (2011b) Remote compositional analysis of lunar olivine rich lithologies with Moon Mineralogy Mapper (M3) spectra. Journal of Geophysical Research, 116, E00G11, DOI:10.1029/2010JE003731.Google Scholar
Johnson, J.R. & Hörz, F. (2003) Visible/near-infrared spectra of experimentally shocked plagioclase feldspars. Journal of Geophysical Research, 108, 5120, DOI:10.1029/2003JE002127.Google Scholar
Jolliff, B.I., Wieczorek, M.A., Shearer, C.K., & Neal, C.R. (2006) New views of the Moon. Reviews in Mineralogy and Geochemistry, 60. Geochemical Society.Google Scholar
Jolliff, B.L., Wiseman, S.A., Lawrence, S.J., et al. (2011) Non-mare silicic volcanism on the lunar farside at Compton–Belkovich. Nature Geoscience, 4, 566–571.Google Scholar
Keller, L. & Zhang, S. (2015) Rates of space weathering in lunar soils. Space Weathering of Airless Bodies: An Integration of Remote Sensing Data, Laboratory Experiments and Sample Analysis Workshop, Abstract #2056.Google Scholar
Keller, L., Berger, E., Christoffersen, R., & Zhang, S. (2016) Direct determination of the space weathering rates in lunar soils and Itokawa regolith from sample analyses. 47th Lunar Planet. Sci. Conf., Abstract #2525.Google Scholar
Keller, L.P. & McKay, D.S. (1993) Discovery of vapor deposits in the lunar regolith. Science, 261, 13051307.Google Scholar
Keller, L.P. & McKay, D.S. (1997) The nature and origin of rims on lunar soil grains. Geochimica et Cosmochimica Acta, 61, 23312341.Google Scholar
Klima, R., Cahill, J., Hagerty, J., & Lawrence, D. (2013) Remote detection of magmatic water in Bullialdus crater on the Moon. Nature Geoscience, 6, 737–741.Google Scholar
Klima, R., Buczkowski, D., Ernst, C., & Greenhagen, B. (2017) Geological and spectral analysis of low-calcium pyroxenes around the Imbrium Basin on the Moon. 48th Lunar Planet. Sci. Conf., Abstract #2502.Google Scholar
Klima, R.L. & Petro, N.E. (2017) Remotely distinguishing and mapping endogenic water on the Moon. Philosophical Transactions of the Royal Society A, 375, 20150391.Google Scholar
Klima, R.L., Pieters, C.M., & Dyar, M.D. (2007) Spectroscopy of synthetic Mg-Fe pyroxenes I: Spin-allowed and spin-forbidden crystal field bands in the visible and near-infrared. Meteoritics and Planetary Science, 42, 235253.Google Scholar
Klima, R.L., Pieters, C.M., & Dyar, M.D. (2008) Characterization of the 1.2 micrometer M1 pyroxene band: Extracting cooling history from near-IR spectra of pyroxenes and pyroxene-dominated rocks. Meteoritics and Planetary Science, 43, 15911604.Google Scholar
Klima, R.L., Dyar, M.D., & Pieters, C.M. (2011a) Near-infrared spectra of clinopyroxenes: Effects of calcium content and crystal structure. Meteoritics and Planetary Science, 46, 379395.Google Scholar
Klima, R.L., Pieters, C.M., Boardman, J.W., et al. (2011b) New insights into lunar petrology: Distribution and composition of prominent low Ca pyroxene exposures as observed by the Moon Mineralogy Mapper (M3). Journal of Geophysical Research, 116, DOI:10.1029/2010JE003719.Google Scholar
Kramer, G.Y., Besse, S., Dhingra, D., et al. (2011a) M3 spectral analysis of lunar swirls and the link between optical maturation and surface hydroxyl formation at magnetic anomalies. Journal of Geophysical Research, 116, E00G18, DOI:10.1029/2010JE003729.Google Scholar
Kramer, G.Y., Besse, S., Nettles, J., et al. (2011b) Newer views of the Moon: Comparing spectra from Clementine and the Moon Mineralogy Mapper. Journal of Geophysical Research, 116, E00G04, DOI:10.1029/2010JE003728.Google Scholar
Kramer, G.Y., Kring, D.A., Nahm, A.L., & Pieters, C.M. (2013) Spectral and photogeologic mapping of Schrödinger Basin and implications for post-South Pole-Aitken impact deep subsurface stratigraphy. Icarus, 223, 131148.Google Scholar
Li, S. & Milliken, R.E. (2016a) An empirical thermal correction model for Moon Mineralogy Mapper data constrained by laboratory spectra and Diviner temperatures. Journal of Geophysical Research, 121, 20812107.Google Scholar
Li, S. & Milliken, R.E. (2016b) Heterogeneous water content in the lunar interior: Insights from orbital detection of water in pyroclastic deposits and silicic domes. 47th Lunar Planet. Sci. Conf., Abstract #1568.Google Scholar
Li, S. & Milliken, R.E. (2017) Water on the surface of the Moon as seen by the Moon Mineralogy Mapper: Distribution, abundance, and origins. Science Advances, 3, e1701471.Google Scholar
Lucey, P.G. (2004) Planets-L08701. Mineral maps of the Moon. Geophysical Research Letters, 31, L08701, DOI:10.1029/2003GL019406.Google Scholar
Lucey, P.G., Blewett, D.T., & Hawke, B.R. (1998) Mapping the FeO and TiO2 content of the lunar surface with multispectral imagery. Journal of Geophysical Research, 103, 36793699.Google Scholar
Lucey, P.G., Blewett, D.T., Eliason, E.M., et al. (2000) Optimized calibration constants for the Clementine NIR camera. 31st Lunar Planet. Sci. Conf., Abstract #1273.Google Scholar
Lucey, P.G., Norman, J.A., Crites, S.T., et al. (2014) A large spectral survey of small lunar craters: Implications for the composition of the lunar mantle. American Mineralogist, 99, 22512257.Google Scholar
Lundeen, S., McLaughlin, S., & Alanis, R. (2011) Moon Mineralogy Mapper Data Product software interface specification. PDS document Version 9.10. Jet Propulsion Laboratory, JPL D-39032, Pasadena, CA.Google Scholar
McCord, T.B. & Johnson, T.V. (1970) Lunar spectral reflectivity (0.30 to 2.50 microns) and implications for remote mineralogical analysis. Science, 169, 855858.Google Scholar
McCord, T.B., Clark, R.N., Hawke, B.R., et al. (1981) Moon: Near-infrared spectral reflectance, a first good look. Journal of Geophysical Research, 86, 1088310892.Google Scholar
McCord, T.B., Taylor, L.A., Combe, J.P., et al. (2011) Sources and physical processes responsible for OH/H2O in the lunar soil as revealed by the Moon Mineralogy Mapper (M3). Journal of Geophysical Research, 116, E00G05, DOI:10.1029/2010JE003711.Google Scholar
McEwen, A.S. & Robinson, M. (1997) Mapping of the Moon by Clementine. Advances in Space Research, 19(10), 15231533.Google Scholar
McEwen, A.S., Eliason, E., Lucey, P., et al. (1998) Summary of radiometric calibration and photometric normalization steps for the Clementine UVVIS images. 29th Lunar Planet. Sci. Conf., Abstract 1466–1467.Google Scholar
Milliken, R.E. & Li, S. (2017) Remote detection of widespread indigenous water in lunar pyroclastic deposits. Nature Geoscience, 10, 561–565.Google Scholar
Moriarty III, D.P. & Pieters, C.M. (2016a) South Pole–Aitken Basin as a probe to the lunar interior. 47th Lunar Planet. Sci. Conf., Abstract #1763.Google Scholar
Moriarty III, D.P. & Pieters, C.M. (2016b) Complexities in pyroxene compositions derived from absorption band centers: Examples from Apollo samples, HED meteorites, synthetic pure pyroxenes, and remote sensing data. Meteoritics and Planetary Science, 51, 207234.Google Scholar
Moriarty III, D.P. & Pieters, C.M. (2018) The character of South Pole-Aitken Basin: Patterns of surface and subsurface composition. Journal of Geophysical Research, 123, 729747.Google Scholar
Mouroulis, P., Green, R.O., & Chrien, T.G. (2000) Design of pushbroom imaging spectrometers for optimum recovery of spectroscopic and spatial information. Applied Optics, 39, 22102220.Google Scholar
Nakamura, R., Yamamoto, S., Matsunaga, T., et al. (2012) Compositional evidence for an impact origin of the Moon’s Procellarum basin. Nature Geoscience, 5(11),775778, DOI:10.1038/ngeo1614.Google Scholar
National Research Council, Space Studies Board. (2007) Scientific context for exploration of the Moon. National Academies Press, Washington, DC.Google Scholar
Noble, S.K., Pieters, C.M., Hiroi, T., & Taylor, L.A. (2006) Using the modified Gaussian model to extract quantitative data from lunar soils. Journal of Geophysical Research, 111, DOI:10.1029/2006JE002721.Google Scholar
Noble, S.K., Pieters, C.M., & Keller, L.P. (2007) An experimental approach to understanding the optical effects of space weathering. Icarus, 192, 629642.Google Scholar
Nozette, S., Rustan, P., Pleasance, L.P., et al. (1994) The Clementine Mission to the Moon: Scientific overview. Science, 266, 18351839.Google Scholar
Ohtake, M., Matsunaga, T., Haruyama, J., et al. (2009) The global distribution of pure anorthosite on the Moon. Nature, 461, 236240.Google Scholar
Ohtake, M., Matsunaga, T., Yokota, Y., et al. (2010) Deriving the absolute reflectance of lunar surface using SELENE (Kaguya) multiband imager data. Space Science Reviews, 154, 5777.Google Scholar
Ohtake, M., Pieters, C., Isaacson, P., et al. (2013) One Moon, many measurements 3: Spectral reflectance. Icarus, 226, 364374.Google Scholar
Petro, N.E., Isaacson, P.J., Pieters, C.M., Jolliff, B.L., Carter, L.M., & Klima, R.L. (2013) Presence of OH/H2O associated with the lunar Compton-Belkovich volcanic complex identified by the Moon Mineralogy Mapper (M3). 44th Lunar Planet. Sci. Conf., 2688.Google Scholar
Pieters, C.M. (1978) Mare basalt types on the front side of the moon: A summary of spectral reflectance data. Proceedings of the 9th Lunar Sci. Conf. (Suppl. 10, Geochimica et Cosmochimica Acta), 28252849.Google Scholar
Pieters, C.M. (1982) Copernicus crater central peak: Lunar mountain of unique composition. Science, 215, 5961.Google Scholar
Pieters, C.M. (1993) Compositional diversity and stratigraphy of the Lunar crust derived from reflectance spectroscopy. In: Remote geochemical analysis: Elemental and mineralogical composition (Pieters, C. & Englert, P., eds.). Cambridge University Press, Cambridge, 309339.Google Scholar
Pieters, C.M. (1996) Plagioclase and maskelynite diagnostic features. 27th Lunar Planet. Science Conf., Abstract #1031.Google Scholar
Pieters, C.M. (2017) Origin and importance of “featureless” plagioclase on the Moon. 5th Eur. Lunar Symp., Munster, Germany.Google Scholar
Pieters, C.M. & Garrick-Bethell, I. (2015) Hydration variations at lunar swirls. 46th Lunar Planet. Sci. Conf., Abstract #2120.Google Scholar
Pieters, C.M. & Noble, S.K. (2016) Space weathering on airless bodies. Journal of Geophysical Research, 121, 18651884.Google Scholar
Pieters, C.M. & Taylor, L.A. (2003) Systematic global mixing and melting in lunar soil evolution. Geophysical Research Letters, 30, 2048, DOI:10.1029/2003GL018212.Google Scholar
Pieters, C.M., Head, J.W., Adams, J.B., McCord, T.B., Zisk, S.H., & Whitford Stark, J.L. (1980) Late high titanium basalts of the western maria: Geology of the Flamsteed region of Oceanus Procellarum. Journal of Geophysical Research, 85, 39133938.Google Scholar
Pieters, C.M., Taylor, L.A., Noble, S.K., et al. (2000) Space weathering on airless bodies: Resolving a mystery with lunar samples. Meteoritics and Planetary Science, 35, 11011107.Google Scholar
Pieters, C.M., Head III, J.W., Gaddis, L.R., Jolliff, B.L., & Duke, M. (2001) Rock types of South Pole-Aitken Basin and extent of basaltic volcanism. Journal of Geophysical Research, 106, 28,00128,022.Google Scholar
Pieters, C.M., Boardman, J., Buratti, B., et al. (2009a) Mineralogy of the lunar crust in spatial context: First results from the Moon Mineralogy Mapper (M3). 40th Lunar Planet. Sci. Conf., Abstract #2052.Google Scholar
Pieters, C.M., Goswami, J.N., Clark, R., et al. (2009b) Character and spatial distribution of OH/H2O on the surface of the Moon seen by M3 on Chandrayaan-1. Science, 326, 568572.Google Scholar
Pieters, C.M., Besse, S., & Boardman, J. (2011) Mg spinel lithology: A new rock type on the lunar farside. Journal of Geophysical Research, 116, E00G08, DOI:10.1029/2010JE003727.Google Scholar
Pieters, C.M., Boardman, J.W., Ohtake, M., et al. (2013) One Moon, many measurements 1: Radiance values. Icarus, 226, 951963.Google Scholar
Pieters, C.M., Hanna, K.D., Cheek, L., et al. (2014) The distribution of Mg-spinel across the Moon and constraints on crustal origin. American Mineralogist, 99, 18931910.Google Scholar
Prissel, T., Parman, S., Jackson, C., et al. (2014) Pink Moon: The petrogenesis of pink spinel anorthosites and implications concerning Mg-suite magmatism. Earth and Planetary Science Letters, 403, 144156.Google Scholar
Robinson, M., Brylow, S., Tschimmel, M., et al. (2010) Lunar Reconnaissance Orbiter Camera (LROC) instrument overview. Space Science Reviews, 150, 81124.Google Scholar
Sasaki, S., Nakamura, K., Hamabe, Y., Kurahashi, E., & Hiroi, T. (2001) Production of iron nanoparticles by laser irradiation in a simulation of lunar-like space weathering. Nature, 410, 555557.Google Scholar
Staid, M.I. & Pieters, C.M. (2001) Mineralogy of the last lunar basalts: Results from Clementine. Journal of Geophysical Research, 106, 2788727900.Google Scholar
Staid, M.I., Pieters, C.M., Besse, S., et al. (2011) The mineralogy of late stage lunar volcanism as observed by the Moon Mineralogy Mapper on Chandrayaan 1. Journal of Geophysical Research, 116, E00G10, DOI:10.1029/2010JE003735.Google Scholar
Stöffler, D. (1972) Deformation and transformation of rock-forming minerals by natural and experimental shock processes. 1.Behavior of minerals under shock compression. Fortschritte der Mineralogie, 49, 50113.Google Scholar
Stöffler, D. (1974) Deformation and transformation of rock-forming minerals by natural and experimental shock processes: II. Physical properties of shocked minerals. Fortschritte der Mineralogie, 51, 256289.Google Scholar
Sun, Y.S. & Li, L.L. (2015) Characterization of lunar crust mineralogy with M3 data. 46th Lunar Planet. Sci. Conf., Abstract #2941.Google Scholar
Sunshine, J.M. & Pieters, C.M. (1993) Estimating modal abundances from the spectra of natural and laboratory pyroxene mixtures using the modified Gaussian model. Journal of Geophysical Research, 98, 90759087.Google Scholar
Sunshine, J.M., Farnham, T.L., Feaga, L.M., et al. (2009) Temporal and spatial variability of lunar hydration as observed by the Deep Impact spacecraft. Science, 326, 565568.Google Scholar
Taylor, L.A., Pieters, C.M., Keller, L.P., Morris, R.V., & McKay, D.S. (2001) Lunar mare soils: Space weathering and the major effects of surface correlated nanophase Fe. Journal of Geophysical Research, 106, 27,98527,999.Google Scholar
Taylor, L.A., Pieters, C., Patchen, A., et al. (2010) Mineralogical and chemical characterization of lunar highland soils: Insights into the space weathering of soils on airless bodies. Journal of Geophysical Research, 115, E02002, DOI:10.1029/2009JE003427.Google Scholar
Tompkins, S. & Pieters, C.M. (1999) Mineralogy of the lunar crust: Results from Clementine. Meteoritics and Planetary Science, 34, 2541.Google Scholar
Tompkins, S. & Pieters, C.M. (2010) Spectral characteristics of lunar impact melts and inferred mineralogy. Meteoritics and Planetary Science, 45, 11521169.Google Scholar
Van Gorp, B., Mouroulis, P., Blaney, D.L., Green, R.O., Ehlmann, B.L., & Rodriguez, J.I. (2014) Ultra-compact imaging spectrometer for remote, in situ, and microscopic planetary mineralogy. Journal of Applied Remote Sensing, 8, 084988.Google Scholar
Vane, G. (1993) Imaging spectrometry of the Earth and other Solar System bodies. In: Remote geochemical analysis: Elemental and mineralogical composition (Pieters, C.M. & Englert, P.A.J., eds.). Cambridge University Press, Cambridge, 121143.Google Scholar
Watson, K., Murray, B.C., & Brown, H. (1961) The behavior of volatiles on the lunar surface. Journal of Geophysical Research, 66, 30333045.Google Scholar
Yamamoto, S., Nakamura, R., Matsunaga, T., et al. (2010) Possible mantle origin of olivine around lunar impact basins detected by SELENE. Nature Geoscience, 3, 533–536.Google Scholar
Yamamoto, S., Matsunaga, T., Ogawa, Y., et al. (2011) Preflight and in-flight calibration of the spectral profiler on board SELENE (Kaguya). IEEE Transactions on Geoscience and Remote Sensing, 49, 4660–4676.Google Scholar
Yamamoto, S., Matsunaga, T., Ogawa, Y., et al. (2014) Calibration of NIR 2 of spectral profiler onboard Kaguya/SELENE. IEEE Transactions on Geoscience and Remote Sensing, 52, 68826898.Google Scholar
Yamamoto, S., Nakamura, R., Matsunaga, T., et al. (2015) Featureless spectra on the Moon as evidence of residual lunar primordial crust. Journal of Geophysical Research, 120, 21902205.Google Scholar

References

Abe, M., Takagi, Y., Kitazato, K., et al. (2006) Near-infrared spectral results of asteroid Itokawa from the Hayabusa spacecraft. Science, 312, 13341338.Google Scholar
Adams, J.B. (1974) Visible and near‐infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the Solar System. Journal of Geophysical Research, 79, 48294836.Google Scholar
Barucci, M., Fornasier, S., Dotto, E., et al. (2008) Asteroids 2867 Steins and 21 Lutetia: Surface composition from far infrared observations with the Spitzer space telescope. Astronomy and Astrophysics, 477, 665670.Google Scholar
Barucci, M., Belskaya, I., Fornasier, S., et al. (2012) Overview of Lutetia’s surface composition. Planetary and Space Science, 66, 2330.Google Scholar
Barucci, M.A., Fulchignoni, M., Ji, J., Marchi, S., & Thomas, N. (2015) The flybys of asteroids (2867) Šteins, (21) Lutetia, and (4179) Toutatis. In: Asteroids IV (Michel, P., DeMeo, F.E., & Bottke, W.F., eds.). University of Arizona Press, Tucson, 433450.Google Scholar
Bell, J. III, Izenberg, N., Lucey, P., et al. (2002) Near-IR reflectance spectroscopy of 433 Eros from the NIS instrument on the NEAR mission: I. Low phase angle observations. Icarus, 155, 119144.Google Scholar
Binzel, R.P., Burbine, T.H., & Bus, S.J. (1996) Groundbased reconnaissance of asteroid 253 Mathilde: Visible wavelength spectrum and meteorite comparison. Icarus, 119, 447449.Google Scholar
Binzel, R.P., Rivkin, A.S., Bus, S.J., Sunshine, J.M., & Burbine, T.H. (2001) MUSES‐C target asteroid (25143) 1998 SF36: A reddened ordinary chondrite. Meteoritics and Planetary Science, 36, 11671172.Google Scholar
Bobrovnikoff, N.T. (1929) The spectra of minor planets. Lick Observatory Bulletin, 14, 1827.Google Scholar
Brucato, J.R., Strazzulla, G., Baratta, G., & Colangeli, L. (2004) Forsterite amorphisation by ion irradiation: Monitoring by infrared spectroscopy. Astronomy and Astrophysics, 413, 395401.Google Scholar
Brunetto, R., Loeffler, M.J., Nesvorný, D., Sasaki, S., & Strazzulla, G. (2015) Asteroid surface alteration by space weathering processes. In: Asteroids IV (Michel, P., DeMeo, F.E., & Bottke, W.F., eds.). University of Arizona Press, Tucson, 597616.Google Scholar
Burbine, T.H. & Binzel, R.P. (2002) Small main-belt asteroid spectroscopic survey in the near-infrared. Icarus, 159, 468499.Google Scholar
Burbine, T.H., Buchanan, P.C., Dolkar, T., & Binzel, R.P. (2009) Pyroxene mineralogies of near‐Earth vestoids. Meteoritics and Planetary Science, 44, 13311341.Google Scholar
Bus, S.J. & Binzel, R.P. (2002) Phase II of the small main-belt asteroid spectroscopic survey: The observations. Icarus, 158, 106145.Google Scholar
Carvano, J.M., Hasselmann, P.H., Lazzaro, D., & Mothé-Diniz, T. (2010) SDSS-based taxonomic classification and orbital distribution of main belt asteroids. Astronomy and Astrophysics, 510, A43.Google Scholar
Chapman, C.R., Morrison, D., & Zellner, B. (1975) Surface properties of asteroids: A synthesis of polarimetry, radiometry, and spectrophotometry. Icarus, 25, 104130.Google Scholar
Clark, B.E., Veverka, J., Helfenstein, P., et al. (1999) NEAR photometry of Asteroid 253 Mathilde. Icarus, 140, 5365.Google Scholar
Clark, B.E., Bus, S.J., Rivkin, A.S., et al. (2004) E‐type asteroid spectroscopy and compositional modeling. Journal of Geophysical Research, 109, DOI:10.1029/2003JE002200.Google Scholar
Clark, R.N. (2009) Detection of adsorbed water and hydroxyl on the Moon. Science, 326, 562564.Google Scholar
Cloutis, E.A., Gaffey, M.J., Jackowski, T.L., & Reed, K.L. (1986) Calibrations of phase abundance, composition, and particle size distribution for olivine‐orthopyroxene mixtures from reflectance spectra. Journal of Geophysical Research, 91, 1164111653.Google Scholar
Cochran, A.L. & Vilas, F. (1997) The McDonald Observatory serendipitous UV/blue spectral survey of asteroids. Icarus, 127, 121129.Google Scholar
Cohen, M., Witteborn, F.C., Roush, T., Bregman, J., & Wooden, D. (1998) Spectral irradiance calibration in the infrared. VIII. 5–14 micron spectroscopy of the asteroids Ceres, Vesta, and Pallas. The Astronomical Journal, 115, 16711679.CrossRefGoogle Scholar
Combe, J.-P., McCord, T.B., Tosi, F., et al. (2016) Detection of local H2O exposed at the surface of Ceres. Science, 353, aaf3010.Google Scholar
Delbó, M., Mueller, M., Emery, J.P., Rozitis, B., & Capria, M.T. (2015) Asteroid thermophysical modeling. In: Asteroids IV (Michel, P., DeMeo, F.E., & Bottke, W.F., eds.), University of Arizona Press, Tucson, 107128.Google Scholar
DeMeo, F.E. & Carry, B. (2013) The taxonomic distribution of asteroids from multi-filter all-sky photometric surveys. Icarus, 226, 723741.Google Scholar
DeMeo, F.E., Binzel, R.P., Slivan, S.M., & Bus, S.J. (2009) An extension of the Bus asteroid taxonomy into the near-infrared. Icarus, 202, 160180.Google Scholar
DeMeo, F.E., Alexander, C.M.O., Walsh, K.J., Chapman, C.R., & Binzel, R.P. (2015) The compositional structure of the asteroid belt. In: Asteroids IV (Michel, P., DeMeo, F.E., & Bottke, W.F., eds.). University of Arizona Press, Tucson, 1341.Google Scholar
De Sanctis, M.C., Combe, J.-P., Ammannito, E., et al. (2012) Detection of widespread hydrated materials on Vesta by the VIR imaging spectrometer on board the Dawn mission. The Astrophysical Journal Letters, 758, L36.Google Scholar
De Sanctis, M.C., Ammannito, E., Raponi, A., et al. (2015) Ammoniated phyllosilicates with a likely outer Solar System origin on (1) Ceres. Nature, 528, 241244.Google Scholar
De Sanctis, M.C., Ammannito, E., McSween, H.Y., et al. (2017) Localized aliphatic organic material on the surface of Ceres. Science, 355, 719722.Google Scholar
Dodson-Robinson, S.E., Willacy, K., Bodenheimer, P., Turner, N.J., & Beichman, C.A. (2009) Ice lines, planetesimal composition and solid surface density in the solar nebula. Icarus, 200, 672693.Google Scholar
Dotto, E., Müller, T., Barucci, M., et al. (2000) ISO results on bright Main Belt asteroids: PHT-S observations. Astronomy and Astrophysics, 358, 11331141.Google Scholar
Dunn, T.L., McCoy, T.J., Sunshine, J., & McSween, H.Y. Jr. (2010) A coordinated spectral, mineralogical, and compositional study of ordinary chondrites. Icarus, 208, 789797.Google Scholar
Emery, J.P. & Brown, R.H. (2003) Constraints on the surface composition of Trojan asteroids from near-infrared (0.8–4.0 μm) spectroscopy. Icarus, 164, 104121.Google Scholar
Emery, J.P. & Brown, R.H. (2004) The surface composition of Trojan asteroids: Constraints set by scattering theory. Icarus, 170, 131152.Google Scholar
Emery, J.P., Cruikshank, D.P., & Van Cleve, J. (2006) Thermal emission spectroscopy (5.2–38 μm) of three Trojan asteroids with the Spitzer Space Telescope: Detection of fine-grained silicates. Icarus, 182, 496512.Google Scholar
Emery, J.P., Burr, D.M., & Cruikshank, D.P. (2011) Near-infrared spectroscopy of Trojan asteroids: Evidence for two compositional groups. The Astronomical Journal, 141, 25.Google Scholar
Filippenko, A.V. (1982) The importance of atmospheric differential refraction in spectrophotometry. Publications of the Astronomical Society of the Pacific, 94, 715–721.Google Scholar
Fornasier, S., Migliorini, A., Dotto, E., & Barucci, M. (2008) Visible and near infrared spectroscopic investigation of E-type asteroids, including 2867 Steins, a target of the Rosetta mission. Icarus, 196, 119134.Google Scholar
Fornasier, S., Clark, B., Dotto, E., Migliorini, A., Ockert-Bell, M., & Barucci, M. (2010) Spectroscopic survey of M-type asteroids. Icarus, 210, 655673.Google Scholar
Fujiwara, A., Kawaguchi, J., Yeomans, D., et al. (2006) The rubble-pile asteroid Itokawa as observed by Hayabusa. Science, 312, 13301334.Google Scholar
Gaffey, M.J., Bell, J.F., Brown, R.H., et al. (1993) Mineralogical variations within the S-type asteroid class. Icarus, 106, 573602.Google Scholar
Gladman, B.J., Davis, D.R., Neese, C., et al. (2009) On the asteroid belt’s orbital and size distribution. Icarus, 202, 104118.Google Scholar
Gradie, J. & Tedesco, E. (1982) Compositional structure of the asteroid belt. Science, 216, 14051407.Google Scholar
Grossman, L. (1972) Condensation in the primitive solar nebula. Geochimica et Cosmochimica Acta, 36, 597619.Google Scholar
Groussin, O., Lamy, P., Fornasier, S., & Jorda, L. (2011) The properties of asteroid (2867) Steins from Spitzer Space Telescope observations and OSIRIS shape reconstruction. Astronomy and Astrophysics, 529, A73.Google Scholar
Guilbert-Lepoutre, A. (2014) Survival of water ice in Jupiter Trojans. Icarus, 231, 232238.Google Scholar
Hamilton, V.E., Simon, A.A., Christensen, P.R., et al. (2019) Evidence for widespread hydrated minerals on asteroid (101955) Bennu. Nature Astronomy, 3, 332340.Google Scholar
Hapke, B. (2001) Space weathering from Mercury to the asteroid belt. Journal of Geophysical Research, 106, 10,03910,073.Google Scholar
Hapke, B. (2012) Theory of reflectance and emittance spectroscopy. Cambridge University Press, Cambridge.Google Scholar
Hardersen, P.S., Cloutis, E.A., Reddy, V., Mothé-Diniz, T., & Emery, J.P. (2011) The M‐/X‐asteroid menagerie: Results of an NIR spectral survey of 45 main‐belt asteroids. Meteoritics and Planetary Science, 46, 19101938.Google Scholar
Hartmann, W.K., Tholen, D.J., & Cruikshank, D.P. (1987) The relationship of active comets, “extinct” comets, and dark asteroids. Icarus, 69, 3350.Google Scholar
Hasegawa, S., Murakawa, K., Ishiguro, M., et al. (2003) Evidence of hydrated and/or hydroxylated minerals on the surface of asteroid 4 Vesta. Geophysical Research Letters, 30, DOI:10.1029/2003GL018627.Google Scholar
Hendrix, A.R., Vilas, F., & Li, J.Y. (2016) Ceres: Sulfur deposits and graphitized carbon. Geophysical Research Letters, 43, 89208927.Google Scholar
Henning, T. (2010) Cosmic silicates. Annual Review of Astronomy and Astrophysics, 48, 2146.Google Scholar
Ivezić, Ž., Axelrod, T., Brandt, W., et al. (2008) Large Synoptic Survey Telescope: From science drivers to reference design. Serbian Astronomical Journal, 176, 113.Google Scholar
Izenberg, N.R., Murchie, S.L., Bell, J.F. III, et al. (2003) Spectral properties and geologic processes on Eros from combined NEAR NIS and MSI data sets. Meteoritics and Planetary Science, 38, 10531077.Google Scholar
Jones, T.D., Lebofsky, L.A., Lewis, J.S., & Marley, M.S. (1990) The composition and origin of the C, P, and D asteroids: Water as a tracer of thermal evolution in the outer belt. Icarus, 88, 172192.Google Scholar
Kelley, M.S., Sanchez, J.A., & Reddy, V. (2017) Characterization of spacecraft targets: Ida and Gaspra. Conference on Asteroids, Comets, Meteors, Montevideo, Uruguay, poster 2.e.67.Google Scholar
King, T.V. & Ridley, W.I. (1987) Relation of the spectroscopic reflectance of olivine to mineral chemistry and some remote sensing implications. Journal of Geophysical Research, 92, 11,45711,469.Google Scholar
Lantz, C., Brunetto, R., Barucci, M., et al. (2017) Ion irradiation of carbonaceous chondrites: A new view of space weathering on primitive asteroids. Icarus, 285, 4357.Google Scholar
Lawrence, S.J. & Lucey, P.G. (2007) Radiative transfer mixing models of meteoritic assemblages. Journal of Geophysical Research, 112, DOI:10.1029/2006JE002765.Google Scholar
Lazzaro, D., Angeli, C., Carvano, J., Mothé-Diniz, T., Duffard, R., & Florczak, M. (2004) S 3 OS 2: The visible spectroscopic survey of 820 asteroids. Icarus, 172, 179220.Google Scholar
Levison, H.F., Bottke, W.F., Gounelle, M., Morbidelli, A., Nesvorný, D., & Tsiganis, K. (2009) Contamination of the asteroid belt by primordial trans-Neptunian objects. Nature, 460, 364366.Google Scholar
Lewis, J.S. (1972) Low temperature condensation from the solar nebula. Icarus, 16, 241252.Google Scholar
Li, J.-Y., Bodewits, D., Feaga, L.M., et al. (2011) Ultraviolet spectroscopy of asteroid (4) Vesta. Icarus, 216, 640649.Google Scholar
Lim, L.F., McConnochie, T.H., Bell, J.F. III, & Hayward, T.L. (2005) Thermal infrared (8–13 μm) spectra of 29 asteroids: The Cornell mid-infrared asteroid spectroscopy (MIDAS) survey. Icarus, 173, 385408.Google Scholar
Lim, L.F., Emery, J.P., & Moskovitz, N.A. (2011) Mineralogy and thermal properties of V-type Asteroid 956 Elisa: Evidence for diogenitic material from the Spitzer IRS (5–35 μm) spectrum. Icarus, 213, 510523.Google Scholar
Loeffler, M., Dukes, C., & Baragiola, R. (2009) Irradiation of olivine by 4 keV He+: Simulation of space weathering by the solar wind. Journal of Geophysical Research, 114, DOI:10.1029/2008JE003249.Google Scholar
Lord, S.D. (1992) A new software tool for computing Earth’s atmospheric transmission of near- and far-infrared radiation. NASA TM-103957. NASA Ames Research Center, Moffett Field, CA.Google Scholar
Mainzer, A., Masiero, J., Grav, T., et al. (2011a) NEOWISE studies of asteroids with Sloan photometry: Preliminary results. The Astrophysical Journal, 745, 7.Google Scholar
Mainzer, A., Bauer, J., Grav, T., et al. (2011b) Preliminary results from NEOWISE: An enhancement to the wide-field infrared survey explorer for Solar System science. The Astrophysical Journal, 731, 53.Google Scholar
Marchis, F., Enriquez, J., Emery, J., et al. (2012) Multiple asteroid systems: Dimensions and thermal properties from Spitzer Space Telescope and ground-based observations. Icarus, 221, 11301161.Google Scholar
Markus, K., Arnold, G., Hiesinger, H., et al. (2013) Comparison of ground-based and VIRTIS-M/ROSETTA reflectance spectra of asteroid 2867 Steins with laboratory reflectance spectra in the VIS and IR. EGU General Assembly, Abstract #EGU2013-11287.Google Scholar
Mayne, R., Sunshine, J., McSween, H. Jr., Bus, S., & McCoy, T.J. (2011) The origin of Vesta’s crust: Insights from spectroscopy of the Vestoids. Icarus, 214, 147160.Google Scholar
McCord, T.B., Li, J.-Y., Combe, J.-P., et al. (2012) Dark material on Vesta from the infall of carbonaceous volatile-rich material. Nature, 491, 8386.Google Scholar
McCoy, T.J., Burbine, T., McFadden, L., et al. (2001) The composition of 433 Eros: A mineralogical—chemical synthesis. Meteoritics and Planetary Science, 36, 16611672.Google Scholar
McFadden, L.A., Wellnitz, D.D., Schnaubelt, M., et al. (2001) Mineralogical interpretation of reflectance spectra of Eros from NEAR near‐infrared spectrometer low phase flyby. Meteoritics and Planetary Science, 36, 17111726.Google Scholar
McSween, Y. Jr., Ghosh, A., Grimm, R.E., Wilson, L., & Young, E.D. (2002) Thermal evolution models of asteroids. In: Asteroids III (Bottke, W., Paolicchi, Cellino, & Binzel, R.P., eds.). University of Arizona Press, Tucson, 559571.Google Scholar
Mignard, F., Cellino, A., Muinonen, K., et al. (2007) The Gaia mission: Expected applications to asteroid science. Earth, Moon, and Planets, 101, 97125.Google Scholar
Milliken, R.E. & Rivkin, A.S. (2009) Brucite and carbonate assemblages from altered olivine-rich materials on Ceres. Nature Geoscience, 2, 258261.Google Scholar
Morbidelli, A., Levison, H.F., Tsiganis, K., & Gomes, R. (2005) Chaotic capture of Jupiter’s Trojan asteroids in the early Solar System. Nature, 435, 462465.Google Scholar
Moyano‐Cambero, C.E., Trigo‐Rodrίguez, J.M., Llorca, J., Fornasier, S., Barucci, M.A., & Rimola, A. (2016) A plausible link between the asteroid 21 Lutetia and CH carbonaceous chondrites. Meteoritics and Planetary Science, 51, 17951812.Google Scholar
Muinonen, K. & Pieniluoma, T. (2011) Light scattering by Gaussian random ellipsoid particles: First results with discrete-dipole approximation. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 17471752.Google Scholar
Nakamura, T., Noguchi, T., Tanaka, M., et al. (2011) Itokawa dust particles: A direct link between S-type asteroids and ordinary chondrites. Science, 333, 11131116.Google Scholar
Nesvorný, D., Vokrouhlický, D., & Morbidelli, A. (2013) Capture of Trojans by jumping Jupiter. The Astrophysical Journal, 768, 45.Google Scholar
Nittler, L.R., Starr, R.D., Lim, L., et al. (2001) X‐ray fluorescence measurements of the surface elemental composition of asteroid 433 Eros. Meteoritics and Planetary Science, 36, 16731695.Google Scholar
O’Brien, D.P. & Sykes, M.V. (2011) The origin and evolution of the asteroid belt—Implications for Vesta and Ceres. Space Science Reviews, 163, 4161.Google Scholar
Pieters, C.M. & Noble, S.K. (2016) Space weathering on airless bodies. Journal of Geophysical Research, 121, 18651884.Google Scholar
Pieters, C.M., Goswami, J.N., Clark, R.N., et al. (2009) Character and spatial distribution of OH/H2O on the surface of the Moon seen by M3 on Chandrayaan-1. Science, 326, 568572.Google Scholar
Popescu, M., Licandro, J., Morate, D., et al. (2016) Near-infrared colors of minor planets recovered from Vista-VHS survey (MOVIS). Astronomy and Astrophysics, 591, A115.Google Scholar
Prinn, R.G., & Fegley, B. Jr. (1989) Solar nebula chemistry: Origins of planetary, satellite and cometary volatiles. In: Origin and evolution of planetary and satellite atmospheres (Atreya, S.K., Pollack, J.B., & Matthews, M.S., eds.). University of Arizona Press, Tucson, 78136.Google Scholar
Reddy, V., Le Corre, L., O’Brien, D.P., et al. (2012) Delivery of dark material to Vesta via carbonaceous chondritic impacts. Icarus, 221, 544559.Google Scholar
Reddy, V., Dunn, T., Thomas, C.A., Moskovitz, N., & Burbine, T. (2015) Mineralogy and surface composition of asteroids. In: Asteroids IV (Michel, P., DeMeo, F.E., & Bottke, W.F., eds.). University of Arizona Press, Tucson, 6587.Google Scholar
Rivkin, A.S. & Emery, J.P. (2010) Detection of ice and organics on an asteroidal surface. Nature, 464, 13221323.Google Scholar
Rivkin, A.S., Clark, B.E., Britt, D.T., & Lebofsky, L.A. (1997) Infrared spectrophotometry of the NEAR flyby target 253 Mathilde. Icarus, 127, 255257.Google Scholar
Rivkin, A.S., Howell, E.S., Vilas, F., & Lebofsky, L.A. (2002) Hydrated minerals on asteroids: The astronomical record. Asteroids III, 1, 235253.Google Scholar
Rivkin, A.S., Volquardsen, E.L., & Clark, B.E. (2006) The surface composition of Ceres: Discovery of carbonates and iron-rich clays. Icarus, 185, 563567.Google Scholar
Rivkin, A.S., Clark, B.E., Ockert-Bell, M., et al. (2011) Asteroid 21 Lutetia at 3 μm: Observations with IRTF SpeX. Icarus, 216, 6268.Google Scholar
Rivkin, A.S., Thomas, C.A., Howell, E.S., & Emery, J.P. (2015) The Ch-class asteroids: Connecting a visible taxonomic class to a 3 μm band shape. The Astronomical Journal, 150, 198.Google Scholar
Rivkin, A.S., Howell, E.S., Emery, J.P., & Sunshine, J. (2018) Evidence for OH or H2O on the surface of 433 Eros and 1036 Ganymed. Icarus, 304, 7482.Google Scholar
Russell, C.T., Raymond, C.A., Coradini, A., et al. (2012) Dawn at Vesta: Testing the protoplanetary paradigm. Science, 336, 684686.Google Scholar
Sanchez, J.A., Reddy, V., Nathues, A., Cloutis, E.A., Mann, P., & Hiesinger, H. (2012) Phase reddening on near-Earth asteroids: Implications for mineralogical analysis, space weathering and taxonomic classification. Icarus, 220, 3650.Google Scholar
Schorghofer, N. (2016) Predictions of depth-to-ice on asteroids based on an asynchronous model of temperature, impact stirring, and ice loss. Icarus, 276, 8895.Google Scholar
Shestopalov, D.I., Golubeva, L.F., McFadden, L.A., Fornasier, S., & Taran, M.N. (2010) Titanium-bearing pyroxenes of some E asteroids: Coexisting of igneous and hydrated rocks. Planetary and Space Science, 58, 14001403.Google Scholar
Shkuratov, Y., Starukhina, L., Hoffmann, H., & Arnold, G. (1999) A model of spectral albedo of particulate surfaces: Implications for optical properties of the Moon. Icarus, 137, 235246.Google Scholar
Sunshine, J.M. & Pieters, C.M. (1993) Estimating modal abundances from the spectra of natural and laboratory pyroxene mixtures using the modified Gaussian model. Journal of Geophysical Research, 98, 90759087.Google Scholar
Sunshine, J.M., Bus, S.J., McCoy, T.J., Burbine, T.H., Corrigan, C.M., & Binzel, R.P. (2004) High‐calcium pyroxene as an indicator of igneous differentiation in asteroids and meteorites. Meteoritics and Planetary Science, 39, 13431357.Google Scholar
Sunshine, J.M., Farnham, T.L., Feaga, L.M., et al. (2009) Temporal and spatial variability of lunar hydration as observed by the Deep Impact spacecraft. Science, 326, 565568.Google Scholar
Takir, D. & Emery, J.P. (2012) Outer main belt asteroids: Identification and distribution of four 3-μm spectral groups. Icarus, 219, 641654.Google Scholar
Tholen, D.J. (1984) Asteroid taxonomy from cluster analysis of photometry. PhD thesis, University of Arizona, Tucson.Google Scholar
Thomas, C.A., Emery, J.P., Trilling, D.E., Delbó, M., Hora, J.L., & Mueller, M. (2014) Physical characterization of Warm Spitzer-observed near-Earth objects. Icarus, 228, 217246.Google Scholar
Vernazza, P., Binzel, R., Thomas, C., et al. (2008) Compositional differences between meteorites and near-Earth asteroids. Nature, 454, 858860.Google Scholar
Vernazza, P., Carry, B., Emery, J., et al. (2010) Mid-infrared spectral variability for compositionally similar asteroids: Implications for asteroid particle size distributions. Icarus, 207, 800809.Google Scholar
Vernazza, P., Delbo, M., King, P., et al. (2012) High surface porosity as the origin of emissivity features in asteroid spectra. Icarus, 221, 11621172.Google Scholar
Vernazza, P., Castillo-Rogez, J., Beck, P., et al. (2017) Different origins or different evolutions? Decoding the spectral diversity among C-type asteroids. The Astronomical Journal, 153, 72.Google Scholar
Veverka, J., Thomas, P., Harch, A., et al. (1997) NEAR’s flyby of 253 Mathilde: Images of a C asteroid. Science, 278, 21092114.Google Scholar
Vilas, F. & Gaffey, M.J. (1989) Phyllosilicate absorption features in main-belt and outer-belt asteroid reflectance spectra. Science, 246, 790792.Google Scholar
Walsh, K.J., Morbidelli, A., Raymond, S.N., O’Brien, D., & Mandell, A. (2012) Populating the asteroid belt from two parent source regions due to the migration of giant planets—“The Grand Tack.” Meteoritics and Planetary Science, 47, 19411947.Google Scholar
Weissman, P.R., A’Hearn, M.F., McFadden, L., & Rickman, H. (2002) Evolution of comets into asteroids. Asteroids III, 669686.Google Scholar
Wenger, M., Ochsenbein, F., Egret, D., et al. (2000) The SIMBAD astronomical database-The CDS reference database for astronomical objects. Astronomy and Astrophysics Supplement Series, 143, 922.Google Scholar
Wigton, N.R. (2015) Near-infrared (2–4 micron) spectroscopy of near-Earth asteroids: A search for OH/H2O on small planetary bodies. MS thesis, University of Tennessee.Google Scholar
Xu, S., Binzel, R.P., Burbine, T.H., & Bus, S.J. (1995) Small Main-Belt Asteroid Spectroscopic Survey: Initial results. Icarus, 115, 135.Google Scholar
Yang, B. & Jewitt, D. (2010) Identification of magnetite in B-type asteroids. The Astronomical Journal, 140, 692698.Google Scholar
Zubko, E., Shkuratov, Y., Mishchenko, M., & Videen, G. (2008) Light scattering in a finite multi-particle system. Journal of Quantitative Spectroscopy and Radiative Transfer, 109, 21952206.Google Scholar

References

A’Hearn, M.F., Schleicher, D.G., Feldman, P.D., Millis, R.C. & Thompson, D.T. (1984) Comet Bowell 1980b. The Astronomical Journal, 89, 579591.Google Scholar
Ammannito, E., De Sanctis, M.C., Capaccioni, F., et al. (2013a) Vestan lithologies mapped by the visual and infrared spectrometer on Dawn. Meteoritics and Planetary Science, 48, 21852198.Google Scholar
Ammannito, E., De Sanctis, M., Palomba, E., et al. (2013b) Olivine in an unexpected location on Vesta’s surface. Nature, 504, 122125.Google Scholar
Ammannito, E., DeSanctis, M., Ciarniello, M., et al. (2016) Distribution of phyllosilicates on the surface of Ceres. Science, 353, aaf4279.Google Scholar
Barucci, M.A., Fulchignoni, M., & Rossi, A. (2007) Rosetta asteroid targets: 2867 Steins and 21 Lutetia. Space Science Reviews, 128, 6778.Google Scholar
Barucci, M.A., Filacchione, G., Fornasier, S., et al. (2016) Detection of exposed H2O ice on the nucleus of comet 67P/Churyumov-Gerasimenko-as observed by Rosetta OSIRIS and VIRTIS instruments. Astronomy and Astrophysics, 595, A102.Google Scholar
Binzel, R.P., Gaffey, M.J., Thomas, P.C., Zellner, B.H., Storrs, A.D., & Wells, E.N. (1997) Geologic mapping of Vesta from 1994 Hubble space telescope images. Icarus, 128, 95103.Google Scholar
Birlan, M., Vernazza, P., Fulchignoni, M., et al. (2006) Near infra-red spectroscopy of the asteroid 21 Lutetia-I. New results of long-term campaign. Astronomy and Astrophysics, 454, 677681.Google Scholar
Burbine, T.H., McCoy, T.J., Nittler, L.R., Benedix, G.K., Cloutis, E.A., & Dickinson, T.L. (2002) Spectra of extremely reduced assemblages: Implications for Mercury. Meteoritics and Planetary Science, 37, 12331244.Google Scholar
Capaccioni, F., Coradini, A., Filacchione, G., et al. (2015) The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta. Science, 347, aaa0628.Google Scholar
Ciarniello, M., Capaccioni, F., Filacchione, G., et al. (2011) Hapke modeling of Rhea surface properties through Cassini-VIMS spectra. Icarus, 214, 541555.Google Scholar
Ciarniello, M., Capaccioni, F., Filacchione, G., et al. (2015) Photometric properties of comet 67P/Churyumov-Gerasimenko from VIRTIS-M onboard Rosetta. Astronomy and Astrophysics, 583, A31.Google Scholar
Ciarniello, M., Raponi, A., Capaccioni, F., et al. (2016) The global surface composition of 67P/Churyumov-Gerasimenko nucleus by Rosetta/VIRTIS. II) Diurnal and seasonal variability. Monthly Notices of the Royal Astronomical Society, 462, S443S458.Google Scholar
Ciarniello, M., De Sanctis, M.C., Ammannito, E., et al. (2017) Spectrophotometric properties of dwarf planet Ceres from the VIR spectrometer on board the Dawn mission. Astronomy and Astrophysics, 598, A130.Google Scholar
Clark, R.N. (1999) Spectroscopy of rocks and minerals, and principles of spectroscopy. Manual of Remote Sensing, 3, 22.Google Scholar
Cochran, A.L. & Vilas, F. (1998) The changing spectrum of Vesta: Rotationally resolved spectroscopy of pyroxene on the surface. Icarus, 134, 207212.CrossRefGoogle Scholar
Combe, J.-P., McCord, T.B., Tosi, F., et al. (2016) Detection of local H2O exposed at the surface of Ceres. Science, 353, aaf3010.Google Scholar
Coradini, A., Capaccioni, F., Drossart, P., et al. (2007) VIRTIS: An imaging spectrometer for the Rosetta mission. Space Science Reviews, 128, 529559.Google Scholar
Coradini, A., Capaccioni, F., Erard, S., et al. (2011) The surface composition and temperature of asteroid 21 Lutetia as observed by Rosetta/VIRTIS. Science, 334, 492494.Google Scholar
De Sanctis, M.C., Raponi, A., Ammannito, E., et al. (2016) Bright carbonate deposits as evidence of aqueous alteration on (1) Ceres. Nature, 536, 5457.Google Scholar
De Sanctis, M.C. (2011) The VIR spectrometer. Space Science Reviews, 163, 329369.Google Scholar
De Sanctis, M.C., Ammannito, E., Capria, M., et al. (2012a) Spectroscopic characterization of mineralogy and its diversity across Vesta. Science, 336, 697700.Google Scholar
De Sanctis, M.C., Combe, J.-P., Ammannito, E., et al. (2012b) Detection of widespread hydrated materials on Vesta by the VIR imaging spectrometer on board the Dawn mission. The Astrophysical Journal Letters, 758, L36.Google Scholar
De Sanctis, M.C., Ammannito, E., Capria, M.T., et al. (2013) Vesta’s mineralogical composition as revealed by the visible and infrared spectrometer on Dawn. Meteoritics and Planetary Science, 48, 21662184.Google Scholar
De Sanctis, M.C., Capaccioni, F., Ciarniello, M., et al. (2015a) The diurnal cycle of water ice on comet 67P/Churyumov–Gerasimenko. Nature, 525, 500503.Google Scholar
De Sanctis, M.C., Ammannito, E., Raponi, A., et al. (2015b) Ammoniated phyllosilicates with a likely outer Solar System origin on (1) Ceres. Nature, 528, 241244.Google Scholar
El-Maarry, M.R., Thomas, N., Gracia-Berná, A., et al. (2016) Regional surface morphology of comet 67P/Churyumov-Gerasimenko from Rosetta/OSIRIS images: The southern hemisphere. Astronomy and Astrophysics, 593, A110.Google Scholar
Feierberg, M.A., Larson, H.P., Fink, U., & Smith, H.A. (1980) Spectroscopic evidence for two achondrite parent bodies: Asteroids 349 Dembowska and 4 Vesta. Geochimica et Cosmochimica Acta, 44, 513524.Google Scholar
Filacchione, G., Capaccioni, F., Clark, R., et al. (2010) Saturn’s icy satellites investigated by Cassini–VIMS: II. Results at the end of nominal mission. Icarus, 206, 507523.Google Scholar
Filacchione, G., Capaccioni, F., Ciarniello, M., et al. (2012) Saturn’s icy satellites and rings investigated by Cassini–VIMS: III–Radial compositional variability. Icarus, 220, 10641096.Google Scholar
Filacchione, G., Capaccioni, F., Ciarniello, M., et al. (2016a) The global surface composition of 67P/CG nucleus by Rosetta/VIRTIS. (I) Prelanding mission phase. Icarus, 274, 334349.Google Scholar
Filacchione, G., De Sanctis, M., Capaccioni, F., et al. (2016b) Exposed water ice on the nucleus of comet 67P/Churyumov–Gerasimenko. Nature, 529, 368372.Google Scholar
Filacchione, G., Raponi, A., Capaccioni, F., et al. (2016c) Seasonal exposure of carbon dioxide ice on the nucleus of comet 67P/Churyumov-Gerasimenko. Science, 354, aag3161.Google Scholar
Fornasier, S., Marzari, F., Dotto, E., Barucci, M., & Migliorini, A. (2007) Are the E-type asteroids (2867) Steins, a target of the Rosetta mission, and NEA (3103) Eger remnants of an old asteroid family? Astronomy and Astrophysics, 474, L29L32.Google Scholar
Fornasier, S., Hasselmann, P., Barucci, M., et al. (2015) Spectrophotometric properties of the nucleus of comet 67P/Churyumov-Gerasimenko from the OSIRIS instrument onboard the ROSETTA spacecraft. Astronomy and Astrophysics, 583, A30.Google Scholar
Fornasier, S., Mottola, S., Keller, H.U., et al. (2016) Rosetta’s comet 67P/Churyumov-Gerasimenko sheds its dusty mantle to reveal its icy nature. Science, aag2671.Google Scholar
Gaffey, M. & McCord, T. (1979) Mineralogical and petrological characterizations of asteroid surface materials. Asteroids, 688723.Google Scholar
Hapke, B. (2005) Theory of reflectance and emittance spectroscopy. Cambridge University Press, Cambridge.Google Scholar
Keihm, S., Tosi, F., Kamp, L., et al. (2012) Interpretation of combined infrared, submillimeter, and millimeter thermal flux data obtained during the Rosetta fly-by of Asteroid (21) Lutetia. Icarus, 221, 395404.Google Scholar
Keller, H.U., Barbieri, C., Lamy, P., et al. (2007) OSIRIS: The scientific camera system onboard Rosetta. Space Science Reviews, 128, 433506.Google Scholar
Keller, H., Barbieri, C., Koschny, D., et al. (2010) E-type asteroid (2867) Steins as imaged by OSIRIS on board Rosetta. Science, 327, 190193.Google Scholar
King, T.V., Clark, R., Calvin, W., Sherman, D.M., & Brown, R. (1992) Evidence for ammonium-bearing minerals on Ceres. Science, 255, 15511553.Google Scholar
Li, J.-Y., Reddy, V., Nathues, A., et al. (2016) Surface albedo and spectral variability of Ceres. The Astrophysical Journal Letters, 817, L22.Google Scholar
Lowry, S., Duddy, S., Rozitis, B., et al. (2012) The nucleus of Comet 67P/Churyumov-Gerasimenko. A new shape model and thermophysical analysis. Astronomy and Astrophysics, 548, A12.Google Scholar
Magrin, S., La Forgia, F., Pajola, M., et al. (2012) (21) Lutetia spectrophotometry from Rosetta-OSIRIS images and comparison to ground-based observations. Planetary and Space Science, 66, 4353.Google Scholar
Mandler, B.E. & Elkins‐Tanton, L.T. (2013) The origin of eucrites, diogenites, and olivine diogenites: Magma ocean crystallization and shallow magma chamber processes on Vesta. Meteoritics and Planetary Science, 48, 23332349.Google Scholar
Marchi, S., Ermakov, A., Raymond, C., et al. (2016) The missing large impact craters on Ceres. Nature Communications, 7, 12257.Google Scholar
McCord, T.B., Adams, J.B., & Johnson, T.V. (1970) Asteroid vesta: Spectral reflectivity and compositional implications. Science, 168(3938), 14451447.Google Scholar
McFadden, L.A., McCord, T.B., & Pieters, C. (1977) Vesta: The first pyroxene band from new spectroscopic measurements. Icarus, 31, 439446.Google Scholar
Nathues, A., Hoffmann, M., Schaefer, M., et al. (2015) Sublimation in bright spots on (1) Ceres. Nature, 528, 237240.Google Scholar
Ockert-Bell, M., Clark, B.E., Isaacs, M.E., Cloutis, R., Fornasier, E.A., & Bus, S. (2010) The composition of M-type asteroids: Synthesis of spectroscopic and radar observations. Icarus, 210, 674692.Google Scholar
Palomba, E., Longobardo, A., De Sanctis, M.C., et al. (2015) Detection of new olivine-rich locations on Vesta. Icarus, 258, 120134.Google Scholar
Park, R.S., Konopliv, A.S., Bills, B.G., et al. (2016) A partially differentiated interior for (1) Ceres deduced from its gravity field and shape. Nature, 537, 515517.Google Scholar
Pieters, C.M., McFadden, L.A., Prettyman, T., et al. (2011) Surface composition of Vesta: Issues and integrated approach. Space Science Reviews, 163, 117139.Google Scholar
Pieters, C., Ammannito, E., Blewett, D., et al. (2012) Distinctive space weathering on Vesta from regolith mixing processes. Nature, 491, 7982.Google Scholar
Pommerol, A., Thomas, N., El-Maarry, M.R., et al. (2015) OSIRIS observations of meter-sized exposures of H2O ice at the surface of 67P/Churyumov-Gerasimenko and interpretation using laboratory experiments. Astronomy and Astrophysics, 583, A25.Google Scholar
Quirico, E., Moroz, L., Schmitt, B., et al. (2016) Refractory and semi-volatile organics at the surface of comet 67P/Churyumov-Gerasimenko: Insights from the VIRTIS/Rosetta imaging spectrometer. Icarus, 272, 3247.Google Scholar
Raponi, A., Ciarniello, M., Capaccioni, F., et al. (2016) The temporal evolution of exposed water ice-rich areas on the surface of 67P/Churyumov–Gerasimenko: Spectral analysis. Monthly Notices of the Royal Astronomical Society, 462, S476S490.Google Scholar
Rivkin, A.S., Li, J.-Y., Milliken, R.E., et al. (2011a) The surface composition of Ceres. Space Science Reviews, 163, 95116.Google Scholar
Rivkin, A.S., Clark, B.E., Ockert-Bell, M., et al. (2011b) Asteroid 21 Lutetia at 3 μm: Observations with IRTF SpeX. Icarus, 216, 6268.Google Scholar
Ruesch, O., Hiesinger, H., De Sanctis, M.C., et al. (2014) Detections and geologic context of local enrichments in olivine on Vesta with VIR/Dawn data. Journal of Geophysical Research, 119, 20782108.Google Scholar
Russell, C.T., Capaccioni, F., Coradini, A., et al. (2007) Dawn mission to Vesta and Ceres: Symbiosis between terrestrial observations and robotic exploration. Earth, Moon, and Planets, 101, 6591.Google Scholar
Russell, C., Raymond, C., Coradini, A., et al. (2012) Dawn at Vesta: Testing the protoplanetary paradigm. Science, 336, 684686.Google Scholar
Russell, C., Raymond, C., Ammannito, E., et al. (2016) Dawn arrives at Ceres: Exploration of a small, volatile-rich world. Science, 353, 10081010.Google Scholar
Sierks, H., Keller, H.U., Jaumann, R., et al. (2011a) The Dawn Framing Camera. Space Science Reviews, 163, 263327.Google Scholar
Sierks, H., Lamy, P., Barbieri, C., et al. (2011b) Images of asteroid 21 Lutetia: A remnant planetesimal from the early Solar System. Science, 334, 487490.Google Scholar
Sierks, H., Barbieri, C., Lamy, P.L., et al. (2015) On the nucleus structure and activity of comet 67P/Churyumov-Gerasimenko. Science, 347, aaa1044.Google Scholar
Snodgrass, C., Tubiana, C., Bramich, D., Meech, K., Boehnhardt, H., & Barrera, L. (2013) Beginning of activity in 67P/Churyumov-Gerasimenko and predictions for 2014–2015. Astronomy and Astrophysics, 557, A33.Google Scholar
Sunshine, J.M., Groussin, O., Schultz, P.H., et al. (2007) The distribution of water ice in the interior of Comet Tempel 1. Icarus, 190, 284294.Google Scholar
Tholen, D.J. & Barucci, M.A. (1989) Asteroid taxonomy. In: Asteroids II (Binzel, R., Gehrels, T., & Matthews, M.S., eds.). University of Arizona Press, Tucson, 298315.Google Scholar
Thomas, P.C., Binzel, R.P., Gaffey, M.J., Zellner, B.H., Storrs, A.D., & Wells, E. (1997) Vesta: Spin pole, size, and shape from HST images. Icarus, 128, 8894.Google Scholar
Thomas, N., Sierks, H., Barbieri, C., et al. (2015) The morphological diversity of comet 67P/Churyumov-Gerasimenko. Science, 347, aaa0440.Google Scholar
Vilas, F. (1994) A cheaper, faster, better way to detect water of hydration on Solar System bodies. Icarus, 111, 456467.Google Scholar
Vilas, F. & Gaffey, M.J. (1989) Phyllosilicate absorption features in main-belt and outer-belt asteroid reflectance spectra. Science, 246, 790792.Google Scholar

References

Barnes, J.W., Brown, R.H., Soderblom, L., et al. (2008) Spectroscopy, morphometry, and photoclinometry of Titan’s dunefields from Cassini/VIMS. Icarus, 195, 400414.Google Scholar
Barnes, J.W., Bow, J., Schwartz, J., et al. (2011) Organic sedimentary deposits in Titan’s dry lakebeds: Probable evaporite. Icarus, 216, 136140.Google Scholar
Brown, R.H., Baines, K.H., Bellucci, G., et al. (2004) The Cassini visual and infrared mapping spectrometer (VIMS) investigation. Space Science Reviews, 115, 111168.Google Scholar
Brown, R.H., Clark, R.N., Buratti, B.J., et al. (2006) Composition and physical properties of Enceladus’ surface. Science, 311, 14251428.Google Scholar
Brown, R.H., Soderblom, L.A., Soderblom, J.M., et al. (2008) The identification of liquid ethane in Titan’s Ontario Lacus. Nature, 454, 607610.Google Scholar
Brown, R.H., Lauretta, D.S., Schmidt, B., & Moores, J. (2012) Experimental and theoretical simulations of ice sublimation with implications for the chemical, isotopic, and physical evolution of icy objects. Planetary and Space Science, 60, 166180.Google Scholar
Buratti, B.J., Mosher, J.A., & Johnson, T.V. (1990) Albedo and color maps of the saturnian satellites. Icarus, 87, 339357.Google Scholar
Buratti, B.J., Cruikshank, D.P., Brown, R.H., et al. (2005) Cassini visual and infrared mapping spectrometer observations of Iapetus: Detection of CO2. The Astrophysical Journal Letters, 622, L149L152.Google Scholar
Buratti, B.J., Sotin, C., Brown, R.H., et al. (2006) Titan: Preliminary results on surface properties and photometry from VIMS observations of the early flybys. Planetary and Space Science, 54, 14981509.Google Scholar
Buratti, B.J., Bauer, J.M., Hicks, M.D., et al. (2010) Cassini spectra and photometry 0.25–5.1 μm of the small inner satellites of Saturn. Icarus, 206, 524536.Google Scholar
Clark, R.N., Brown, R.H., Jaumann, R., et al. (2005) Compositional maps of Saturn’s moon Phoebe from imaging spectroscopy. Nature, 435, 6669.Google Scholar
Clark, R.N., Curchin, J.M., Jaumann, R., et al. (2008) Compositional mapping of Saturn’s satellite Dione with Cassini VIMS and implications of dark material in the Saturn system. Icarus, 193, 372386.Google Scholar
Clark, R.N., Curchin, J.M., Barnes, J.W., et al. (2010) Detection and mapping of hydrocarbon deposits on Titan. Journal of Geophysical Research, 115, E10005, DOI:10.1029/2009JE003369.Google Scholar
Clark, R.N., Cruikshank, D.P., Jaumann, R., et al. (2012) The surface composition of Iapetus: Mapping results from Cassini VIMS. Icarus, 218, 831860.Google Scholar
Clark, R.N., Brown, R.H., & Lytle, D.M. (2016) The VIMS wavelength and radiometric calibration. NASA Planetary Data System, The Planetary Atmospheres Node, https://atmos.nmsu.edu/data_and_services/atmospheres_data/Cassini/vims_2.html.Google Scholar
Cruikshank, D.P., Owen, T.C., Dalle Ore, C., et al. (2005) A spectroscopic study of the surfaces of Saturn’s large satellites: H2O ice, tholins, and minor constituents. Icarus, 175, 268283.Google Scholar
Cruikshank, D.P., Dalton, J.B., Dalle Ore, C.M., et al. (2007) Surface composition of Hyperion. Nature, 448, 5456.Google Scholar
Cruikshank, D.P., Wegryn, E., Dalle Ore, C., et al. (2008) Hydrocarbons on Saturn’s satellites Iapetus and Phoebe. Icarus, 193, 334343.Google Scholar
Cruikshank, D.P., Meyer, A.W., Brown, R.H., et al. (2010) Carbon dioxide on the satellites of Saturn: Results from the Cassini VIMS investigation and revisions to the VIMS wavelength scale. Icarus, 206, 561572.Google Scholar
Cruikshank, D.P., Dalle Ore, C.M., Clark, R.N., & Pendleton, Y.J. (2014) Aromatic and aliphatic organic materials on Iapetus: Analysis of Cassini VIMS data. Icarus, 233, 306315.Google Scholar
Dalton, J.B. III, Cruikshank, D.P., & Clark, R.N. (2012) Compositional analysis of Hyperion with the Cassini Visual and Infrared Mapping Spectrometer. Icarus, 220, 752776.Google Scholar
Denk, T., Neukum, G., Roatsch, T., et al. (2010) Iapetus: Unique surface properties and a global color dichotomy from Cassini imaging. Science, 327, 435439.Google Scholar
Emery, J.P., Burr, D.M., Cruikshank, D.P., Brown, R.H., & Dalton, J.B. (2005) Near-infrared (0.8–4.0 µm) spectroscopy of Mimas, Enceladus, Tethys, and Rhea. Astronomy and Astrophysics, 435, 353362.Google Scholar
Filacchione, G., Capaccioni, F., Clark, R., et al. (2010) Saturn’s icy satellites investigated by Cassini–VIMS: II. Results at the end of nominal mission. Icarus, 206, 507523.Google Scholar
Filacchione, G., Capaccioni, F., Ciarniello, M., et al. (2012) Saturn’s icy satellites and rings investigated by Cassini–VIMS: III–Radial compositional variability. Icarus, 220, 10641096.Google Scholar
Filacchione, G., Capaccioni, F., Clark, R.N., et al. (2013) The radial distribution of water ice and chromophores across Saturn’s system. The Astrophysical Journal, 766, 76.Google Scholar
Gladman, B., Kavelaars, J., Holman, M., et al. (2001) Discovery of 12 satellites of Saturn exhibiting orbital clustering. Nature, 412, 163166.Google Scholar
Goguen, J.D., Buratti, B.J., Brown, R.H., et al. (2013) The temperature and width of an active fissure on Enceladus measured with Cassini VIMS during the 14 April 2012 South Pole flyover. Icarus, 226, 11281137.Google Scholar
Grav, T. & Bauer, J. (2007) A deeper look at the colors of the saturnian irregular satellites. Icarus, 191, 267285.Google Scholar
Griffith, C.A., Owen, T., Geballe, T.R., Rayner, J., & Rannou, P. (2003) Evidence for the exposure of water ice on Titan’s surface. Science, 300, 628630.Google Scholar
Hayne, P.O., McCord, T.B., & Sotin, C. (2014) Titan’s surface composition and atmospheric transmission with solar occultation measurements by Cassini VIMS. Icarus, 243, 158172.Google Scholar
Howett, C.J.A., Spencer, J.R., Schenk, P., et al. (2011) A high-amplitude thermal inertia anomaly of probable magnetospheric origin on Saturn’s moon Mimas. Icarus, 216, 221226.Google Scholar
Howett, C.J.A., Spencer, J.R., Hurford, T., Verbiscer, A., & Segura, M. (2012) PacMan returns: An electron-generated thermal anomaly on Tethys. Icarus, 221, 10841088.Google Scholar
Howett, C.J.A., Spencer, J.R., Hurford, T., Verbiscer, A., & Segura, M. (2014) Thermophysical property variations across Dione and Rhea. Icarus, 241, 239247.Google Scholar
Jewitt, D. & Haghighipour, N. (2007) Irregular satellites of the planets: Products of capture in the early Solar System. Annual Review of Astronomy and Astrophysics, 45, 261295.Google Scholar
Johnson, T.V. & Lunine, J.I. (2005) Saturn’s moon Phoebe as a captured body from the outer Solar System. Nature, 435, 6971.Google Scholar
Kokaly, R.F., Clark, R.N., Swayze, G.A., et al. (2017) USGS spectral library version 7, https://dx.doi.org/10.5066/F7RR1WDJ. https://speclab.cr.usgs.gov/spectral-lib.html. US Geological Survey.Google Scholar
McBride, N., Hillier, J., Green, S., et al. (2007) Cassini cosmic dust analyser: Composition of dust at Saturn. Workshop on Dust in Planetary Systems, 107–110.Google Scholar
McCord, T.B., Hansen, G.B., Buratti, B.J., et al. (2006) Composition of Titan’s surface from Cassini VIMS. Planetary and Space Science, 54, 15241539.Google Scholar
McCord, T.B., Hayne, P., Combe, J.-P., et al. (2008) Titan’s surface: Search for spectral diversity and composition using the Cassini VIMS investigation. Icarus, 194, 212242.Google Scholar
Paranicas, C., Roussos, E., Krupp, N., et al. (2012) Energetic charged particle weathering of Saturn’s inner satellites. Planetary and Space Science, 61, 6065.Google Scholar
Porco, C.C., Helfenstein, P., Thomas, P.C., et al. (2006) Cassini observes the active south pole of Enceladus. Science, 311, 13931401.Google Scholar
Postberg, F., Schmidt, J., Hillier, J., Kempf, S., & Srama, R. (2011) A salt-water reservoir as the source of a compositionally stratified plume on Enceladus. Nature, 474, 620622.Google Scholar
Schenk, P., Hamilton, D.P., Johnson, R.E., et al. (2011) Plasma, plumes and rings: Saturn system dynamics as recorded in global color patterns on its midsize icy satellites. Icarus, 211, 740757.Google Scholar
Schenk, P.M., Buratti, B., Byrne, P., McKinnon, W.B., Nimmo, F., & Scipioni, F. (2015) Blood stains on Tethys: Evidence of recent activity. American Geophysical Union, Fall Meeting 2015, Abstract #P21B-02.Google Scholar
Spencer, J.R., Pearl, J.C., Segura, M., et al. (2006) Cassini encounters Enceladus: Background and the discovery of a south polar hot spot. Science, 311, 14011405.Google Scholar
Squyres, S.W., Buratti, B., Veverka, J., & Sagan, C. (1984) Voyager photometry of Iapetus. Icarus, 59, 426435.Google Scholar
Tamayo, D., Burns, J.A., Hamilton, D.P., & Hedman, M.M. (2011) Finding the trigger to Iapetus’ odd global albedo pattern: Dynamics of dust from Saturn’s irregular satellites. Icarus, 215, 260278.Google Scholar
Thomas, P.C., Burns, J.A., Hedman, M., et al. (2013) The inner small satellites of Saturn: A variety of worlds. Icarus, 226, 9991019.Google Scholar
Verbiscer, A.J., Peterson, D.E., Skrutskie, M.F., et al. (2006) Near-infrared spectra of the leading and trailing hemispheres of Enceladus. Icarus, 182, 211223.Google Scholar
Verbiscer, A.J., French, R., Showalter, M., & Helfenstein, P. (2007) Enceladus: Cosmic graffiti artist caught in the act. Science, 315, 815817.Google Scholar
Verbiscer, A.J., Skrutskie, M.F., & Hamilton, D.P. (2009) Saturn’s largest ring. Nature, 461, 10981100.Google Scholar

References

Bertrand, T. & Forget, F. (2016) Observed glacier and volatile distribution on Pluto from atmosphere–topography processes. Nature, 540, 8689.Google Scholar
Bertrand, T., Forget, F., Umurhan, O., et al. (2018) The nitrogen cycles on Pluto over seasonal and astronomical timescales. Icarus, 309, 277296.Google Scholar
Bertrand, T., Forget, F., Umurhan, O.M., et al. (2019) The methane cycles on Pluto over seasonal and astronomical timescales. Icarus, 329, 148165.Google Scholar
Binzel, R.P., Earle, A.M., Buie, M.W., et al. (2017) Climate zones on Pluto and Charon. Icarus, 287, 3036.Google Scholar
Brown, M.E. & Calvin, W.M. (2000) Evidence for crystalline water and ammonia ices on Pluto’s satellite Charon. Science, 287, 107109.Google Scholar
Buie, M.W. & Grundy, W.M. (2000) The distribution and physical state of H2O on Charon. Icarus, 148, 324339.Google Scholar
Buie, M.W., Cruikshank, D.P., Lebofsky, L.A., & Tedesco, E.F. (1987) Water frost on Charon. Nature, 329, 522523.Google Scholar
Buratti, B.J., Hofgartner, J.D., Hicks, M.D., et al. (2017) Global albedos of Pluto and Charon from LORRI New Horizons observations. Icarus, 287, 207217.Google Scholar
Cheng, A.F., Summers, M.E., Gladstone, G.R., et al. (2017) Haze in Pluto’s atmosphere. Icarus, 290, 112133.Google Scholar
Cook, J.C., Desch, S.J., Roush, T.L., Trujillo, C.A., & Geballe, T.R. (2007) Near-infrared spectroscopy of Charon: Possible evidence for cryovolcanism on Kuiper belt objects. The Astrophysical Journal, 663, 14061419.Google Scholar
Cook, J.C., Dalle Ore, C.M., Binzel, R.P., et al. (2017) Mapping Charon at 2.21 microns. 48th Lunar Planet. Sci. Conf., Abstract #2236.Google Scholar
Cook, J.C., Dalle Ore, C.M., Protopapa, S., et al. (2018) Composition of Pluto’s small satellites: Analysis of New Horizons spectral images. Icarus, 315, 3045.Google Scholar
Cruikshank, D.P. & Sheehan, W. (2018) Discovering Pluto: Exploration at the edge of the Solar System. University of Arizona Press, Tucson.Google Scholar
Cruikshank, D.P. & Silvaggio, P.M. (1980) The surface and atmosphere of Pluto. Icarus, 41, 96102.Google Scholar
Cruikshank, D.P., Pilcher, C.B., & Morrison, D. (1976) Pluto: Evidence for methane frost. Science, 835837.Google Scholar
Cruikshank, D.P., Grundy, W.M., DeMeo, F.E., et al. (2015) The surface compositions of Pluto and Charon. Icarus, 246, 8292.Google Scholar
Cruikshank, D.P., Materese, C.K., Pendleton, Y.J., et al. (2019a) Prebiotic chemistry of Pluto. Astrobiology, 17(7).Google Scholar
Cruikshank, D.P., Umurhan, O.M., Beyer, R.A., et al. (2019b) Recent cryovolcanism in Virgil Fossae on Pluto. Icarus, 330, 155168.Google Scholar
Dalle Ore, C.M., Protopapa, S., Cook, J.C., et al. (2018) Ices on Charon: Distribution of H2O and NH3 from New Horizons LEISA observations. Icarus, 300, 2132.Google Scholar
Dalle Ore, C.M., Cruikshank, D.P., Protopapa, S., et al. (2019) Detection of ammonia on Pluto’s surface in a region of geologically recent tectonism. Science Advances, 5, eaav5731.Google Scholar
Douté, S., Schmitt, B., Quirico, E., et al. (1999) Evidence for methane segregation at the surface of Pluto. Icarus, 142, 421444.Google Scholar
Elliot, J.L., Dunham, E., Bosh, A., et al. (1989) Pluto’s atmosphere. Icarus, 77, 148170.Google Scholar
Gao, P., Fan, S., Wong, M.L., et al. (2017) Constraints on the microphysics of Pluto’s photochemical haze from New Horizons observations. Icarus, 287, 116123.Google Scholar
Grundy, W.M., Olkin, C.B., Young, L.A., Buie, M.W., & Young, E.F. (2013) Near-infrared spectral monitoring of Pluto’s ices: Spatial distribution and secular evolution. Icarus, 223, 710721.Google Scholar
Grundy, W.M., Olkin, C.B., Young, L.A., & Holler, B.J. (2014) Near-infrared spectral monitoring of Pluto’s ices II: Recent decline of CO and N2 ice absorptions. Icarus, 235, 220224.Google Scholar
Grundy, W.M., Cruikshank, D.P., Gladstone, G.R., et al. (2016) The formation of Charon’s red poles from seasonally cold-trapped volatiles. Nature, 539, 6568.Google Scholar
Grundy, W.M., Bertrand, T., Binzel, R.P., et al. (2018) Pluto’s haze as a surface material. Icarus, 314, 232245.Google Scholar
Lewis, J.S. (1972) Low temperature condensation from the solar nebula. Icarus, 16, 241252.Google Scholar
Marcialis, R.L., Rieke, G.H., & Lebofsky, L.A. (1987) The surface composition of Charon: Tentative identification of water ice. Science, 237, 13491351.Google Scholar
Materese, C.K., Cruikshank, D.P., Sandford, S.A., Imanaka, H., Nuevo, M., & White, D.W. (2014) Ice chemistry on outer Solar System bodies: Carboxylic acids, nitriles, and urea detected in refractory residues produced from the UV-photolysis of N2:CH4:CO-containing ices. Astrophysical Journal, 788, 111.Google Scholar
Materese, C.K., Cruikshank, D.P., Sandford, S.A., Imanaka, H., & Nuevo, M. (2015) Ice chemistry on outer Solar System bodies: Electron radiolysis of N2-CH4- and CO- containing ices. Astrophysical Journal, 812, 150.Google Scholar
Moore, J.M., Howard, A.D., Umurhan, O.M., et al. (2018) Bladed terrain on Pluto: Possible origins and evolution. Icarus, 300, 129144.Google Scholar
Olkin, C.B., Young, E.F., Young, L.A., et al. (2007) Pluto’s spectrum from 1.0–4.2µm: Implications for surface properties. Astronomical Journal, 133, 420431.Google Scholar
Olkin, C., Spencer, J.R., Grundy, W.M., et al. (2017) The global color of Pluto from New Horizons. Astronomical Journal, 154, 258, DOI:10.3847/1538-3881/aa965b.Google Scholar
Owen, T.C., Roush, T.L., Cruikshank, D.P., et al. (1993) Surface ices and the atmospheric composition of Pluto. Science, 261, 745748.Google Scholar
Prokhvatilov, A. & Yantsevich, L. (1983) X-ray investigation of the equilibrium phase diagram of CH4-N2 solid mixtures. Soviet Journal of Low Temperature Physics, 9, 9498.Google Scholar
Protopapa, S., Boehnhardt, H., Herbst, T., et al. (2008) Surface characterization of Pluto and Charon by L and M band spectra. Astronomy & Astrophysics, 490, 365375.Google Scholar
Protopapa, S., Grundy, W., Tegler, S., & Bergonio, J. (2015) Absorption coefficients of the methane–nitrogen binary ice system: Implications for Pluto. Icarus, 253, 179188.Google Scholar
Protopapa, S., Grundy, W.M., Reuter, D.C., et al. (2017) Pluto’s global surface composition through pixel-by-pixel Hapke modeling of New Horizons Ralph/LEISA data. Icarus, 287, 218228.Google Scholar
Quirico, E. & Schmitt, B. (1997a) A spectroscopic study of CO diluted in N2 ice: Applications for Triton and Pluto. Icarus, 128, 181188.Google Scholar
Quirico, E. & Schmitt, B. (1997b) Near-infrared spectroscopy of simple hydrocarbons and carbon oxides diluted in solid N2 and as pure ices: Implications for Triton and Pluto. Icarus, 127, 354378.Google Scholar
Quirico, E., Schmitt, B., Bini, R., & Salvi, P.R. (1996) Spectroscopy of some ices of astrophysical interest: SO2, N2 and N2: CH4 mixtures. Planetary and Space Science, 44, 973986.Google Scholar
Reuter, D.C., Stern, S.A., Scherrer, J., et al. (2008) Ralph: A visible/infrared imager for the New Horizons Pluto/Kuiper Belt mission. Space Science Reviews, 140, 129154.Google Scholar
Schenk, P., Beyer, R.A., McKinnon, W.B., et al. (2018) Basins, fractures and volcanoes: Global cartography and topography of Pluto from New Horizons. Icarus, 314, 400433.Google Scholar
Schmitt, B., Philippe, S., Grundy, W., et al. (2017) Physical state and distribution of materials at the surface of Pluto from New Horizons LEISA imaging spectrometer. Icarus, 287, 229260.Google Scholar
Scott, T.A. (1976) Solid and liquid nitrogen. Physics Reports, 27, 89157.Google Scholar
Showalter, M. & Hamilton, D. (2015) Resonant interactions and chaotic rotation of Pluto’s small moons. Nature, 522, 4549.Google Scholar
Soifer, B.T., Neugebauer, G., & Matthews, K. (1980) The 1.5–2.5 µm spectrum of Pluto. Astronomical Journal, 85, 166167.Google Scholar
Spencer, J.R., Stern, A., Olkin, C., et al. (2016) The colors of Pluto: Clues to its geological evolution and surface/atmospheric interactions. AGU Fall Meeting, Abstract #P54A-01.Google Scholar
Stern, S.A., Bagenal, F., Ennico, K., et al. (2015) The Pluto system: Initial results from its exploration by New Horizons. Science, 350, aad1815.Google Scholar
Stern, S.A., Binzel, R.P., Earle, A.M., et al. (2017) Past epochs of significantly higher pressure atmospheres on Pluto. Icarus, 287, 4753.Google Scholar
Weaver, H.A., Buie, M.W., Buratti, B.J., et al. (2016) The small satellites of Pluto as observed by New Horizons. Science, 351, aae0030.Google Scholar
Young, L.A. (1994) Bulk properties and atmospheric structure of Pluto and Charon. PhD thesis, Massachusetts Institute of Technology.Google Scholar
Young, L.A., Elliot, J., Tokunaga, A., de Bergh, C., & Owen, T. (1997) Detection of gaseous methane on Pluto. Icarus, 127, 258262.Google Scholar

References

Ackiss, S., Horgan, B., Seelos, F., Farrand, W., & Wray, J. (2018) Mineralogical evidence for subglacial volcanoes in the Sisyphi Montes region of Mars. Icarus, 311, 357370.Google Scholar
Adams, J. (1974) Visible and near-infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the solar system. Journal of Geophysical Research, 79, 48294836.Google Scholar
Al-Samir, M., Nabhan, S., Fritz, J., et al. (2017) The paleolacustrine evolution of Juventae Chasma and Maja Valles with implications for the formation of interior layered deposits on Mars. Icarus, 292, 125143.Google Scholar
Andrews-Hanna, J.C., Phillips, R.J., & Zuber, M.T. (2007) Meridiani Planum and the global hydrology of Mars. Nature, 446, 163166.Google Scholar
Arvidson, R.E., Poulet, F., Bibring, J.-P., et al. (2005) Spectral reflectance and morphologic correlations in eastern Terra Meridiani, Mars. Science, 307, 15911594.Google Scholar
Arvidson, R.E., Poulet, F., Morris, R.V., et al. (2006) Nature and origin of the hematite-bearing plains of Terra Meridiani based on analyses of orbital and Mars Exploration Rover data sets. Journal of Geophysical Research, 111, E12S08, DOI:10.1029/2006JE002728.Google Scholar
Arvidson, R.E., Ruff, S.W., Morris, R.V., et al. (2008) Spirit Mars rover mission to the Columbia Hills, Gusev crater: Mission overview and selected results from the Cumberland Ridge to Home Plate. Journal of Geophysical Research, 113, E12S33, DOI:10.1029/2008JE003183.Google Scholar
Arvidson, R.E., Bell, J.F. III, Bellutta, P., et al. (2010) Spirit Mars rover mission: Overview and selected results from the northern Home Plate Winter Haven to the side of Scamander crater. Journal of Geophysical Research, 115, E00F03, DOI:10.1029/2010JE003633.Google Scholar
Arvidson, R.E., Squyres, S.W., Bell, J.F. III, et al. (2014) Ancient aqueous environments at Endeavour crater, Mars. Science, 343, 1248097, DOI:10.1126/science.1248097.Google Scholar
Arvidson, R.E., Bell, J.F. III, Catalano, J.G., et al. (2015) Mars Reconnaissance Orbiter and Opportunity observations of the Burns formation: Crater hopping at Meridiani Planum. Journal of Geophysical Research, 120, 429451.Google Scholar
Bandfield, J.L., Hamilton, V.E., & Christensen, P.R. (2000) A global view of martian surface compositions from MGS-TES. Science, 287, 16261630.Google Scholar
Baratoux, D., Toplis, M. J., Monnereau, M., & Sautter, V. (2013) The petrological expression of early Mars volcanism. Journal of Geophysical Research, 118, 5964.Google Scholar
Bell, J.F. III, McCord, T.B., & Owensby, P.D. (1990) Observational evidence of crystalline iron oxides on Mars. Journal of Geophysical Research, 95, 1444714461.Google Scholar
Bell, J.F. III, Morris, R.V., & Adams, J.B. (1993) Thermally altered palagonitic tephra: A spectral and process analog to the soil and dust of Mars. Journal of Geophysical Research, 98, 33733385.Google Scholar
Bibring, J.-P., Langevin, Y., Soufflot, A., et al. (1989) Results from the ISM experiment. Nature, 341, 591593.Google Scholar
Bibring, J.-P., Soufflot, A., Berthé, M., et al. (2004a) OMEGA: Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité. In: Mars Express: The scientific payload (Wilson, A., ed.). ESA SP-1240. ESA Publications Division, Noordwijk, Netherlands, 3749.Google Scholar
Bibring, J.-P., Langevin, Y., Poulet, F., et al. (2004b) Perennial water ice identified in the south polar cap of Mars. Nature, 428, 627630.Google Scholar
Bibring, J.-.P, Langevin, Y., Gendrin, A., et al. & OMEGA team (2005) Mars surface diversity as revealed by the OMEGA/Mars Express observations. Science, 307, 15761581.Google Scholar
Bibring, J.-P, Langevin, Y., Mustard, J.F., et al. (2006) Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. Science, 312, 400404, DOI:10.1126/science.1122659.Google Scholar
Bibring, J.-P., Arvidson, R.E., Gendrin, A., et al. (2007) Coupled ferric oxides and sulfates on the martian surface. Science, 317, 12061209.Google Scholar
Bish, D.L., Blake, D.F., Vaniman, D.T., et al. & Science Team, MSL (2013) X-ray diffraction results from Mars Science Laboratory: Mineralogy of Rocknest at Gale crater. Science, 341, 1238932.Google Scholar
Bishop, J.L. & Rampe, E.B. (2016) Evidence for a changing martian climate from the mineralogy at Mawrth Vallis. Earth and Planetary Science Letters, 448, 4248.Google Scholar
Bishop, J.L., Noe Dobrea, E.Z., McKeown, N.K., et al. (2008) Phyllosilicate diversity and past aqueous activity revealed at Mawrth Vallis, Mars. Science, 321, 830833.Google Scholar
Bishop, J.L., Parente, M., Weitz, C.M., et al. (2009) Mineralogy of Juventae Chasma: Sulfates in the light-toned mounds, mafic minerals in the bedrock, and hydrated silica and hydroxylated ferric sulfate on the plateau. Journal of Geophysical Research, 114, E00D09, DOI:10.1029/2009JE003352.Google Scholar
Bishop, J.L., Tirsch, D., Tornabene, L.L., et al. (2013a) Mineralogy and morphology of geologic units at Libya Montes, Mars: Ancient aqueous outcrops, mafic flows, fluvial features and impacts. Journal of Geophysical Research, 118, 487513.Google Scholar
Bishop, J.L., Loizeau, D., McKeown, N.K., et al. (2013b) What the ancient phyllosilicates at Mawrth Vallis can tell us about possible habitability on early Mars. Planetary and Space Science, 86, 130149.Google Scholar
Bishop, J.L., Gross, C., Rampe, E.B., et al. (2016) Mineralogy of layered outcrops at Mawrth Vallis and implications for early aqueous geochemistry on Mars. 47th Lunar Planet. Sci. Conf., Abstract #1332.Google Scholar
Bishop, J.L., Michalski, J.R., & Carter, J. (2017) Remote detection of clay minerals. In: Infrared and Raman spectroscopies of clay minerals (Gates, W.P., Kloprogge, J.T., Madejová, J., & Bergaya, F., eds.). Elsevier, the Netherlands, 482514.Google Scholar
Brown, A.J., Byrne, S., Tornabene, L.L., & Roush, T. (2008) Louth crater: Evolution of a layered water ice mound. Icarus, 196, 433445.Google Scholar
Brown, A.J., Calvin, W.M., McGuire, P.C., & Murchie, S.L. (2010a) Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) south polar mapping: First Mars year of observations. Journal of Geophysical Research, 115, E00D13, DOI:10.1029/2009JE003333.Google Scholar
Brown, A.J., Hook, S.J., Baldridge, A.M., et al. (2010b) Hydrothermal formation of clay-carbonate alteration assemblages in the Nili Fossae region of Mars. Earth and Planetary Science Letters, 297, 174182.Google Scholar
Brown, A.J., Calvin, W.M., & Murchie, S.L. (2012) Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) north polar springtime recession mapping: First 3 Mars years of observations. Journal of Geophysical Research, 117, E00J20, DOI:10.1029/2012JE004113.Google Scholar
Brown, A.J., Piqueux, S., & Titus, T.N. (2014) Interannual observations and quantification of summertime H2O ice deposition on the martian CO2 ice south polar cap. Earth and Planetary Science Letters, 406, 102109.Google Scholar
Brown, A.J., Calvin, W.M., Becerra, P., & Byrne, S. (2016) Martian north polar cap summer water cycle. Icarus, 277, 401415.Google Scholar
Buczkowski, D.L., Murchie, S., Clark, R., et al. (2010) Investigation of an Argyre basin ring structure using Mars Reconnaissance Orbiter/Compact Reconnaissance Imaging Spectrometer for Mars. Journal ofGeophysical Research, 115, E12011, DOI:10.1029/2009JE003508.Google Scholar
Bultel, B., Quantin-Nataf, C., Andréani, M., Clénet, H., & Lozac’h, L. (2015) Deep alteration between Hellas and Isidis basins. Icarus, 260, 141160.Google Scholar
Calvin, W.M., Roach, L.H., Seelos, F.P., et al. (2009) Compact Reconnaissance Imaging Spectrometer for Mars observations of northern martian latitudes in summer. Journal of Geophysical Research, 114, E00D11, DOI:10.1029/2009JE003348.Google Scholar
Cannon, K.M. & Mustard, J.F. (2015) Preserved glass-rich impactites on Mars. Geology, 43, 635638.Google Scholar
Carr, M.H. & Head, J.W. (2010) Geologic history of Mars. Earth and Planetary Science Letters, 294, 185203.Google Scholar
Carter, J. & Poulet, F. (2013) Ancient plutonic processes on Mars inferred from the detection of possible anorthositic terrains. Nature Geoscience, 6, 10081012.Google Scholar
Carter, J., Poulet, F., Bibring, J.-P., & Murchie, S. (2010) Discovery of hydrated silicates in crustal outcrops in the northern plains of Mars. Science, 328, 1682–1686.Google Scholar
Carter, J., Poulet, F., Bibring, J.-P., Mangold, N., & Murchie, S. (2013) Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: Updated global view. Journal of Geophysical Research, 118, 831858.Google Scholar
Carter, J., Loizeau, D., Mangold, N., Poulet, F., & Bibring, J.-P. (2015) Widespread surface weathering on early Mars: A case for a warmer and wetter climate. Icarus, 248, 373382.Google Scholar
Cheek, L.C. & Pieters, C.M. (2012) Variations in anorthosite purity at Tsiolkovsky crater on the Moon. 43rd Lunar Planet. Sci. Conf., Abstract #2624.Google Scholar
Chojnacki, M., Burr, D.M., & Moersch, J.E. (2014a) Valles Marineris dune fields as compared with other martian populations: Diversity of dune compositions, morphologies, and thermophysical properties. Icarus, 230, 96142.Google Scholar
Chojnacki, M., Burr, D.M., Moersch, J.E., & Wray, J.J. (2014b) Valles Marineris dune sediment provenance and pathways. Icarus, 232, 187219.Google Scholar
Christensen, P.R., Bandfield, J.L., Hamilton, V.E., et al. (2001) Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results. Journal of Geophysical Research, 106, 23,82323,871.Google Scholar
Christensen, P.R., Jakosky, B.M., Kieffer, H.H., et al. (2004) The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey mission. Space Science Reviews, 110, 85130.Google Scholar
Clancy, R.T., Lee, S.W., Gladstone, G.R., McMillan, W.W., & Roush, T. (1995) A new model for Mars atmospheric dust based upon analysis of ultraviolet through infrared observations from Mariner 9, Viking, and Phobos. Journal of Geophysical Research, 100, 52515263.Google Scholar
Clancy, R.T., Sandor, B.J., Wolff, M.J., et al. (2012) Extensive MRO CRISM observations of 1.27 μm O2 airglow in Mars polar night and their comparison to MRO MCS temperature profiles and LMD GCM simulations. Journal of Geophysical Research, 117, E00J10, DOI:10.1029/2011JE004018.Google Scholar
Clancy, R.T., Sandor, B.J., García-Muñoz, A., et al. (2013) First detection of Mars atmospheric hydroxyl: CRISM Near-IR measurement versus LMD GCM simulation of OH Meinel band emission in the Mars polar winter atmosphere. Icarus, 226, 272281.Google Scholar
Clancy, R.T., Smith, M.D., Lefèvre, F., et al. (2017) Vertical profiles of Mars 1.27 μm O2 dayglow from MRO CRISM limb spectra: Seasonal/global behaviors, comparisons to LMDGCM simulations, and a global definition for Mars water vapor profiles. Icarus, 293, 132156.Google Scholar
Clark, R.N. & Roush, T.L. (1984) Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications. Journal of Geophysical Research, 89, 63296340.Google Scholar
Clark, R.N., King, T.V.V., Klejwa, M., Swayze, G.A., & Vergo, N. (1990) High spectral resolution reflectance spectroscopy of minerals. Journal of Geophysical Research, 95, 12,65312,680.Google Scholar
Clark, R.N., Swayze, G.A., Murchie, S.L., Seelos, F.P., Seelos, K., & Viviano-Beck, C.E. (2015) Mineral and other materials mapping of CRISM data with Tetracorder 5. 46th Lunar Planet. Sci. Conf., Abstract #2410.Google Scholar
Cloutis, E. & Gaffey, M. (1991) Pyroxene spectroscopy revisited: Spectral-compositional correlations and relationship to geothermometry. Journal of Geophysical Research, 96, 22,80922,826.Google Scholar
Cloutis, E.A., Hawthorne, F.C., Mertzman, S.A., et al. (2006) Detection and discrimination of sulfate minerals using reflectance spectroscopy. Icarus, 184, 121157.Google Scholar
Cull, S., Arvidson, R.E., Morris, R.V., Wolff, M., Mellon, M.T., & Lemmon, M.T. (2010) The seasonal ice cycle at the Mars Phoenix landing site: II. Post-landing CRISM and ground observations. Journal of Geophysical Research, 115, E00E19, DOI:10.1029/2009JE003410.Google Scholar
Dehouck, E., Mangold, N., Le Mouélic, S., Ansan, V., & Poulet, F. (2010) Ismenius Cavus, Mars: A deep paleolake with phyllosilicate deposits. Planetary and Space Science, 58, 941946.Google Scholar
Dickson, J.L., Head, J.W., Levy, J.S., & Marchant, D.R. (2013) Don Juan Pond, Antarctica: Near-surface CaCl2-brine feeding Earth’s most saline lake and implications for Mars. Scientific Reports, 3, 1166, DOI:10.1038/srep01166.Google Scholar
Ding, N., Bray, V.J., McEwen, A.S., et al. (2015) The central uplift of Ritchey crater, Mars. Icarus, 252, 255270.Google Scholar
Edwards, C.S. & Ehlmann, B.L. (2015) Carbon sequestration on Mars. Geology, 43, 863866.Google Scholar
Ehlmann, B.L. & Dundar, M. (2015) Are Noachian/Hesperian acidic waters key to generating Mars’ regional-scale aluminum phyllosilicates? The importance of jarosite co-occurrences with Al-phyllosilicate units. 46th Lunar Planet. Sci. Conf., Abstract #1635.Google Scholar
Ehlmann, B.L. & Edwards, C.S. (2014) Mineralogy of the martian surface. Annual Review of Earth Planetary of Science, 42, 291315.Google Scholar
Ehlmann, B.L., Mustard, J., Murchie, S., et al. (2008a) Orbital identification of carbonate-bearing rocks on Mars. Science, 322, 18281832.Google Scholar
Ehlmann, B.L., Mustard, J.F., Fassett, C.I., et al. (2008b) Clay-bearing minerals and organic preservation potential in sediments from a martian delta environment, Jezero crater, Nili Fossae, Mars. Nature Geoscience, 1, 355358.Google Scholar
Ehlmann, B.L., Mustard, J.F., Swayze, G.A., et al. (2009) Identification of hydrated silicate minerals on Mars using MRO-CRISM: Geologic context near Nili Fossae and implications for aqueous alteration. Journal of Geophysical Research, 114, E00D08, DOI:10.1029/2009JE003339.Google Scholar
Ehlmann, B.L., Mustard, J.F., & Murchie, S.L. (2010) Geologic setting of serpentine deposits on Mars. Geophysical Research Letters, 37, 610, DOI:10.1029/2010GL042596.Google Scholar
Ehlmann, B.L., Mustard, J.F., Murchie, S.L., et al. (2011a) Aqueous environments during Mars’ first billion years: Evidence from the clay mineral record. Nature, 479, 5360.Google Scholar
Ehlmann, B.L., Mustard, J.F., Clark, R.N., Swayze, G.A., & Murchie, S.L. (2011b) Evidence for low-grade metamorphism, hydrothermal alteration, and diagenesis on Mars from phyllosilicate mineral assemblages. Clays & Clay Minerals, 59, 359377.Google Scholar
Ehlmann, B.L., Swayze, G.A., Milliken, R.E., et al. (2016) Discovery of alunite in Cross crater, Terra Sirenum, Mars: Evidence for acidic, sulfurous waters. American Mineralogist, 101, 15271542.Google Scholar
Erard, S. (2001) A spectrophotometric model of Mars in the near-infrared. Geophysical Research Letters, 28, 12911294.Google Scholar
Erard, S. & Calvin, W. (1997) New composite spectra of Mars, 0.4–5.7 µm. Icarus, 130, 449460.Google Scholar
Farrand, W.H., Glotch, T.D., Rice, J.W., Hurowitz, J.A., & Swayze, G.A. (2009) Discovery of jarosite within the Mawrth Vallis region of Mars: Implications for the geologic history of the region. Icarus, 204, 478488.Google Scholar
Fastook, J.L. & Head, J.W. (2015) Glaciation in the Late Noachian Icy Highlands: Ice accumulation, distribution, flow rates, basal melting, and top-down melting rates and patterns. Planetary and Space Science, 106, 8298.Google Scholar
Fischer, E. & Pieters, C. (1993) The continuum slope of Mars: Bidirectional reflectance investigations and applications to Olympus Mons. Icarus, 102, 185202.Google Scholar
Fischer, E., Martínez, G.M., & Rennó, N.O. (2016) Formation and persistence of brine on Mars: Experimental simulations throughout the diurnal cycle at the Phoenix landing site. Astrobiology, 16, 937948.Google Scholar
Flahaut, J., Mustard, J.F., Quantin, C., Clenet, H., Allemand, P., & Thomas, P. (2011) Dikes of distinct composition intruded into Noachian-aged crust exposed in the walls of Valles Marineris. Geophysical Research Letters, 38, L15202, DOI:10.1029/2011GL048109.Google Scholar
Flahaut, J., Quantin, C., Clenet, H., Allemand, P., Mustard, J., & Thomas, P. (2012) Noachian crust and key geologic transitions in the lower walls of Valles Marineris: Insights into early igneous processes on Mars. Icarus, 221, 420435.Google Scholar
Flahaut, J., Carter, J., Poulet, F., et al. (2015) Embedded clays and sulfates in Meridiani Planum, Mars. Icarus, 248, 269288.Google Scholar
Fox, V.K., Arvidson, R.E., Guinness, E.A., et al. (2016) Smectite deposits in Marathon Valley, Endeavour crater, Mars, identified using CRISM hyperspectral reflectance data. Geophysical Research Letters, 43, 48854892.Google Scholar
Fraeman, A.A., Arvidson, R.E., Catalano, J.G., et al. (2013) A hematite-bearing layer in Gale crater, Mars: Mapping and implications for past aqueous conditions. Geology, 41, 11031106.Google Scholar
Frey, H.V., Frey, E.L., Hartmann, W.K., & Tanaka, K.L. (2003) Evidence for buried “pre-Noachian” crust pre-dating the oldest observed surface units on Mars. 34th Lunar Planet. Sci. Conf., Abstract #1848.Google Scholar
Gendrin, A., Mangold, N., Bibring, J.-P., et al. (2005a) Sulfates in martian layered terrains: The OMEGA/Mars Express view. Science, 307, 15871591.Google Scholar
Gendrin, A., Bibring, J.-P., Mustard, J.F., et al. & OMEGA Team (2005b) Identification of predominant ferric signatures in association to the martian sulfate deposits. 36th Lunar Planet. Sci. Conf., Abstract #1378.Google Scholar
Ghatan, G.J. & Head, J.W. III (2002) Candidate subglacial volcanoes in the south polar region of Mars: Morphology, morphometry, and eruption conditions. Journal of Geophysical Research, 107, 5048, DOI:10.1029/2001JE001519.Google Scholar
Glotch, T.D., Bandfield, J.L., Tornabene, L.L., Jensen, H.B., & Seelos, F.P. (2010) Distribution and formation of chlorides and phyllosilicates in Terra Sirenum, Mars. Geophysical Research Letters, 37, L16202, DOI:10.1029/2010GL044557.Google Scholar
Glotch, T.D., Bandfield, J.L., Wolff, M.J., Arnold, J.A., & Che, C. (2016) Constraints on the composition and particle size of chloride salt-bearing deposits on Mars. Journal of Geophysical Research, 121, 454471.Google Scholar
Goudge, T.A., Head, J.W., Mustard, J.F., & Fassett, C.I. (2012) An analysis of open-basin lake deposits on Mars: Evidence for the nature of associated lacustrine deposits and post-lacustrine modification processes. Icarus, 219, 211229.Google Scholar
Grant, J.A., Irwin, R.P. III, Grotzinger, J.P., et al. (2008) HiRISE imaging of impact megabreccia and sub-meter aqueous strata in Holden crater, Mars. Geology, 36, 195198.Google Scholar
Griffes, J.L., Arvidson, R.E., Poulet, F., & Gendrin, A. (2007) Geologic and spectral mapping of etched terrain deposits in northern Meridiani Planum. Journal of Geophysical Research, 112, E08S09, DOI:10.1029/2006JE002811.Google Scholar
Grindrod, P.M., West, M., Warner, N.H., & Gupta, S. (2012) Formation of an Hesperian-aged sedimentary basin containing phyllosilicates in Coprates Catena, Mars. Icarus, 218, 178195.Google Scholar
Grotzinger, J.P., Crisp, J., Vasavada, A.R., et al. (2012) Mars Science Laboratory mission and science investigation. Space Science Reviews, 170, 5–6.Google Scholar
Guzewich, S.D., Smith, M.D., & Wolff, M.J. (2014) The vertical distribution of martian aerosol particle size. Journal of Geophysical Research, 119, 26942708.Google Scholar
Hamilton, V.E. & Christensen, P.R. (2005) Evidence for extensive, olivine-rich bedrock on Mars. Geology, 33, 433436.Google Scholar
Hanley, J. & Horgan, B. (2016) A novel method to remotely sense martian chlorine salts. 47th Lunar Planet. Sci. Conf., Abstract #2983.Google Scholar
Hecht, M.H., Kounaves, S.P., Quinn, R.C., et al. (2009) Detection of perchlorate and the soluble chemistry of martian soil at the Phoenix lander site. Science, 325, 6467.Google Scholar
Horgan, B.H. & Bell, J.F. III (2012) Widespread weathered glass on the surface of Mars. Geology, 40, 391394.Google Scholar
Horgan, B.H., Bell, J.F. III, Noe Dobrea, E.Z., et al. (2009) Distribution of hydrated minerals in the north polar region of Mars. Journal Geophysical Research, 114, E01005, DOI:10.1029/2008JE003187.Google Scholar
Houck, J., Pollack, J., Sagan, C., Schaak, D., & Decker, J. (1973) High altitude spectroscopic evidence for bound water on Mars. Icarus, 18, 470480.Google Scholar
Hunt, G.R. & Salisbury, J.W. (1971a) Visible and near infrared spectra of minerals and rocks. II. Carbonates. Modern Geology, 2, 2330.Google Scholar
Hunt, G. & Salisbury, J. (1971b) Visible and infrared spectra of minerals and rocks. IV: Sulphides and sulphates. Modern Geology, 3, 1–14.Google Scholar
Hynek, B.M., Osterloo, M.K., & Kierein-Young, K.S. (2015) Late-stage formation of martian chloride salts through ponding and evaporation. Geology, 43, 787790.Google Scholar
Jain, N. & Chauhan, P. (2015) Study of phyllosilicates and carbonates from the Capri Chasma region of Valles Marineris on Mars based on Mars Reconnaissance Orbiter-Compact Reconnaissance Imaging Spectrometer for Mars (MRO-CRISM) observations. Icarus, 250, 717.Google Scholar
Jensen, H.B. & Glotch, T.D. (2011) Investigation of the near-infrared spectral character of putative martian chloride deposits. Journal of Geophysical Research, 116, E00J03, DOI:10.1029/2011JE003887.Google Scholar
Kite, E.S., Halevy, I., Kahre, M.A., Wolff, M.J., & Manga, M. (2013) Seasonal melting and the formation of sedimentary rocks on Mars, with predictions for the Gale crater mound. Icarus, 223, 181210.Google Scholar
Komatsu, G., Geissler, P.E., Strom, R.G., & Singer, R.B. (1993) Stratigraphy and erosional landforms of layered deposits in Valles Marineris, Mars. Journal of Geophysical Research, 98, 11,105–11,121.Google Scholar
Kreisch, C.D., O’Sullivan, J.A., Arvidson, R.E., et al. (2016) Regularization of Mars Reconnaissance Orbiter CRISM along-track oversampled hyperspectral imaging observations of Mars, Icarus, 282, 136–151.Google Scholar
Langevin, Y., Poulet, F., Bibring, J.-P., Schmitt, B., Douté, S., & Gondet, B. (2005) Summer evolution of the north polar cap of Mars as observed by OMEGA/Mars Express. Science, 307, 15811584.Google Scholar
Langevin, Y., Bibring, J.-P., Montmessin, F., et al. (2007) Observations of the south seasonal cap of Mars during recession in 2004–2006 by the OMEGA visible/near-infrared imaging spectrometer on board Mars Express. Journal of Geophysical Research, 112, E08S12, DOI:10.1029/2006JE002841.Google Scholar
Leask, E., Ehlmann, B., Dundar, M., Murchie, S., & Seelos, F. (2018) Challenges in the search for perchlorate and other hydrated minerals with 2.1-μm absorptions on Mars. Geophysical Research Letters, 45, 12,18012,189.Google Scholar
Le Deit, L., Flahaut, J., Quantin, C., et al. (2012) Extensive surface pedogenic alteration of the martian Noachian crust suggested by plateau phyllosilicates around Valles Marineris. Journal of Geophysical Research, 117, E00J05, DOI:10.1029/2011JE003983.Google Scholar
Lichtenberg, K., Arvidson, R., Morris, R., et al. (2010) Stratigraphy of hydrated sulfates in the sedimentary deposits of Aram Chaos, Mars. Journal of Geophysical Research, 115, E00D17, DOI:10.1029/2009JE003353.Google Scholar
Liu, Y., Arvidson, R.E., Wolff, M.J., et al. (2012) Lambert albedo retrieval and analyses over Aram Chaos from OMEGA hyperspectral imaging data. Journal of Geophysical Research, 117, E00J11, DOI:10.1029/2012JE004056.Google Scholar
Liu, Y., Glotch, T.D., Scudder, N.A., et al. (2016) End-member identification and spectral mixture analysis of CRISM hyperspectral data: A case study on southwest Melas Chasma, Mars. Journal of Geophysical Research, 121, 20042036.Google Scholar
Loizeau, D., Mangold, N., Poulet, F., et al. (2007) Phyllosilicates in the Mawrth Vallis region of Mars. Journal of Geophysical Research, 112, DOI:10.1029/2006JE002877.Google Scholar
Loizeau, D., Carter, J., Bouley, S., et al. (2012) Characterization of hydrated silicate-bearing outcrops in Tyrrhena Terra, Mars: Implications to the alteration history of Mars. Icarus, 219, 476497.Google Scholar
Malin, M.C. & Edgett, K.S. (2000) Sedimentary rocks of early Mars. Science, 290, 19271937.Google Scholar
Malin, M.C., Bell, J.F. III, Cantor, B.A., et al. (2007) Context camera investigation on board the Mars Reconnaissance Orbiter. Journal of Geophysical Research, 112, E05S04, DOI:10.1029/2006JE002808.Google Scholar
Mangold, N., Poulet, F., Mustard, J.F., et al. (2007) Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 2. Aqueous alteration of the crust. Journal of Geophysical Research, 112, E08S04, DOI:10.1029/2006JE002835.Google Scholar
Mangold, N., Gendrin, A., Gondet, B., et al. (2008) Spectral and geological study of the sulfate-rich region of West Candor Chasma, Mars. Icarus, 194, 519543.Google Scholar
Martín-Torres, F.J., Zorzano, M.-P., Valentín-Serrano, P., et al. (2015) Transient liquid water and water activity at Gale crater on Mars. Nature Geoscience, 8, 357361.Google Scholar
Marzo, G.A., Davila, A.F., Tornabene, L.L., et al. (2010) Evidence for Hesperian impact-induced hydrothermalism on Mars. Icarus, 208, 667683.Google Scholar
Massé, M., Bourgeois, O., Le Mouélic, S., Verpoorter, C., Spiga, A., & Le Deit, L. (2012) Wide distribution and glacial origin of polar gypsum on Mars. Earth and Planetary Science Letters, 317, 4455.Google Scholar
Massé, M., Beck, P., Schmitt, B., et al. (2014) Spectroscopy and detectability of liquid brines on Mars. Planetary and Space Science, 92, 136149.Google Scholar
McBeck, J., Seelos, K.D., Ackiss, S.E., & Buczkowski, D. (2014) Using CRISM and THEMIS to characterize high thermal inertia terrains in the northern Hellas region of Mars. American Geophysical Union, Fall Meeting 2014, Abstract #P41B-3900.Google Scholar
McEwen, A.S., Eliason, E.M., Bergstrom, J.W., et al. (2007) Mars Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (HiRISE). Journal of Geophysical Research, 112, E05S02, DOI:10.1029/2005JE002605.Google Scholar
McEwen, A.S., Ojha, L., Dundas, C.M., et al. (2011) Seasonal flows on warm martian slopes. Science, 333, 740–743.Google Scholar
McEwen, A., Dundas, C.M., Mattson, S.S., et al. (2014) Recurring slope lineae in equatorial regions of Mars. Nature Geoscience, 7, 5358.Google Scholar
McGuire, P.C., Wolff, M.J., Smith, M.D., et al. & CRISM Team (2008) MRO/CRISM retrieval of surface Lambert albedos for multispectral mapping of Mars with DISORT-based rad. transfer modeling: Phase 1 – Using historical climatology for temperatures, aerosol opacities, & atmosheric Pressures. IEEE Transactions on Geoscience and Remote Sensing, 46, 40204040.Google Scholar
McGuire, P.C., Bishop, J.L., Brown, A.J., et al. (2009) An improvement to the volcano-scan algorithm for atmospheric correction of CRISM and OMEGA spectral data. Planetary and Space Science, 57, 809815.Google Scholar
McGuire, P.C., Arvidson, R.E., Bishop, J.L., et al. (2013) Mapping minerals on Mars with CRISM: Atmospheric and photometric correction for MRDR map tiles, version 2, and comparison to OMEGA. 44th Lunar Planet. Sci. Conf., Abstract #1581.Google Scholar
McKeown, N., Bishop, J., Noe Dobrea, E., et al. (2009) Characterization of phyllosilicates observed in the central Mawrth Vallis region, Mars, their potential formational processes, and implications for past climate. Journal of Geophysical Research, 114, E00D10, DOI:10.1029/2008JE003301.Google Scholar
McSween, H.Y., Labotka, T.C., & Viviano-Beck, C.E. (2015) Metamorphism in the martian crust. Meteoritics and Planetary Science, 50, 590603.Google Scholar
MEPAG NEX-SAG Report (2015) Report from the Next Orbiter Science Analysis Group (NEX-SAG), chaired by B. Campbell and R. Zurek, posted December, 2015 by the Mars Exploration Program Analysis Group (MEPAG) at http://mepag.nasa.gov/reports.cfmGoogle Scholar
Michalski, J.R. & Niles, P.B. (2010) Deep crustal carbonate rocks exposed by meteor impact on Mars. Nature Geoscience, 3, 751755.Google Scholar
Michalski, J.R. & Noe Dobrea, Eldar Z. (2007) Evidence for a sedimentary origin of clay minerals in the Mawrth Vallis region, Mars. Geology, 35, 951954.Google Scholar
Michalski, J.R., Cuadros, J., Niles, P.B., Parnell, J., Rogers, A.D., & Wright, S.P. (2013a) Groundwater activity on Mars and implications for a deep biosphere. Nature Geoscience, 6, 133138.Google Scholar
Michalski, J.R., Niles, P.B., Cuadros, J., & Baldridge, A.M. (2013b) Multiple working hypotheses for the formation of compositional stratigraphy on Mars: Insights from the Mawrth Vallis region. Icarus, 226, 816840.Google Scholar
Milliken, R., Swayze, G., Arvidson, R., et al. (2008) Opaline silica in young deposits on Mars. Geology, 36, 847850.Google Scholar
Milliken, R.E. & Bish, D.L. (2010) Sources and sinks of clay minerals on Mars. Philosophical Magazine, 90, 22932308.Google Scholar
Milliken, R.E., Grotzinger, J.P., & Thomson, B.J. (2010) Paleoclimate of Mars as captured by the stratigraphic record in Gale crater. Geophysical Research Letters, 37, L04201, DOI:10.1029/2009GL041870.Google Scholar
Moroz, V. (1964) The infrared spectrum of Mars (1.1–4.1 µm). Soviet Astronomy, 8, 273281.Google Scholar
Morris, R.V., Agresti, D.G., Lauer, H.V. Jr., Newcomb, J.A., Shelfer, T.D., & Murali, A.V. (1989) Evidence for pigmentary hematite on Mars based on optical, magnetic, and Mossbauer studies of superparamagnetic (nanocrystalline) hematite. Journal of Geophysical Research, 94, 27602778.Google Scholar
Morris, R.V., Golden, D.C., Bell, J.F. III, Lauer, H.V. Jr., & Adams, J.B. (1993) Pigmenting agents in martian soils: Inferences from spectral, Mössbauer, and magnetic properties of nanophase and other iron oxides in Hawaiian palagonitic soil PN-9. Geochimica Cosmochimica Acta, 57, 45974609.Google Scholar
Morris, R.V., Klingelhöfer, G., Schröder, C., et al. (2006) Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit’s journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills. Journal of Geophysical Research, 111, E02S13, DOI:10.1029/2005JE002584.Google Scholar
Murchie, S., Mustard, J., Bishop, J., Head, J., Pieters, C., & Erard, S. (1993) Spatial variations in the spectral properties of bright regions on Mars. Icarus, 105, 454468.Google Scholar
Murchie, S., Kirkland, L., Erard, S., Mustard, J., & Robinson, M. (2000) Near-infrared spectral variations of martian surface materials from ISM imaging spectrometer data. Icarus, 147, 444471.Google Scholar
Murchie, S., Arvidson, R., Bedini, P., et al. (2007) Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO). Journal of Geophysical Research, 112, E05S03, DOI:10.1029/2006JE002682.Google Scholar
Murchie, S.L, Seelos, F.P., Hash, C.D., et al. & CRISM Team (2009a) The CRISM investigation and data set from the Mars Reconnaissance Orbiter’s Primary Science Phase. Journal of Geophysical Research, 114, E00D07, DOI:10.1029/2009JE003344.Google Scholar
Murchie, S.L., Mustard, J.F., Ehlmann, B.L., et al. (2009b) A synthesis of martian aqueous mineralogy after one Mars year of observations from the Mars Reconnaissance Orbiter. Journal of Geophysical Research, 114, E00D06, DOI:10.1029/2009JE003342.Google Scholar
Murchie, S., Roach, L., Seelos, F., et al. (2009c) Compositional evidence for the origin of layered deposits in Candor Chasma, Mars. Journal of Geophysical Research, 114, E00D05, DOI:10.1029/2009JE003343.Google Scholar
Mustard, J.F., Murchie, S., Erard, S., & Sunshine, J. (1997) In situ compositions of martian volcanics: Implications for the mantle. Journal of Geophysical Research, 102, 25,605–25,615.Google Scholar
Mustard, J.F., Poulet, F., Gendrin, A., et al. (2005) Olivine and pyroxene diversity in the crust of Mars. Science, 307, 15941597.Google Scholar
Mustard, J.F., Poulet, F., Head, J.W., et al. (2007) Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 1. Ancient impact melt in the Isidis Basin and implications for the transition from the Noachian to Hesperian. Journal of Geophysical Research, 112, E08S03, DOI:10.1029/2006JE002834.Google Scholar
Mustard, J., Murchie, S., Pelkey, S.M., et al. (2008) Hydrated silicate minerals on Mars observed by the CRISM instrument on MRO. Nature, 454, 305309.Google Scholar
Mustard, J., Ehlmann, B., Murchie, S., et al. (2009) Composition, morphology, and stratigraphy of Noachian/Phyllosian Crust around the Isidis basin. Journal of Geophysical Research, 114, E00D12, DOI:10.1029/2009JE003349.Google Scholar
Nedell, S., Squyres, S., & Andersen, D. (1987) Origin and evolution of the layered deposits in the Valles Marineris, Mars. Icarus, 70, 409441.Google Scholar
Niles, P.B. & Michalski, J. (2009) Meridiani Planum sediments on Mars formed through weathering in massive ice deposits. Nature Geoscience, 2, 215220.Google Scholar
Noe Dobrea, E., Bishop, J., McKeown, N., et al. (2010) Mineralogy and stratigraphy of phyllosilicate-bearing and dark mantling units in the greater Mawrth Vallis / west Arabia Terra area: Constraints on geological origin. Journal of Geophysical Research, 115, E00D19, DOI:10.1029/2009JE003351.Google Scholar
Noel, A., Bishop, J.L., Al-Samir, M., et al. (2015) Mineralogy, morphology and stratigraphy of the light-toned interior layered deposits at Juventae Chasma. Icarus, 251, 315331.Google Scholar
Ody, A., Poulet, F., Langevin, Y., et al. (2012) Global maps of anhydrous minerals at the surface of Mars from OMEGA/MEx. Journal of Geophysical Research, 117, E00J14, DOI:10.1029/2012JE004117.Google Scholar
Ody, A., Poulet, F., Bibring, J.-P., et al. (2013) Global investigation of olivine on Mars: Insights into crust and mantle compositions. Journal of Geophysical Research, 118, 234262.Google Scholar
Ojha, L., Wray, J.J., Murchie, S.L., McEwen, A.S., Wolff, M.J., & Karunatillake, S. (2013) Spectral constraints on the formation mechanism of recurring slope lineae. Geophysical Research Letters, 40, 56215626.Google Scholar
Ojha, L., McEwen, A., Dundas, C., et al. (2014) HiRISE observations of Recurring Slope Lineae (RSL) during southern summer on Mars. Icarus, 231, 365376.Google Scholar
Ojha, L., Wilhelm, M.B., Murchie, S.L., et al. (2015) Spectral evidence for hydrated salts in seasonal brine flows on Mars. Nature Geoscience, 8, 829832.Google Scholar
Osinski, G.R., Tornabene, L.L., Banerjee, N.R., et al. (2013) Impact-generated hydrothermal systems on Earth and Mars. Icarus, 224, 347363.Google Scholar
Osterloo, M.M., Hamilton, V.E., Bandfield, J.L., et al. (2008) Chloride-bearing materials in the southern highlands of Mars. Science, 319, 16511654.Google Scholar
Osterloo, M.M., Anderson, F.S., Hamilton, V.E., & Hynek, B.M. (2010) Geologic context of proposed chloride-bearing materials on Mars. Journal of Geophysical Research, 115, E10012, DOI:10.1029/2010JE003613.Google Scholar
Pan, L., Ehlmann, B.L., Carter, J., & Ernst, C.M. (2017) The stratigraphy and history of Mars’ northern lowlands through mineralogy of impact craters: A comprehensive survey. Journal of Geophysical Research, 122, 18241854.Google Scholar
Pelkey, S.M., Mustard, J.F., Murchie, S., et al. (2007) CRISM multispectral summary products: Parameterizing mineral diversity on Mars from reflectance. Journal of Geophysical Research, 112, E08S14, DOI:10.1029/2006JE002831.Google Scholar
Pimental, G., Forney, P., & Herr, K. (1974) Evidence about hydrate and solid water in the martian surface from the 1969 Mariner infrared spectrometer. Journal of Geophysical Research, 79, 16231634.Google Scholar
Poulet, F., Bibring, J.-P., Mustard, J.F., et al. (2005) Phyllosilicates on Mars and implications for early martian climate. Nature, 438, 623627Google Scholar
Poulet, F., Gomez, C., Bibring, J.-P., et al. (2007) Martian surface mineralogy from Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité on board the Mars Express spacecraft (OMEGA/MEx): Global mineral maps. Journal of Geophysical Research, 112, E08S02, DOI:10.1029/2006JE002840.Google Scholar
Poulet, F., Mangold, N., Loizeau, D., et al. (2008) Abundance of minerals in the phyllosilicate-rich units on Mars. Astronomy and Astrophysics, 487, L41L44.Google Scholar
Poulet, F., Mangold, N., Platevoet, B., et al. (2009a) Quantitative compositional analysis of martian mafic regions using the MEx/OMEGA reflectance data. 2. Petrological implications. Icarus, 201, 84101.Google Scholar
Poulet, F., Bibring, J.-P., Langevin, Y., et al. (2009b) Quantitative compositional analysis of martian mafic regions using the MEx/OMEGA reflectance data 1. Methodology, uncertainties and examples of application. Icarus, 201, 6983.Google Scholar
Poulet, F., Carter, J., Bishop, J.L., Loizeau, D., & Murchie, S.L. (2014) Mineral abundances at the final four Curiosity study sites and implications for their formation. Icarus, 231, 6576.Google Scholar
Powell, K.E., Arvidson, R.E., Zanetti, M., Guinness, E.A., & Murchie, S.L. (2017) The structural, stratigraphic, and paleoenvironmental record exposed on the rim and walls of Iazu crater, Mars. Journal of Geophysical Research, 122, 11381156.Google Scholar
Quantin, C., Flahaut, J., Clenet, H., Allemand, P., & Thomas, P. (2012) Composition and structures of the subsurface in the vicinity of Valles Marineris as revealed by central uplifts of impact craters. Icarus, 221, 436452.Google Scholar
Riu, L., Poulet, F., Carter, J., et al. (2019) The M3 project: 1– A global hyperspectral image-cube of the martian surface. Icarus, 319, 281292.Google Scholar
Roach, L., Mustard, J., Murchie, S., et al. (2009) Testing evidence of recent hydration state change in sulfates on Mars. Journal of Geophysical Research, 114, E00D02, DOI:10.1029/2008JE003245.Google Scholar
Roach, L.H., Mustard, J.F., Swayze, G., et al. (2010) Hydrated mineral stratigraphy of Ius Chasma, Valles Marineris. Icarus, 206, 253268.Google Scholar
Rossman, G. (1976) Spectroscopic and magnetic studies of ferric iron hydroxysulfates: The series Fe(OH)SO4·nH2O and jarosite. American Mineralogist, 61, 398401.Google Scholar
Ruesch, O, Poulet, F., Vincendon, M., et al. (2012) Compositional investigation of the proposed chloride-bearing materials on Mars using near-infrared orbital data from OMEGA/MEx. Journal of Geophysical Research, 117, E00J13.Google Scholar
Ruff, S.W., Farmer, J.D., Calvin, W.M., et al. (2011) Characteristics, distribution, origin, and significance of opaline silica observed by the Spirit rover in Gusev crater, Mars. Journal of Geophysical Research, 116, E00F23, DOI:10.1029/2010JE003767.Google Scholar
Salvatore, M.R., Mustard, J.F., Wyatt, M.B., & Murchie, S.L. (2010) Definitive evidence of Hesperian basalt in Acidalia and Chryse planitiae. Journal of Geophysical Research, 115, E07005, DOI:10.1029/2009JE003519.Google Scholar
Scanlon, K.E., Head, J.W., Madeleine, J.-B., Wordsworth, R.D., & Forget, F. (2013) Orographic precipitation in valley network headwaters: Constraints on the ancient martian atmosphere. Geophysical Research Letters, 40, 41824187.Google Scholar
Seelos, F.P., Viviano-Beck, C.E., Morgan, M.F., Romeo, G., Aiello, J.J., & Murchie, S.L. (2016a) CRISM hyperspectral targeted observation PDS product sets – TERs and MTRDRs. 47th Lunar Planet. Sci. Conf., Abstract #1783.Google Scholar
Seelos, K.D., Seelos, F.P., Buczkowski, D.L., & Viviano-Beck, C.E. (2016b) Mapping laterally extensive phyllosilicates in west Margaritifer Terra, Mars. 47th Lunar Planet. Sci. Conf., Abstract #7043.Google Scholar
Sherman, D., Burns, R., & Burns, V. (1982) Spectral characteristics of the iron oxides with application to the martian bright region mineralogy. Journal of Geophysical Research, 87, 10,16910,180.Google Scholar
Singer, R.B. (1982) Spectral evidence for the mineralogy of high-albedo soils and dust on Mars. Journal of Geophysical Research, 87, 10,159–10,168.Google Scholar
Singer, R.B. & McSween, H.Y. Jr. (1993) The igneous crust of Mars: Compositional evidence from remote sensing and the SNC meteorites. In: Resources of near-Earth space (Lewis, J.S., Matthews, M.S., & Guerrieri, M.L., eds.). ARI, Heidelberg, 709736.Google Scholar
Singer, R.B., McCord, T.B., Clark, R.N., Adams, J.B., & Huguenin, R.L. (1979) Mars surface composition from reflectance spectroscopy: A summary. Journal of Geophysical Research, 84, 84158426.Google Scholar
Skok, J.R., Mustard, J.F., Ehlmann, B.L., Milliken, R.E., & Murchie, S.L. (2010) Silica deposits in the Nili Patera caldera on the Syrtis Major volcanic complex on Mars. Nature Geoscience, 3, 838841.Google Scholar
Skok, J.R., Mustard, J.F., Tornabene, L.L., Pan, C., Rogers, D., & Murchie, S.L. (2012) A spectroscopic analysis of martian crater central peaks: Formation of the ancient crust. Journal of Geophysical Research, 117, E00J18, DOI:10.1029/2012JE004148.Google Scholar
Smith, M.D., Wolff, M.J., Clancy, R.T., & Murchie, S.L. (2009) Compact Reconnaissance Imaging Spectrometer observations of water vapor and carbon monoxide. Journal of Geophysical Research, 114, E00D03, DOI:10.1029/2008JE003288.Google Scholar
Smith, M.D., Wolff, M.J., Clancy, R.T., Kleinböhl, A., & Murchie, S.L. (2013) Vertical distribution of dust and water ice aerosols from CRISM limb-geometry observations. Journal of Geophysical Research, 118, 321334.Google Scholar
Squyres, S.W., Grotzinger, J.P., Arvidson, R.E., et al. (2004a) In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars. Science, 306, 17091714.Google Scholar
Squyres, S.W., Arvidson, R.E., Bell, J.F., III, et al. (2004b) The Opportunity rover’s Athena science investigation at Meridiani Planum, Mars. Science, 306, 16981703.Google Scholar
Squyres, S.W., Arvidson, R.E., Ruff, S., et al. (2008) Detection of silica-rich deposits on Mars. Science, 320, 10631067.Google Scholar
Sun, V.Z. & Milliken, R.E. (2015) Ancient and recent clay formation on Mars as revealed from a global survey of hydrous minerals in crater central peaks. Journal of Geophysical Research, 120, 22932332.Google Scholar
Sun, V.Z. & Milliken, R.E. (2018) Distinct geologic settings of opal-A and more crystalline hydrated silica on Mars. Geophysical Research Letters, 45, 10,22110,228.Google Scholar
Sunshine, J., Pieters, C., & Pratt, S. (1990) Deconvolution of mineral absorption bands: An improved approach. Journal of Geophysical Research, 95, 69556966.Google Scholar
Tanaka, K.L., Robbins, S.J., Fortezzo, C.M., Skinner, J.A., & Hare, T.M. (2014) The digital global geologic map of Mars: Chronostratigraphic ages, topographic and crater morphologic characteristics, and updated resurfacing history. Planetary and Space Science, 95, 1124.Google Scholar
Thollot, P., Mangold, N., Ansan, V., et al. (2012) Most Mars minerals in a nutshell: Various alteration phases formed in a single environment in Noctis Labyrinthus. Journal of Geophysical Research, 117, E00J06, DOI:10.1029/2011JE004028.Google Scholar
Thomson, B.J., Bridges, N.T., Milliken, R., et al. (2011) Constraints on the origin and evolution of the layered mound in Gale crater, Mars using Mars Reconnaissance Orbiter data. Icarus, 214, 413432.Google Scholar
Tornabene, L.L., Osinski, G.R., McEwen, A.S., et al. (2013) An impact origin for hydrated silicates on Mars: A synthesis. Journal of Geophysical Research, 118, 9941012.Google Scholar
Tosca, N.J. & Knoll, A.H. (2009) Juvenile chemical sediments and the long term persistence of water at the surface of Mars. Earth and Planetary Science Letters, 286, 379386.Google Scholar
van Berk, W. & Fu, Y. (2011) Reproducing hydrogeochemical conditions triggering the formation of carbonate and phyllosilicate alteration mineral assemblages on Mars (Nili Fossae region). Journal of Geophysical Research, 116, E10006, DOI:10.1029/2011JE003886.Google Scholar
Vincendon, M., Langevin, Y., Poulet, F., Bibring, J.-P., & Gondet, B. (2007) Recovery of surface reflectance spectra and evaluation of the optical depth of aerosols in the near-IR using a Monte Carlo approach: Application to the OMEGA observations of high-latitude regions of Mars. Journal of Geophysical Research, 112, E08S13, DOI:10.1029/2006JE002845.Google Scholar
Vincendon, M., Pilorget, C., Gondet, B., Murchie, S., & Bibring, J.-P. (2011) New near-IR observations of mesospheric CO2 and H2O clouds on Mars. Journal of Geophysical Research, 116, E00J02, DOI:10.1029/2011JE003827.Google Scholar
Viviano, C., Murchie, S., Daubar, I., Morgan, M., Seelos, F., & Plescia, J. (2019) Composition of Amazonian volcanic materials in Tharsis and Elysium, Mars, from MRO/CRISM reflectance spectra. Icarus, 328, 274–286.Google Scholar
Viviano-Beck, C.E., Seelos, F.P., Murchie, S.L., et al. (2014) Revised CRISM spectral parameters and summary products based on the currently detected mineral diversity on Mars. Journal of Geophysical Research, 119, 14031431.Google Scholar
Viviano-Beck, C.E., Murchie, S.L., Beck, A.W., & Dohm, J.M. (2017) Compositional and structural constraints on the geologic history of eastern Tharsis Rise, Mars. Icarus, 284, 4358.Google Scholar
Wang, A., Jolliff, B.L., Liu, Y., & Connor, K. (2016) Setting constraints on the nature and origin of the two major hydrous sulfates on Mars: Monohydrated and polyhydrated sulfates. Journal of Geophysical Research, 121, 678694.Google Scholar
Weitz, C.M. & Bishop, J.L. (2016) Stratigraphy and formation of clays, sulfates, and hydrated silica within a depression in Coprates Catena, Mars. Journal of Geophysical Research, 121, 805835.Google Scholar
Weitz, C.M., Milliken, R.E., Grant, J.A., McEwen, A.S., Williams, R.M.E., & Bishop, J.L. (2008a) Light-toned strata and inverted channels adjacent to Juventae and Ganges chasmata, Mars. Geophysical Research Letters, 35, L19202, DOI:10.1029/2008GL035317.Google Scholar
Weitz, C.M. Lane, M.D., Staid, M., & Noe Dobrea, E. (2008b) Gray hematite distribution and formation in Ophir and Candor chasmata. Journal of Geophysical Research, 113, E02016, DOI:10.1029/2007JE002930.Google Scholar
Weitz, C.M., Milliken, R.E., Grant, J.A., et al. (2010) Mars Reconnaissance Orbiter observations of light-toned layered deposits and associated fluvial landforms on the plateaus adjacent to Valles Marineris. Icarus, 205, 73102.Google Scholar
Weitz, C.M., Noe Dobrea, E.Z., Lane, M.D., & Knudson, A.T. (2012) Geologic relationships between gray hematite, sulfates, and clays in Capri Chasma. Journal of Geophysical Research, 117, E00J09, DOI:10.1029/2012JE004092.Google Scholar
Weitz, C.M., Bishop, J.L., & Grant, J.A. (2013) Gypsum, opal, and fluvial channels within a trough of Noctis Labyrinthus, Mars: Implications for aqueous activity during the Late Hesperian to Amazonian. Planetary and Space Science, 87, 130145.Google Scholar
Weitz, C.M., Bishop, J.L., Baker, L.L., & Berman, D.C. (2014) Fresh exposures of hydrous Fe-bearing amorphous silicates on Mars. Geophysical Research Letters, 41, 87448751.Google Scholar
Weitz, C.M., Noe Dobrea, E., & Wray, J.J. (2015) Mixtures of clays and sulfates within deposits in western Melas Chasma, Mars. Icarus, 251, 291314.Google Scholar
Werner, S.C. (2008) The early martian evolution: Constraints from basin formation ages. Icarus, 195, 4560.Google Scholar
Werner, S.C. (2009) The global martian volcanic evolutionary history. Icarus, 201, 4468.Google Scholar
Werner, S.C. & Tanaka, K.L. (2011) Redefinition of the crater-density and absolute-age boundaries for the chronostratigraphic system of Mars. Icarus, 215, 603607.Google Scholar
Wilson, J.H. & Mustard, J.F. (2013) Exposures of olivine-rich rocks in the vicinity of Ares Vallis: Implications for Noachian and Hesperian volcanism. Journal of Geophysical Research, 118, 916929.Google Scholar
Wilson, S.A., Howard, A.D., Moore, J.M., & Grant, J.A. (2016) A cold-wet middle-latitude environment on Mars during the Hesperian-Amazonian transition: Evidence from northern Arabia valleys and paleolakes. Journal of Geophysical Research, 121, 16671694.Google Scholar
Wiseman, S.M., Arvidson, R.E., Andrews-Hanna, J.C., et al. (2008) Phyllosilicate and sulfate-hematite deposits within Miyamoto crater in southern Sinus Meridiani, Mars. Geophysical Research Letters, 35, L19204, DOI:10.1029/2008GL035363.Google Scholar
Wiseman, S., Arvidson, R., Morris, R., et al. (2010) Spectral and stratigraphic mapping of hydrated sulfate and phyllosilicate-bearing deposits in northern Sinus Meridiani, Mars. Journal of Geophysical Research, 115, E00D18, DOI:10.1029/2009JE003354.Google Scholar
Wiseman, S.M., Arvidson, R.E., Wolff, M.J., et al. (2016) Characterization of artifacts introduced by the empirical volcano-scan atmospheric correction commonly applied to CRISM and OMEGA near-infrared spectra. Icarus, 269, 111121.Google Scholar
Wolff, M.J., Smith, M.D., Clancy, R.T., et al. (2009) Wavelength dependence of dust aerosol single scattering albedo as observed by the Compact Reconnaissance Imaging Spectrometer. Journal of Geophysical Research, 114, E00D04, DOI:10.1029/2009JE003350.Google Scholar
Wordsworth, R.D., Kerber, L., Pierrehumbert, R.T., Forget, F., & Head, J.W. (2015) Comparison of “warm and wet” and “cold and icy” scenarios for early Mars in a 3-D climate model. Journal of Geophysical Research, 120, 12011219.Google Scholar
Wray, J.J., Ehlmann, B.L., Squyres, S.W., Mustard, J.F., & Kirk, R.L. (2008) Compositional stratigraphy of clay-bearing layered deposits at Mawrth Vallis, Mars. Geophysical Research Letters, 35, L12202, DOI:10.1029/2008GL034385.Google Scholar
Wray, J.J., Murchie, S.L., Squyres, S.W., Seelos, F.P., & Tornabene, L.L. (2009a) Diverse aqueous environments on ancient Mars revealed in the southern highlands. Geology, 37, 10431046.Google Scholar
Wray, J.J., Noe Dobrea, E.Z., Arvidson, R.E., et al. (2009b) Phyllosilicates and sulfates at Endeavour crater, Meridiani Planum, Mars. Geophysical Research Letters, 36, L21201, DOI:10.1029/2009GL040734.Google Scholar
Wray, J.J., Squyres, S.W., Roach, L.H., Bishop, J.L., Mustard, J.F., & Noe Dobrea, E.Z. (2010) Identification of the Ca-sulfate bassanite in Mawrth Vallis, Mars. Icarus, 209, 416421.Google Scholar
Wray, J.J., Milliken, R.E., Dundas, C.M. (2011) Columbus crater and other possible groundwater-fed paleolakes of Terra Sirenum, Mars. Journal of Geophysical Research, 116, E01001, DOI:10.1029/2010JE003694.Google Scholar
Wray, J.J., Hansen, S.T., Dufek, J., et al. (2013) Prolonged magmatic activity on Mars inferred from the detection of felsic rocks. Nature Geoscience, 6, 10131017.Google Scholar
Wray, J.J., Murchie, S.L., Bishop, J.L., et al. (2016) Orbital evidence for more widespread carbonate-bearing rocks on Mars. Journal of Geophysical Research, 121, 652677.Google Scholar
Wyatt, M.B. & McSween, H.Y. (2002) Spectral evidence for weathered basalt as an alternative to andesite in the northern lowlands of Mars. Nature, 417, 263266.Google Scholar
Wyatt, M.B., McSween, H.Y. Jr., Tanaka, K.L., & Head, J.W. III (2004) Global geologic context for rock types and surface alteration on Mars. Geology, 32, 645648.Google Scholar
Zolotov, M.Y. (2015) What solutions caused Noachian Weathering on Mars? American Geophysical Union, Fall Meeting 2015, Abstract #P33A-2118.Google Scholar
Zolotov, M. Yu. & Mironenko, M.V. (2016) Chemical models for martian weathering profiles: Insights into formation of layered phyllosilicate and sulfate deposits. Icarus, 275, 203220.Google Scholar

References

Agee, C.B., Wilson, N.V., McCubbin, F.M., et al. (2013) Unique meteorite from early Amazonian Mars: Water-rich basaltic breccia Northwest Africa 7034. Science, 339, 780785.Google Scholar
Amador, E.S. & Bandfield, J.L. (2016) Elevated bulk-silica exposures and evidence for multiple aqueous alteration episodes in Nili Fossae, Mars. Icarus, 276, 3951.Google Scholar
Arvidson, R.E. (1974) Wind-blown streaks, splotches, and associated craters on Mars: Statistical analysis of Mariner 9 photographs. Icarus, 21, 1227.Google Scholar
Audouard, J., Poulet, F., Vincendon, M., et al. (2014) Water in the martian regolith from OMEGA/Mars Express. Journal of Geophysical Research, 119, 19691989.Google Scholar
Baldridge, A.M., Lane, M.D., & Edwards, C.S. (2013) Searching at the right time of day: Evidence for aqueous minerals in Columbus crater with TES and THEMIS data. Journal of Geophysical Research, 118, 179189.Google Scholar
Bandfield, J.L. (2002) Global mineral distributions on Mars. Journal of Geophysical Research, 107, DOI:10.1029/2001JE001510.Google Scholar
Bandfield, J.L. (2006) Extended surface exposures of granitoid compositions in Syrtis Major, Mars. Geophysical Research Letters, 33, DOI:L0620310.1029/2005GL025559.Google Scholar
Bandfield, J.L. (2008) High‐silica deposits of an aqueous origin in western Hellas Basin, Mars. Geophysical Research Letters, 35, DOI:L1220510.1029/2008GL033807.Google Scholar
Bandfield, J.L. & Amador, E.S. (2016) Extensive aqueous deposits at the base of the dichotomy boundary in Nilosyrtis Mensae, Mars. Icarus, 275, 2944.Google Scholar
Bandfield, J.L., Christensen, P.R., & Smith, M.D. (2000a) Spectral data set factor analysis and end‐member recovery: Application to analysis of martian atmospheric particulates. Journal of Geophysical Research, 105, 95739587.Google Scholar
Bandfield, J.L., Hamilton, V.E., & Christensen, P.R. (2000b) A global view of martian surface compositions from MGS-TES. Science, 287, 16261630.Google Scholar
Bandfield, J.L., Edgett, K.S., & Christensen, P.R. (2002) Spectroscopic study of the Moses Lake dune field, Washington: Determination of compositional distributions and source lithologies. Journal of Geophysical Research, 107, 5092, DOI:5010.1029/2000JE001469.Google Scholar
Bandfield, J.L., Glotch, T.D., & Christensen, P.R. (2003) Spectroscopic identification of carbonate minerals in the martian dust. Science, 301, 10841087.Google Scholar
Bandfield, J.L., Hamilton, V.E., Christensen, P.R., & McSween, H.Y. (2004) Identification of quartzofeldspathic materials on Mars. Journal of Geophysical Research, 109, DOI:E1000910.1029/2004JE002290.Google Scholar
Bandfield, J.L., Rogers, A.D., & Edwards, C.S. (2011) The role of aqueous alteration in the formation of martian soils. Icarus, 211, 157171.Google Scholar
Bandfield, J.L., Amador, E.S., & Thomas, N.H. (2013) Extensive hydrated silica materials in western Hellas Basin, Mars. Icarus, 226, 14891498.Google Scholar
Bish, D.L., Blake, D., Vaniman, D., et al. (2013) X-ray diffraction results from Mars Science Laboratory: Mineralogy of Rocknest at Gale crater. Science, 341, DOI:123893210.1126/science.1238932.Google Scholar
Bishop, J.L., Pieters, C.M., & Edwards, J.O. (1994) Infrared spectroscopic analyses on the nature of water in montmorillonite. Clays and Clay Minerals, 42, 702716.Google Scholar
Blake, D.F., Morris, R.V., Kocurek, G., et al. (2013) Curiosity at Gale crater, Mars: Characterization and analysis of the Rocknest sand shadow. Science, 341, 1239505.Google Scholar
Boynton, W.V., Taylor, G.J., Evans, L.G., et al. (2007) Concentration of H, Si, Cl, K, Fe, and Th in the low‐and mid‐latitude regions of Mars. Journal of Geophysical Research, 112, DOI:10.1029/2007JE002887.Google Scholar
Boynton, W.V., Ming, D.W., Kounaves, S.P., et al. (2009) Evidence for calcium carbonate at the Mars Phoenix landing site. Science, 325, 6164.Google Scholar
Carter, J. & Poulet, F. (2013) Ancient plutonic processes on Mars inferred from the detection of possible anorthositic terrains. Nature Geoscience, 6, 10081012.Google Scholar
Christensen, P.R. (1983) Eolian intracrater deposits on Mars: Physical properties and global distribution. Icarus, 56, 496518.Google Scholar
Christensen, P.R., Bandfield, L., Hamilton, V.E., et al. (1992) Thermal Emission Spectrometer experiment: Mars Observer mission. Journal of Geophysical Research, 97, 77197734.Google Scholar
Christensen, P.R., Bandfield, J.L., Smith, M.D., Hamilton, V.E., & Clark, R.N. (2000) Identification of a basaltic component on the martian surface from Thermal Emission Spectrometer data. Journal of Geophysical Research, 105, 96099621.Google Scholar
Christensen, P.R., Morris, R.V., Lane, M.D., Bandfield, J.L., & Malin, M.C. (2001a) Global mapping of martian hematite mineral deposits: Remnants of water‐driven processes on early Mars. Journal of Geophysical Research, 106, 2387323885.Google Scholar
Christensen, P.R., Bandfield, J.L., Hamilton, V.E., et al. (2001b) Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results. Journal of Geophysical Research, 106, 2382323871.Google Scholar
Christensen, P.R., Bandfield, J.L., Bell, J.F. III (2003) Morphology and composition of the surface of Mars: Mars Odyssey THEMIS results. Science, 300, 20562061.Google Scholar
Christensen, P.R., Jakosky, B.M., Kieffer, H.H., et al. (2004) The thermal emission imaging system (THEMIS) for the Mars 2001 Odyssey Mission. Space Science Reviews, 110, 85130.Google Scholar
Christensen, P.R., McSween, H.Y. Jr., Bandfield, J.L., et al. (2005) Evidence for magmatic evolution and diversity on Mars from infrared observations. Nature, 436, 504509.Google Scholar
Edwards, C.S. & Christensen, P.R. (2011) Evidence for a widespread olivine-rich layer on Mars: Identification of a global impact ejecta deposit? 42nd Lunar Planet. Sci. Conf., Abstract #2560.Google Scholar
Edwards, C.S. & Ehlmann, B.L. (2015) Carbon sequestration on Mars. Geology, 43, 863866.Google Scholar
Edwards, C.S. & Piqueux, S. (2016) The water content of recurring slope lineae on Mars. Geophysical Research Letters, 43, 89128919.Google Scholar
Edwards, C.S., Christensen, P., & Hamilton, V. (2008) Evidence for extensive olivine‐rich basalt bedrock outcrops in Ganges and Eos chasmas, Mars. Journal of Geophysical Research, 113, E11003, DOI:10.1029/2008je003091.Google Scholar
Edwards, C.S., Bandfield, J.L., Christensen, P.R., & Fergason, R.L. (2009) Global distribution of bedrock exposures on Mars using THEMIS high‐resolution thermal inertia. Journal of Geophysical Research, 114, E11001, DOI:10.1029/2009JE003363.Google Scholar
Edwards, C.S., Bandfield, J.L., Christensen, P.R., & Rogers, A.D. (2014) The formation of infilled craters on Mars: Evidence for widespread impact induced decompression of the early martian mantle? Icarus, 228, 149166.Google Scholar
Ehlmann, B.L. & Edwards, C.S. (2014) Mineralogy of the martian surface. Annual Review of Earth and Planetary Sciences, 42, 291315.Google Scholar
Ehlmann, B.L., Mustard, J.F., Murchie, S.L., et al. (2008) Orbital identification of carbonate-bearing rocks on Mars. Science, 322, 18281832.Google Scholar
Ehlmann, B.L., Mustard, J.F., Swayze, G.A., et al. (2009) Identification of hydrated silicate minerals on Mars using MRO‐CRISM: Geologic context near Nili Fossae and implications for aqueous alteration. Journal of Geophysical Research, 114, DOI:E00D0810.1029/2009JE003339.Google Scholar
Gillespie, A.R. (1992) Enhancement of multispectral thermal infrared images: Decorrelation contrast stretching. Remote Sensing of Environment, 42, 147155.Google Scholar
Gillespie, A.R., Kahle, A.B., & Walker, R.E. (1986) Color enhancement of highly correlated images. I. Decorrelation and HSI contrast stretches. Remote Sensing of Environment, 20, 209235.Google Scholar
Glotch, T.D. & Bandfield, J.L. (2006) Determination and interpretation of surface and atmospheric Miniature Thermal Emission Spectrometer spectral end‐members at the Meridiani Planum landing site. Journal of Geophysical Research, 111, E12S06, DOI:10.1029/2005JE002671.Google Scholar
Glotch, T.D. & Rogers, A.D. (2013) Evidence for magma‐carbonate interaction beneath Syrtis Major, Mars. Journal of Geophysical Research, 118, 126137.Google Scholar
Glotch, T.D., Bandfield, J.L., Tornabene, L.L., Jensen, H.B., & Seelos, F.P. (2010) Distribution and formation of chlorides and phyllosilicates in Terra Sirenum, Mars. Geophysical Research Letters, 37, DOI:10.1029/2010GL044557.Google Scholar
Glotch, T.D., Bandfield, J.L., Wolff, M.J., Arnold, J.A., & Che, C. (2016) Constraints on the composition and particle size of chloride salt‐bearing deposits on Mars. Journal of Geophysical Research, 121, 454471.Google Scholar
Gooding, J.L. (1992) Soil mineralogy and chemistry on Mars: Possible clues from salts and clays in SNC meteorites. Icarus, 99, 2841.Google Scholar
Hamilton, V.E. & Christensen, P.R. (2005) Evidence for extensive olivine-rich bedrock in Nili Fossae, Mars. Geology, 33, 433436.Google Scholar
Hamilton, V.E. & Rogers, A.D. (2011) A new view of martian surface geochemistry. 42nd Lunar Planet. Sci. Conf., Abstract #1273.Google Scholar
Hamilton, V.E. & Ruff, S.W. (2012) Distribution and characteristics of Adirondack-class basalt as observed by Mini-TES in Gusev crater, Mars and its possible volcanic source. Icarus, 218, 917949.Google Scholar
Hamilton, V.E., Christensen, P.R., McSween, H.Y. Jr., & Bandfield, J.L. (2003) Searching for the source regions of martian meteorites using MGS TES: Integrating martian meteorites into the global distribution of igneous materials on Mars. Meteoritics and Planetary Science, 38, 871885.Google Scholar
Hanna, R.D., Hamilton, V.E., & Putzig, N.E. (2016) The complex relationship between olivine abundance and thermal inertia on Mars. Journal of Geophysical Research, 121, 12931320.Google Scholar
Hapke, B. (1981) Bidirectional reflectance spectroscopy: 1. Theory. Journal of Geophysical Research, 86, 30393054.Google Scholar
Hoefen, T.M., Clark, R.N., Bandfield, J.L., Smith, M.D., Pearl, J.C., & Christensen, P.R. (2003) Discovery of olivine in the Nili Fossae region of Mars. Science, 302, 627630.Google Scholar
Humayun, M., Nemchin, A., Zanda, B., et al. (2013) Origin and age of the earliest martian crust from meteorite NWA 7533. Nature, 503, 513516.Google Scholar
Kahn, R. (1985) The evolution of CO2 on Mars. Icarus, 62, 175190.Google Scholar
Koeppen, W.C. & Hamilton, V.E. (2008) Global distribution, composition, and abundance of olivine on the surface of Mars from thermal infrared data. Journal of Geophysical Research, 113, E05001, DOI:10.1029/2007JE002984.Google Scholar
Kraft, M.D., Michalski, J.R., & Sharp, T.G. (2003) Effects of pure silica coatings on thermal emission spectra of basaltic rocks: Considerations for martian surface mineralogy. Geophysical Research Letters, 30, DOI:228810.1029/2003GL018848.Google Scholar
Lane, M.D. & Christensen, P.R. (2013) Determining olivine composition of basaltic dunes in Gale crater, Mars, from orbit: Awaiting ground truth from Curiosity. Geophysical Research Letters, 40, 35173521.Google Scholar
Lane, M.D., Dyar, M.D., & Bishop, J.L. (2004) Spectroscopic evidence for hydrous iron sulfate in the martian soil. Geophysical Research Letters, 31, L1970210.1029/2004GL021231.Google Scholar
Lane, M.D., Bishop, J.L., Darby Dyar, M., King, P.L., Parente, M., & Hyde, B.C. (2008) Mineralogy of the Paso Robles soils on Mars. American Mineralogist, 93, 728739.Google Scholar
Lang, N.P., Tornabene, L.L., McSween, H.Y. Jr., & Christensen, P.R. (2009) Tharsis-sourced relatively dust-free lavas and their possible relationship to martian meteorites. Journal of Volcanology and Geothermal Research, 185, 103115.Google Scholar
Leshin, L.A., Mahaffy, P.R., Webster, C.R., et al. (2013) Volatile, isotope, and organic analysis of martian fines with the Mars Curiosity rover. Science, 341, 1238937.Google Scholar
McDowell, M.L. & Hamilton, V.E. (2007) Geologic characteristics of relatively high thermal inertia intracrater deposits in southwestern Margaritifer Terra, Mars. Journal of Geophysical Research, 112, E12001, DOI:10.1029/2007JE002925.Google Scholar
McEwen, A.S., Dundas, C.M., Mattson, S.S., et al. (2014) Recurring slope lineae in equatorial regions of Mars. Nature Geoscience, 7, 5358.Google Scholar
McFadden, L.A. & Cline, T.P. (2005) Spectral reflectance of martian meteorites: Spectral signatures as a template for locating source region on Mars. Meteoritics and Planetary Science, 40, 151172.Google Scholar
McSween, H.Y. Jr. (2002) The rocks of Mars, from far and near. Meteoritics and Planetary Science, 37, 725.Google Scholar
McSween, H.Y., Grove, T.L., & Wyatt, M.B. (2003) Constraints on the composition and petrogenesis of the martian crust. Journal of Geophysical Research, 108, DOI:10.1029/2003JE002175.Google Scholar
McSween, H.Y., Arvidson, R.E., Bell, J., et al. (2004) Basaltic rocks analyzed by the Spirit rover in Gusev crater. Science, 305, 842845.Google Scholar
McSween, H.Y., Ruff, S., Morris, R., et al. (2006) Alkaline volcanic rocks from the Columbia Hills, Gusev crater, Mars. Journal of Geophysical Research, 111, DOI:E09S9110.1029/2006JE002698.Google Scholar
McSween, H.Y., Taylor, G.J., & Wyatt, M.B. (2009) Elemental composition of the martian crust. Science, 324, 736739.Google Scholar
Meslin, P.-Y., Gasnault, O., Forni, O., et al. (2013) Soil diversity and hydration as observed by ChemCam at Gale crater, Mars. Science, 341, 1238670.Google Scholar
Michalski, J.R. & Fergason, R.L. (2009) Composition and thermal inertia of the Mawrth Vallis region of Mars from TES and THEMIS data. Icarus, 199, 2548.Google Scholar
Michalski, J.R., Kraft, M.D., Sharp, T.G., Williams, L.B., & Christensen, P.R. (2005) Mineralogical constraints on the high-silica martian surface component observed by TES. Icarus, 174, 161177.Google Scholar
Milam, K.A., McSween, H.Y., Moersch, J., & Christensen, P.R. (2010) Distribution and variation of plagioclase compositions on Mars. Journal of Geophysical Research, 115, E09004, DOI:10.1029/2008JE003495.Google Scholar
Milliken, R.E., Swayze, G.A., Arvidson, R.E., et al. (2008) Opaline silica in young deposits on Mars. Geology, 36, 847850.Google Scholar
Mitchell, J.L. & Christensen, P.R. (2016) Recurring slope lineae and chlorides on the surface of Mars. Journal of Geophysical Research, 121, 14111428.Google Scholar
Morris, R.V., Ruff, S.W., Gellert, R., et al. (2010) Identification of carbonate-rich outcrops on Mars by the Spirit rover. Science, 329, 1189667.Google Scholar
Murchie, S.L., Mustard, J.F., Ehlmann, B.L., et al. (2009) A synthesis of martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter. Journal of Geophysical Research, 114, DOI:10.1029/2009JE003342.Google Scholar
Niles, P.B., Catling, D.C., Berger, G., et al. (2013) Geochemistry of carbonates on Mars: Implications for climate history and nature of aqueous environments. Space Science Reviews, 174, 301328.Google Scholar
Osterloo, M., Hamilton, V., Bandfield, J., et al. (2008) Chloride-bearing materials in the southern highlands of Mars. Science, 319, 16511654.Google Scholar
Osterloo, M.M., Anderson, F.S., Hamilton, V.E., & Hynek, B.M. (2010) Geologic context of proposed chloride‐bearing materials on Mars. Journal of Geophysical Research, 115, E10012: DOI:10.1029/2010JE003613.Google Scholar
Palomba, E., Zinzi, A., Cloutis, E.A., D’Amore, M., Grassi, D., & Maturilli, A. (2009) Evidence for Mg-rich carbonates on Mars from a 3.9 μm absorption feature. Icarus, 203, 5865.Google Scholar
Ramsey, M.S. & Christensen, P.R. (1998) Mineral abundance determination: Quantitative deconvolution of thermal emission spectra. Journal of Geophysical Research, 103, 577596.Google Scholar
Rice, M.S., Cloutis, E.A., Bell, J.F. III, et al. (2013) Reflectance spectra diversity of silica-rich materials: Sensitivity to environment and implications for detections on Mars. Icarus, 223, 499533.Google Scholar
Rogers, A.D. & Christensen, P.R. (2007) Surface mineralogy of martian low‐albedo regions from MGS‐TES data: Implications for upper crustal evolution and surface alteration. Journal of Geophysical Research, 112, E01003, DOI:10.1029/2006JE002727.Google Scholar
Rogers, A.D. & Aharonson, O. (2008) Mineralogical composition of sands in Meridiani Planum determined from Mars Exploration rover data and comparison to orbital measurements. Journal of Geophysical Research, 113, E06S14, DOI:10.1029/2007JE002995.Google Scholar
Rogers, A.D. & Bandfield, J.L. (2009) Mineralogical characterization of Mars Science Laboratory candidate landing sites from THEMIS and TES data. Icarus, 203, 437453.Google Scholar
Rogers, A.D. & Fergason, R.L. (2011) Regional‐scale stratigraphy of surface units in Tyrrhena and Iapygia Terrae, Mars: Insights into highland crustal evolution and alteration history. Journal of Geophysical Research, 116, E08005, DOI:10.1029/2010JE003772.Google Scholar
Rogers, A.D. & Hamilton, V.E. (2015) Compositional provinces of Mars from statistical analyses of TES, GRS, OMEGA and CRISM data. Journal of Geophysical Research, 120, 6291.Google Scholar
Rogers, A.D. & Nazarian, A.H. (2013) Evidence for Noachian flood volcanism in Noachis Terra, Mars, and the possible role of Hellas impact basin tectonics. Journal of Geophysical Research, 118, 10941113.Google Scholar
Rogers, A.D. & Nekvasil, H. (2015) Feldspathic rocks on Mars: Compositional constraints from infrared spectroscopy and possible formation mechanisms. Geophysical Research Letters, 42, 26192626.Google Scholar
Rogers, A.D., Christensen, P.R., & Bandfield, J.L. (2005) Compositional heterogeneity of the ancient martian crust: Analysis of Ares Vallis bedrock with THEMIS and TES data. Journal of Geophysical Research, 110, E05010, DOI:10.1029/2005JE002399.Google Scholar
Rogers, A.D., Aharonson, O., & Bandfield, J.L. (2009) Geologic context of bedrock exposures in Mare Serpentis, Mars: Implications for crust and regolith evolution in the cratered highlands. Icarus, 200, 446462.Google Scholar
Ruff, S.W. (2004) Spectral evidence for zeolite in the dust on Mars. Icarus, 168, 131143.Google Scholar
Ruff, S.W. & Christensen, P.R. (2002) Bright and dark regions on Mars: Particle size and mineralogical characteristics based on Thermal Emission Spectrometer data. Journal of Geophysical Research, 107, 5127, DOI:5110.1029/2001JE001580.Google Scholar
Ruff, S.W. & Christensen, P.R. (2007) Basaltic andesite, altered basalt, and a TES‐based search for smectite clay minerals on Mars. Geophysical Research Letters, 34, L10204, DOI:10.1029/2007GL029602.Google Scholar
Ruff, S.W. & Hamilton, V.E. (2017) Wishstone to Watchtower: Amorphous alteration of plagioclase-rich rocks in Gusev crater, Mars. American Mineralogist, 102, 235251.Google Scholar
Ruff, S.W., Christensen, P.R., Clark, R.N., et al. (2001) Mars’ “White Rock” feature lacks evidence of an aqueous origin: Results from Mars Global Surveyor. Journal of Geophysical Research, 106, 23,921–23,927.Google Scholar
Ruff, S.W., Christensen, P.R., Blaney, D., et al. (2006) The rocks of Gusev crater as viewed by the Mini‐TES instrument. Journal of Geophysical Research, 111, DOI:E12S1810.1029/2006JE002747.Google Scholar
Ruff, S.W., Farmer, J.D., Calvin, W.M., et al. (2011) Characteristics, distribution, origin, and significance of opaline silica observed by the Spirit rover in Gusev crater, Mars. Journal of Geophysical Research, 116, DOI:E00F2310.1029/2010JE003767.Google Scholar
Salisbury, J.W. (1991) Infrared (2.1–25 μm) spectra of minerals. The Johns Hopkins University Press, Baltimore, MD.Google Scholar
Salisbury, J.W., D’Aria, D.M., & Jarosewich, E. (1991) Midinfrared (2.5–13.5 μm) reflectance spectra of powdered stony meteorites. Icarus, 92, 280297.Google Scholar
Smith, M.D., Bandfield, J.L., & Christensen, P.R. (2000) Separation of atmospheric and surface spectral features in Mars Global Surveyor Thermal Emission Spectrometer (TES) spectra. Journal of Geophysical Research, 105, 95899607.Google Scholar
Smith, M.R. & Bandfield, J.L. (2012) Geology of quartz and hydrated silica‐bearing deposits near Antoniadi crater, Mars. Journal of Geophysical Research, 117, DOI:E0600710.1029/2011JE004038.Google Scholar
Smith, M.R., Bandfield, J.L., Cloutis, E.A., & Rice, M.S. (2013) Hydrated silica on Mars: Combined analysis with near-infrared and thermal-infrared spectroscopy. Icarus, 223, 633648.Google Scholar
Squyres, S.W., Grotzinger, J.P., Arvidson, R.E., et al. (2004) In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars. Science, 306, 17091714.Google Scholar
Squyres, S.W., Arvidson, R.E., Ruff, S., et al. (2008) Detection of silica-rich deposits on Mars. Science, 320, 10631067.Google Scholar
Tosca, N.J. & Knoll, A.H. (2009) Juvenile chemical sediments and the long term persistence of water at the surface of Mars. Earth and Planetary Science Letters, 286, 379386.Google Scholar
Tosca, N.J. & McLennan, S.M. (2006) Chemical divides and evaporite assemblages on Mars. Earth and Planetary Science Letters, 241, 2131.Google Scholar
Vincent, R.K. & Hunt, G.R. (1968) Infrared reflectance from mat surfaces. Applied Optics, 7, 5359.Google Scholar
Wray, J.J., Hansen, S.T., Dufek, J., et al. (2013) Prolonged magmatic activity on Mars inferred from the detection of felsic rocks. Nature Geoscience, 6, 10131017.Google Scholar
Wray, J.J., Murchie, S.L., Bishop, J.L., et al. (2016) Orbital evidence for more widespread carbonate‐bearing rocks on Mars. Journal of Geophysical Research, 121, 652677.Google Scholar
Yen, A.S., Murray, B.C., & Rossman, G.R. (1998) Water content of the martian soil: Laboratory simulations of reflectance spectra. Journal of Geophysical Research, 103, 11,125–11,133.Google Scholar

References

Arvidson, R.E., Ruff, S.W., Morris, R.V., et al. (2008) Spirit Mars rover mission to the Columbia Hills, Gusev crater: Mission overview and selected results from the Cumberland Ridge to Home Plate. Journal of Geophysical Research, 113, DOI:10.1029/2008JE003183.Google Scholar
Arvidson, R.E., Bell, J.F. III, Bellutta, P., et al. (2010) Spirit Mars rover mission: Overview and selected results from the northern Home Plate winter haven to the side of Scamander crater. Journal of Geophysical Research, 115, DOI:10.1029/2008JE003183.Google Scholar
Ashley, J.W., Golombek, M.P., Christensen, P.R., et al. (2011) Evidence for mechanical and chemical alteration of iron-nickel meteorites on Mars: Process insights for Meridiani Planum. Journal of Geophysical Research, 116, DOI:10.1029/2010JE003672.Google Scholar
Bandfield, J.L., Christensen, P.R., & Smith, M.D. (2000) Spectral data set factor analysis and end-member recovery: Application to analysis of martian atmospheric particulates. Journal of Geophysical Research, 105, 95739587.Google Scholar
Bell, J.F. III, Joseph, J., Sohl-Dickstein, J.N., et al. (2006) In-flight calibration and performance of the Mars Exploration Rover Panoramic Camera (Pancam) instruments. Journal of Geophysical Research, 111, DOI:10.1029/2005JE002444.Google Scholar
Christensen, P.R., Bandfield, J.L., Clark, R.N., et al. (2000) Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: Evidence for near-surface water. Journal of Geophysical Research, 105, 96239642.Google Scholar
Christensen, P.R., Mehall, G.L., Silverman, S.H., et al. (2003) Miniature Thermal Emission Spectrometer for the Mars Exploration Rovers. Journal of Geophysical Research, 108, DOI:10.1029/2003JE002117.Google Scholar
Christensen, P.R., Wyatt, M.B., Glotch, T.D., et al. (2004a) Mineralogy at Meridiani Planum from the Mini-TES experiment on the Opportunity rover. Science, 306, 17331739.Google Scholar
Christensen, P.R., Ruff, S.W., Fergason, R.L., et al. (2004b) Initial results from the Mini-TES experiment in Gusev crater from the Spirit rover. Science, 305, 837842.Google Scholar
Connolly, H.C.J., Zipfel, J., Grossman, J.N., et al. (2006) The Meteoritical Bulletin No. 90. Meteoritics and Planetary Science, 41, 13831418.Google Scholar
Fergason, R.L., Christensen, P.R., Bell, J.F. III, Golombek, M.P., Herkenhoff, K.E., & Kieffer, H.H. (2006) Physical properties of the Mars Exploration Rover landing sites as inferred from Mini-TES–derived thermal inertia. Journal of Geophysical Research, 111, DOI:10.1029/2005JE002583.Google Scholar
Glotch, T.D. & Bandfield, J.L. (2006) Determination and interpretation of surface and atmospheric Mini-TES spectral end-members at the Meridiani Planum landing site. Journal of Geophysical Research, 111, DOI:10.1029/2005JE002671.Google Scholar
Glotch, T.D., Morris, R.V., Christensen, P.R., & Sharp, T.G. (2004) Effect of precursor mineralogy on the thermal infrared emission spectra of hematite: Application to martian hematite mineralization. Journal of Geophysical Research, 109, DOI:10.1029/2003JE002224.Google Scholar
Glotch, T.D., Bandfield, J.L., Christensen, P.R., et al. (2006) Mineralogy of the light-toned outcrop at Meridiani Planum as seen by the Miniature Thermal Emission Spectrometer and implications for its formation. Journal of Geophysical Research, 111, DOI:10.1029/2005JE002672.Google Scholar
Grant, J.A., Wilson, S.A., Ruff, S.W., Golombek, M.P., & Koestler, D.L. (2006) Distribution of rocks on the Gusev Plains and on Husband Hill, Mars. Geophysical Research Letters, 33, DOI:10.1029/2006GL026964.Google Scholar
Grotzinger, J.P., Arvidson, R.E., Bell, J.F. III, et al. (2005) Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars. Earth and Planetary Science Letters, 240, 1172.Google Scholar
Hamilton, V.E. & Ruff, S.W. (2012) Distribution and characteristics of Adirondack-class basalt as observed by Mini-TES in Gusev crater, Mars and its possible volcanic source. Icarus, 218, 917949.Google Scholar
Hurowitz, J.A. & Fischer, W.W. (2014) Contrasting styles of water–rock interaction at the Mars Exploration Rover landing sites. Geochimica et Cosmochimica Acta, 127, 2538.Google Scholar
Hurowitz, J.A., McLennan, S.M., McSween, H.Y. Jr., DeSouza, P.A. Jr., & Klingelhӧfer, G. (2006) Mixing relationships and the effects of secondary alteration in the Wishstone and Watchtower Classes of Husband Hill, Gusev crater, Mars. Journal of Geophysical Research, 111, DOI:10.1029/2006JE002795.Google Scholar
McLennan, S.M., Bell, J.F. III, Calvin, W.M., et al. (2005) Provenance and diagenesis of the evaporate-bearing Burns formation, Meridiani Planum, Mars. Earth and Planetary Science Letters, 240, 95121.Google Scholar
McSween, H.Y., Jr., Arvidson, R.E., Bell, J.F. III, et al. (2004) Basaltic rocks analyzed by the Spirit rover in Gusev crater. Science, 305, 842845.Google Scholar
Morris, R.V., Klingelhofer, G., Schroder, C., et al. (2008) Iron mineralogy and aqueous alteration from Husband Hill through Home Plate at Gusev crater, Mars: Results from the Mössbauer instrument on the Spirit Mars Exploration Rover. Journal of Geophysical Research, 113, DOI:10.1029/2008JE003201.Google Scholar
Morris, R.V., Ruff, S.W., Gellert, R., et al. (2010) Identification of carbonate-rich outcrops on Mars by the Spirit rover. Science, 329, 421424.Google Scholar
Ramsey, M.S. & Christensen, P.R. (1998) Mineral abundance determination: Quantitative deconvolution of thermal emission spectra. Journal of Geophysical Research, 103, 577596.Google Scholar
Rivera-Hernandez, F., Bandfield, J.L., Ruff, S.W., & Wolff, M.J. (2015) Characterizing the thermal infrared spectral effects of optically thin surface dust: Implications for remote-sensing and in situ measurements of the martian surface. Icarus, 262, 173186.Google Scholar
Rogers, A.D. & Aharonson, O. (2008) Mineralogical composition of sands in Meridiani Planum determined from Mars Exploration Rover data and comparison to orbital measurements. Journal of Geophysical Research, 113, DOI:10.1029/2007JE002995.Google Scholar
Ruff, S.W. & Farmer, J.D. (2016) Silica deposits on Mars with features resembling hot spring biosignatures at El Tatio in Chile. Nature Communications, 7, 13554.Google Scholar
Ruff, S.W. & Hamilton, V.E. (2017) Wishstone to Watchtower: Amorphous alteration of plagioclase-rich rocks in Gusev crater, Mars. American Mineralogist, 102, 235251.Google Scholar
Ruff, S.W., Christensen, P.R., Barbera, P.W., & Anderson, D.L. (1997) Quantitative thermal emission spectroscopy of minerals: A laboratory technique for measurement and calibration. Journal of Geophysical Research, 102, 14,89914,913.Google Scholar
Ruff, S.W., Christensen, P.R., Blaney, D.L., et al. (2006) The rocks of Gusev crater as viewed by the Mini-TES instrument. Journal of Geophysical Research, 111, DOI:10.1029/2006JE002747.Google Scholar
Ruff, S.W., Christensen, P.R., Glotch, T.D., Blaney, D.L., Moersch, J.E., & Wyatt, M.B. (2008) The mineralogy of Gusev crater and Meridiani Planum derived from the Miniature Thermal Emission Spectrometers on the Spirit and Opportunity rovers. In: The martian surface: Composition, mineralogy, and physical properties (Bell, J., ed.). Cambridge University Press, Cambridge, 315338.Google Scholar
Ruff, S.W., Farmer, J.D., Calvin, W.M., et al. (2011) Characteristics, distribution, origin, and significance of opaline silica observed by the Spirit rover in Gusev crater. Journal of Geophysical Research, 116, DOI:10.1029/2010JE003767.Google Scholar
Ruff, S.W., Niles, P.B., Alfano, F., & Clarke, A.B. (2014) Evidence for a Noachian-aged ephemeral lake in Gusev crater, Mars. Geology, 42, 359362.Google Scholar
Savransky, D. & Bell, J.F. III (2004) True color and chromaticity of the martian surface and sky from Mars Exploration Rover Pancam observations. Eos, Transactions American Geophysical Union, Abstract P21A-0197.Google Scholar
Schröder, C., Rodionov, D.S., McCoy, T.J., et al. (2008) Meteorites on Mars observed by the Mars Exploration Rovers. Journal of Geophysical Research, DOI:10.1029/2007JE002990.Google Scholar
Smith, M.D., Wolff, M.J., Lemmon, M.T., et al. (2004) First atmospheric science results from the Mars Exploration Rovers Mini-TES. Science, 306, 17501753.Google Scholar
Smith, M.D., Wolff, M.J., Spanovich, N., et al. (2006) One martian year of atmospheric observations using MER Mini-TES. Journal of Geophysical Research, 111, DOI:10.1029/2006JE002770.Google Scholar
Squyres, S.W., Arvidson, R.E., Baumgartner, E.T., et al. (2003) Athena Mars rover science investigation. Journal of Geophysical Research, 108, DOI:10.1029/2003JE002121.Google Scholar
Squyres, S.W., Arvidson, R.E., Bell, J.F. III, et al. (2004a) The Opportunity rover’s Athena science investigation at Meridiani Planum, Mars. Science, 306, 16981703.Google Scholar
Squyres, S.W., Arvidson, R.E., Bell, J.F. III, et al. (2004b) The Spirit rover’s Athena science investigation at Gusev crater, Mars. Science, 305, 794799.Google Scholar
Squyres, S.W., Arvidson, R.E., Ruff, S.W., et al. (2008) Detection of silica-rich deposits on Mars. Science, 320, 10631067.Google Scholar
Yen, A.S., Gellert, R., Schroder, C., et al. (2005) An integrated view of the chemistry and mineralogy of martian soils. Nature, 436, 4954.Google Scholar

References

Adams, J.B. (1974) Visible and near‐infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the Solar System. Journal of Geophysical Research, 79, 48294836.Google Scholar
Arvidson, R.E. (2016) Aqueous history of Mars as inferred from landed mission measurements of rocks, soils, and water ice. Journal of Geophysical Research, 121, 16021626.Google Scholar
Arvidson, R.E., Squyres, S.W., Anderson, R.C., et al. (2006) Overview of the spirit Mars exploration rover mission to Gusev crater: Landing site to Backstay Rock in the Columbia Hills. Journal of Geophysical Research, 111, DOI:10.1029/2005JE002499.Google Scholar
Arvidson, R.E., Ruff, S.W., Morris, R.V., et al. (2008) Spirit Mars rover mission to the Columbia Hills, Gusev crater: Mission overview and selected results from the Cumberland Ridge to Home Plate. Journal of Geophysical Research, 113, E12S33, DOI:10.1029/2008JE003183.Google Scholar
Arvidson, R.E., Bonitz, R.G., Robinson, M.L., et al. (2009) Results from the Mars Phoenix Lander robotic arm experiment. Journal of Geophysical Research, 114, DOI:10.1029/2009JE003408.Google Scholar
Arvidson, R.E., Bell, J.F. III, Bellutta, P., et al. (2010) Spirit Mars rover mission: Overview and selected results from the northern Home Plate Winter Haven to the side of Scamander crater. Journal of Geophysical Research, 115, DOI:10.1029/2010JE003633.Google Scholar
Arvidson, R.E., Ashley, J.W., Bell, J., et al. (2011) Opportunity Mars rover mission: Overview and selected results from Purgatory ripple to traverses to Endeavour crater. Journal of Geophysical Research, 116, DOI:10.1029/2010JE003746.Google Scholar
Arvidson, R.E., Squyres, S.W., Bell, J.F., et al. (2014) Ancient aqueous environments at Endeavour crater, Mars. Science, 343, 1248097.Google Scholar
Arvidson, R.E., Squyres, S.W., Morris, R.V., et al. (2016) High concentrations of manganese and sulfur in deposits on Murray Ridge, Endeavour crater, Mars. American Mineralogist, 101, 13891405.Google Scholar
Ashley, J.W., Golombek, M., Christensen, P.R., et al. (2011) Evidence for mechanical and chemical alteration of iron‐nickel meteorites on Mars: Process insights for Meridiani Planum. Journal of Geophysical Research, 116, E00F20, DOI:10.1029/2010JE003672.Google Scholar
Bell, J.F. III (1996) Iron, sulfate, carbonate, and hydrated minerals on Mars. In: Mineral spectroscopy: A tribute to Roger G. Burns. (Dyar, M.D., McCammon, C., & Schaefer, M.W., eds.). Geochemical Society Special Publication 5. Geochemical Society, Houston, TX, 359380.Google Scholar
Bell, J.F. III & Ansty, T. (2007) High spectral resolution UV to near-IR observations of Mars during 1999, 2001, and 2003 using HST/STIS. Icarus, 191, 581602.Google Scholar
Bell, J.F. III, McCord, T.B., & Owensby, P.D. (1990) Observational evidence of crystalline iron oxides on Mars. Journal of Geophysical Research, 95, 1444714461.Google Scholar
Bell, J.F. III, McSween, H.Y. Jr., Murchie, S.L., et al. (2000) Mineralogic and compositional properties of martian soil and dust: Results from Mars Pathfinder. Journal of Geophysical Research, 105, 17211755.Google Scholar
Bell, J.F. III, Squyres, S., Herkenhoff, K., et al. (2003) Mars exploration rover Athena panoramic camera (Pancam) investigation. Journal of Geophysical Research, 108, DOI:10.1029/2003JE002070.Google Scholar
Bell, J.F. III, Squyres, S.W., Arvidson, R.E., et al. (2004a) Pancam multispectral imaging results from the Opportunity rover at Meridiani Planum. Science, 306, 17031709.Google Scholar
Bell, J.F. III, Squyres, S.W., Arvidson, R., et al. (2004b) Pancam multispectral imaging results from the Spirit rover at Gusev crater. Science, 305, 800806.Google Scholar
Bell, J.F. III, Savransky, D., & Wolff, M.J. (2006) Chromaticity of the martian sky as observed by the Mars Exploration Rover Pancam instruments. Journal of Geophysical Research, 111, E12S05, DOI:10.1029/2006JE002687.Google Scholar
Bell, J.F. III, Calvin, W.M., Farrand, W.H., et al. (2008) Mars Exploration Rover Pancam multispectral imaging of rocks, soils, and dust in Gusev crater and Meridiani Planum. In: The martian surface: Composition, mineralogy, and physical properties (Bell, J.F. III, ed.). Cambridge University Press, Cambridge, 281314.Google Scholar
Bell, J.F. III, Maki, J.N., Mehall, G.L., Ravine, M.A., Caplinger, M.A., & Mastcam-Z Team. (2016) Mastcam-Z: Designing a geologic, stereoscopic, and multispectral pair of zoom cameras for the NASA Mars 2020 rover. 3rd International Workshop on Instrumentation for Planetary Missions, Abstract #4126.Google Scholar
Bell J.F. III, Godber, A., McNair, S., et al. (2017) The Mars Science Laboratory Curiosity rover Mastcam instruments: Preflight and in‐flight calibration, validation, and data archiving. Earth and Space Science, 4, 396452.Google Scholar
Bibring, J.-P., Langevin, Y., Gendrin, A., et al. (2005) Mars surface diversity as revealed by the OMEGA/Mars Express observations. Science, 307, 15761581.Google Scholar
Bish, D.L., Blake, D., Vaniman, D., et al. (2013) X-ray diffraction results from Mars Science Laboratory: Mineralogy of Rocknest at Gale crater. Science, 341, 1238932.Google Scholar
Blake, D., Vaniman, D., Achilles, C., et al. (2012) Characterization and calibration of the CheMin mineralogical instrument on Mars Science Laboratory. Space Science Reviews, 170, 341399.Google Scholar
Christensen, P., Wyatt, M., Glotch, T., et al. (2004) Mineralogy at Meridiani Planum from the Mini-TES experiment on the Opportunity rover. Science, 306, 17331739.Google Scholar
Clark, B.C., Arvidson, R.E., Gellert, R., et al. (2007) Evidence for montmorillonite or its compositional equivalent in Columbia Hills, Mars. Journal of Geophysical Research, 112, E06S01, DOI:10.1029/2006JE002756.Google Scholar
Clark, B.C., Morris, R.V., Herkenhoff, K.E., et al. (2016) Esperance: Multiple episodes of aqueous alteration involving fracture fills and coatings at Matijevic Hill, Mars. American Mineralogist, 101, 15151526.Google Scholar
Crumpler, L.S., Arvidson, R.E., Squyres, S.W., et al. (2011) Field reconnaissance geologic mapping of the Columbia Hills, Mars, based on Mars Exploration Rover Spirit and MRO HiRISE observations. Journal of Geophysical Research, 116, E00F24, DOI:10.1029/2010JE003749.Google Scholar
Crumpler, L., Arvidson, R., Bell, J., et al. (2015) Context of ancient aqueous environments on Mars from in situ geologic mapping at Endeavour crater. Journal of Geophysical Research, 120, 538569.Google Scholar
Cull, S.C., Arvidson, R.E., Catalano, J.G., et al. (2010a) Concentrated perchlorate at the Mars Phoenix landing site: Evidence for thin film liquid water on Mars. Geophysical Research Letters, 37, L22203, DOI:10.1029/2010GL045269.Google Scholar
Cull, S., Arvidson, R.E., Mellon, M.T., Skemer, P., Shaw, A., & Morris, R.V. (2010b) Compositions of subsurface ices at the Mars Phoenix landing site. Geophysical Research Letters, 37, L24203, DOI:10.1029/2010GL045372.Google Scholar
Cull, S., Arvidson, R.E., Morris, R.V., Wolff, M., Mellon, M.T., & Lemmon, M.T. (2010c) Seasonal ice cycle at the Mars Phoenix landing site: 2. Postlanding CRISM and ground observations. Journal of Geophysical Research, 115, E00E19. DOI:10.1029/2009JE003410.Google Scholar
Cull, S., Kennedy, E., & Clark, A. (2014) Aqueous and non-aqueous soil processes on the northern plains of Mars: Insights from the distribution of perchlorate salts at the Phoenix lfanding site and in Earth analog environments. Planetary and Space Science, 96, 2934.Google Scholar
Drube, L., Leer, K., Goetz, W., et al. (2010) Magnetic and optical properties of airborne dust and settling rates of dust at the Phoenix landing site. Journal of Geophysical Research, 115, E00E23. DOI:10.1029/2009JE003419.Google Scholar
Edgett, K.S., Yingst, R.A., Ravine, M.A., et al. (2012) Curiosity’s Mars hand lens imager (MAHLI) investigation. Space Science Reviews, 170, 259317.Google Scholar
Ellehoj, M.D., Gunnlaugsson, H.P., Taylor, P.A., et al. (2010) Convective vortices and dust devils at the Phoenix Mars mission landing site. Journal of Geophysical Research, 115, E00E16. DOI:10.1029/2009JE003413.Google Scholar
Farrand, W.H., Bell, J.F. III, Johnson, J.R., Squyres, S.W., Soderblom, J., & Ming, D.W. (2006) Spectral variability among rocks in visible and near-infrared multispectral Pancam data collected at Gusev crater: Examinations using spectral mixture analysis and related techniques. Journal of Geophysical Research, 111, E02S15, DOI:10.1029/2005JE002495.Google Scholar
Farrand, W.H., Bell, J.F., Johnson, J.R., et al. (2007) Visible and near‐infrared multispectral analysis of rocks at Meridiani Planum, Mars, by the Mars Exploration Rover Opportunity. Journal of Geophysical Research, 112, E06S02, DOI:10.1029/2006JE002773.Google Scholar
Farrand, W.H., Bell, J.F. III, Johnson, J.R., Bishop, J.L., & Morris, R.V. (2008a) Multispectral imaging from Mars Pathfinder. In: The martian surface (Bell, J.F. III, ed.). Cambridge University Press, Cambridge, 265280.Google Scholar
Farrand, W.H., Bell, J., Johnson, J.R., et al. (2008b) Rock spectral classes observed by the Spirit rover’s Pancam on the Gusev Crater Plains and in the Columbia Hills. Journal of Geophysical Research, 113, E12S38, DOI:10.1029/2008JE003237.Google Scholar
Farrand, W.H., Bell, J.F. III, Johnson, J.R., Rice, M.S., & Hurowitz, J.A. (2013) VNIR multispectral observations of rocks at Cape York, Endeavour crater, Mars by the Opportunity rover’s Pancam. Icarus, 225, 709725.Google Scholar
Farrand, W.H., Bell, J.F. III, Johnson, J.R., Rice, M.S., Jolliff, B.L., & Arvidson, R.E. (2014a) Observations of rock spectral classes by the Opportunity rover’s Pancam on northern Cape York and on Matijevic Hill, Endeavour crater, Mars. Journal of Geophysical Research, 119, 23492369.Google Scholar
Farrand, W.H., Bell, J.F., Johnson, J.R., & Mittlefehldt, D.W. (2014b) Multispectral VNIR evidence of alteration processes on Solander Point, Endeavour crater, Mars. 8th International Conference on Mars, Abstract #1354.Google Scholar
Farrand, W.H., Johnson, J.R., Rice, M.S., Wang, A., & Bell, J.F. III (2016) VNIR multispectral observations of aqueous alteration materials by the Pancams on the Spirit and Opportunity Mars Exploration Rovers. American Mineralogist, 101, 20052019.Google Scholar
Fox, V., Arvidson, R., Guinness, E., et al. (2016) Smectite deposits in Marathon Valley, Endeavour crater, Mars, identified using CRISM hyperspectral reflectance data. Geophysical Research Letters, 43, 48854892.Google Scholar
Fraeman, A.A., Arvidson, R.E., Catalano, J.G., et al. (2013) A hematite-bearing layer in Gale crater, Mars: Mapping and implications for past aqueous conditions. Geology, 41, 11031106.Google Scholar
Fraeman, A.A., Johnson, J.R., Wellington, D.F., et al. (2016) Distribution of iron oxides in lower Mt. Sharp from Curiosity and orbital datasets, and implications for their formation. AGU Fall Meeting Abstracts, Abstract #P23B-2173.Google Scholar
Gaffey, M.J. (1976) Spectral reflectance characteristics of the meteorite classes. Journal of Geophysical Research, 81, 905920.Google Scholar
Goetz, W., Bertelsen, P., Binau, C., et al. (2005) Chemistry and minearology of atmospheric dust at Gusev crater: Indication of dryer periods on Mars. Nature, 436, 6265.Google Scholar
Goetz, W., Pike, W.T., Hviid, S.F., et al. (2010) Microscopy analysis of soils at the Phoenix landing site, Mars: Classification of soil particles and description of their optical and magnetic properties. Journal of Geophysical Research, 115, E00E22, DOI:10.1029/2009JE003437.Google Scholar
Goetz, W., Hecht, M.H., Hviid, S.F., et al. (2012) Search for ultraviolet luminescence of soil particles at the Phoenix landing site, Mars. Planetary and Space Science, 70, 134147.Google Scholar
Grotzinger, J.P., Arvidson, R.E., Bell, J.F., et al. (2005) Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars. Earth and Planetary Science Letters, 240, 1172.Google Scholar
Grotzinger, J.P., Crisp, J., Vasavada, A.R., et al. (2012) Mars Science Laboratory mission and science investigation. Space Science Reviews, 170, 556.Google Scholar
Grotzinger, J.P., Sumner, D.Y., Kah, L.C., et al. (2014) A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale crater, Mars. Science, 343, 1242777.Google Scholar
Gunn, M.D. & Cousins, C.R. (2016) Mars surface context cameras past, present, and future. Earth and Space Science, 3, 144162.Google Scholar
Hapke, B. (1993) Theory of reflectance and emittance spectroscopy. Cambridge University Press, Cambridge.Google Scholar
Hecht, M.H., Marshall, J., Pike, W.T., et al. (2008) Microscopy capabilities of the Microscopy, Electrochemistry, and Conductivity Analyzer. Journal of Geophysical Research, 113, E00A22, DOI:10.1029/2008JE003077.Google Scholar
Hecht, M.H., Kounaves, S.P., Quinn, R.C., et al. (2009) Detection of perchlorate and the soluble chemistry of martian soil at the Phoenix lander site. Science, 325, 6467.Google Scholar
Holstein-Rathlou, C., Gunnlaugsson, H.P., Merrison, J.P., et al. (2010) Winds at the Phoenix landing site. Journal of Geophysical Research, 115, E00E18. DOI:10.1029/2009JE003411.Google Scholar
Horgan, B., Fraeman, A.A., Rice, M.S., Bell, J.F., Wellington, D., & Johnson, J.R. (2017) New constraints from CRISM and Mastcam spectra on the mineralogy and origin of Mt. Sharp geologic units, Gale crater, Mars. 48th Lunar Planet. Sci. Conf., Abstract #3021.Google Scholar
Huck, F.O., Jobson, D.J., Park, S.K., et al. (1977) Spectrophotometric and color estimates of the Viking Lander sites. Journal of Geophysical Research, 82, 44014411.Google Scholar
Johnson, J.R., Grundy, W.M., & Lemmon, M.T. (2003) Dust deposition at the Mars Pathfinder landing site: Observations and modeling of visible/near-infrared spectra. Icarus, 163, 330346.Google Scholar
Johnson, J.R., Grundy, W.M., Lemmon, M.T., et al. (2006a) Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers: 1. Spirit. Journal of Geophysical Research, 111, DOI:10.1029/2005JE002494.Google Scholar
Johnson, J.R., Grundy, W.M., Lemmon, M.T., et al. (2006b) Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers: 2. Opportunity. Journal of Geophysical Research, 111, DOI:10.1029/2006JE002762.Google Scholar
Johnson, J.R., Bell, J.F. III, Cloutis, E.A., et al. (2007) Mineralogic constraints on sulfur-rich soils from Pancam spectra at Gusev crater, Mars. Geophysical Research Letters, 34, L13202, DOI:10.1029/2007GL029894.Google Scholar
Johnson, J.R., Bell, J.F. III, Geissler, P., et al. (2008) Physical properties of the martian surface from spectrophotometric observations. In: The martian surface: Composition, mineralogy, and physical properties (Bell, J.F. III, ed.). Cambridge University Press, Cambridge, 428450.Google Scholar
Johnson, J.R., Bell, J.F. III, Hayes, A., et al. (2013) Preliminary Mastcam visible/near-infrared spectrophotometric observations at the Curiosity landing site, Mars. 44th Lunar Planet. Sci. Conf., Abstract #1374.Google Scholar
Johnson, J.R., Bell, J.F. III, Gasnault, O., et al. (2014a) First iron meteorites observed by the Mars Science Laboratory (MSL) rover Curiosity. AGU Fall Meeting Abstracts, Abstract #P51E-3989.Google Scholar
Johnson, J.R., Bell, J.F. III, Hayes, A., et al. (2014b) New Mastcam and Mahli visible/near-infrared spectrophotometric observations at the Curiosity landing site, Mars. 8th International Conference on Mars, Abstract #1073.Google Scholar
Johnson, J.R., Grundy, W.M., Lemmon, M.T., JBell, J.F. III, & Deen, R.G. (2015a) Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers: 3. Sols 500–1525. Icarus, 248, 2571.Google Scholar
Johnson, J.R., Bell, J.F. III, Guinness, E., & Deen, R. (2015b) The Mars Exploration Rovers Planetary Data System Archive of Pancam Photometry QUBS. Geologic Society of America Annual Meeting, Baltimore, MD, November 1–4, 2015, Abstract #260213.Google Scholar
Johnson, J.R., Bell, J.F. III, Hayes, A., et al. (2015c) Recent Mastcam and MAHLI visible/near-infrared spectrophotometric observations: Kimberley to Hidden Valley. 46th Lunar Planet. Sci. Conf., Abstract #1424.Google Scholar
Johnson, J.R., Bell, J.F. III, Deen, R., et al. (2015d) Recent Mastcam and MAHLI visible/near-infrared spectrophotometric observations: Pahrump Hills to Marias Pass. AGU Fall Meeting, Abstract #P43B-2125.Google Scholar
Johnson, J.R., Bell, J.F. III, Bender, S., & MSL Science Team. (2015e) ChemCam Passive Reflectance Spectroscopy of surface materials at the Curiosity landing site, Mars. Icarus, 249, 7492.Google Scholar
Johnson, J.R., Bell, J.F., Bender, S., et al. (2016) Constraints on iron sulfate and iron oxide mineralogy from ChemCam visible/near-infrared reflectance spectroscopy of Mt. Sharp basal units, Gale crater, Mars. American Mineralogist, 101, 15011514.Google Scholar
Johnson, J.R., Achilles, C., Bell, J.F., et al. (2017) Visible/near‐infrared spectral diversity from in situ observations of the Bagnold Dune Field sands in Gale crater, Mars. Journal of Geophysical Research, 122, 26552684.Google Scholar
Keller, H.U., Goetz, W., Hartwig, H., et al. (2008) Phoenix Robotic Arm Camera. Journal of Geophysical Research, 113, E00A17, DOI:10.1029/2007JE003044.Google Scholar
Kinch, K.M., Merrison, J.P., Gunnlaugsson, H.P., Bertelsen, P., Madsen, M.B., & Nørnberg, P. (2006) Preliminary analysis of the MER magnetic properties experiment using a computational fluid dynamics model. Planetary and Space Science, 54, 2844.Google Scholar
Kinch, K.M., Bell, J.F., Goetz, W., et al. (2015) Dust deposition on the decks of the Mars Exploration Rovers: 10 years of dust dynamics on the Panoramic Camera calibration targets. Earth and Space Science, 2, 144172.Google Scholar
Klingelhöfer, G., Morris, R.V., Bernhardt, B., et al. (2004) Jarosite and Hematite at Meridiani Planum from Opportunity’s Mössbauer Spectrometer. Science, 306, 17401745.Google Scholar
Knoll, A.H., Jolliff, B.L., Farrand, W.H., et al. (2008) Veneers, rinds, and fracture fills: Relatively late alteration of sedimentary rocks at Meridiani Planum, Mars. Journal of Geophysical Research, 113, E06S16, DOI:10.1029/2007JE002949.Google Scholar
Lane, M., Morris, R.V., & Christensen, P.R. (1999) Spectral behavior of hematite at visible/near infrared and mid-infrared wavelengths. 5th International Conference on Mars, Abstract #6085.Google Scholar
Lane, M., Bishop, J., Dyar, M.D., King, P., Parente, M., & Hyde, B. (2008) Mineralogy of the Paso Robles soils on Mars. American Mineralogist, 93, 728739.Google Scholar
Lemmon, M.T., Wolff, M.J., Bell, J.F. III, Smith, M.D., Cantor, B.A., & Smith, P.H. (2015)Dust aerosol, clouds, and the atmospheric optical depth record over 5 Mars years of the Mars Exploration Rover mission. Icarus, 251, 96111, DOI:10.1016/j.icarus.2014.03.029.Google Scholar
Lemmon, M., Smith, P.H., Shinohara, C., et al. (2008) The Phoenix surface stereo imager (SSI) investigation. 39th Lunar Planet. Sci. Conf., Abstract #2156.Google Scholar
Lemmon, M.T., Wolff, M.J., Smith, M.D., et al. (2004) Atmospheric imaging results from the Mars Exploration Rovers: Spirit and Opportunity. Science, 306, 17531756.Google Scholar
Madsen, M.B., Goetz, W., Bertelsen, P., et al. (2009) Overview of the magnetic properties experiments on the Mars Exploration Rovers. Journal of Geophysical Research, 114, E06S90, DOI:10.1029/2008je003098.Google Scholar
Mahaffy, P.R., Webster, C.R., Cabane, M., et al. (2012) The sample analysis at Mars Investigation and Instrument Suite. Space Science Reviews, 170, 401478.Google Scholar
Malin, M.C., Ravine, M.A., Caplinger, M.A., et al. (2017) The Mars Science Laboratory (MSL) Mast cameras and Descent imager: Investigation and instrument descriptions. Earth and Space Science, 4, 506539.Google Scholar
Matijevic, J.R., Crisp, J., Bickler, D.B., et al. (1997) Characterization of the martian surface deposits by the Mars Pathfinder rover, Sojourner. Science, 278, 17651768.Google Scholar
McLennan, S.M., Bell, J.F., Calvin, W.M., et al. (2005) Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars. Earth and Planetary Science Letters, 240, 95121.Google Scholar
McSween, H.Y., Wyatt, M.B., Gellert, R., et al. (2006a) Characterization and petrologic interpretation of olivine-rich basalts at Gusev crater, Mars Journal of Geophysical Research, 111, E02S10, DOI:10.1029/2005JE002477.Google Scholar
McSween, H.Y., Ruff, S.W., Morris, R.V., et al. (2006b) Alkaline volcanic rocks from the Columbia Hills, Gusev crater, Mars. Journal of Geophysical Research, 111, E09S91, DOI:10.1029/2006JE002698.Google Scholar
Mellon, M.T., Arvidson, R.E., Sizemore, H.G., et al. (2009) Ground ice at the Phoenix landing site: Stability state and origin. Journal of Geophysical Research, 114, E00E07. DOI:10.1029/2009JE003417.Google Scholar
Milliken, R.E., Grotzinger, J.P., & Thomson, B.J. (2010) Paleoclimate of Mars as captured by the stratigraphic record in Gale crater. Geophysical Research Letters, 37, L04201. DOI:10.1029/2009GL041870.Google Scholar
Ming, D.W., Mittlefehldt, D.W., Morris, R.V., et al. (2006) Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars. Journal of Geophysical Research, 111, E02S12, DOI:10.1029/2005JE002560.Google Scholar
Ming, D.W., Gellert, R., Morris, R.V., et al. (2008) Geochemical properties of rocks and soils in Gusev crater, Mars: Results of the Alpha Particle X-Ray Spectrometer from Cumberland Ridge to Home Plate. Journal of Geophysical Research, 113, E12S39, DOI:10.1029/2008JE003195.Google Scholar
Moores, J.E., Lemmon, M.T., Smith, P.H., Komguem, L., & Whiteway, J.A. (2010) Atmospheric dynamics at the Phoenix landing site as seen by the Surface Stereo Imager. Journal of Geophysical Research, 115, E00E08. DOI:10.1029/2009JE003409.Google Scholar
Moores, J.E., Komguem, L., Whiteway, J.A., Lemmon, M.T., Dickinson, C., & Daerden, F. (2011) Observations of near-surface fog at the Phoenix Mars landing site. Geophysical Research Letters, 38, L04203, DOI:10.1029/2010GL046315.Google Scholar
Morris, R.V. & Klingelhöfer, G. (2008) Iron mineralogy and aqueous alteration on Mars from the MER Mössbauer spectrometers. In: The martian surface: Composition, mineralogy and physical properties (Bell, J.F. III, ed.). Cambridge University Press, Cambridge, 339365.Google Scholar
Morris, R.V., Golden, D.C., Bell, J.F., Lauer, H.V., & Adams, J.B. (1993) Pigmenting agents in martian soils: Inferences from spectral, Mössbauer, and magnetic properties of nanophase and other iron oxides in Hawaiian palagonitic soil PN-9. Geochimica et Cosmochimica Acta, 57, 45974609.Google Scholar
Morris, R.V., Klingelhöfer, G., Schröder, C., et al. (2006) Mössbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity’s journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits. Journal of Geophysical Research, 111, DOI:10.1029/2006JE002791.Google Scholar
Morris, R.V., Ming, D.W., Yen, A., et al. (2007) Possible evidence for iron sulfates, iron sulfides, and elemental sulfur at Gusev crater, Mars, from MER, CRISM, and analog data. 7th International Conference on Mars, Abstract #3933.Google Scholar
Morris, R.V., Klingelhofer, G., Schroder, C., et al. (2008) Iron mineralogy and aqueous alteration from Husband Hill through Home Plate at Gusev crater, Mars: Results from the Mössbauer instrument on the Spirit Mars Exploration Rover. Journal of Geophysical Research, 113, DOI:10.1029/2008JE003201.Google Scholar
Morris, R.V., Ruff, S.W., Gellert, R., et al. (2010) Identification of carbonate-rich outcrops on Mars by the Spirit rover. Science, 329, 421424.Google Scholar
Murchie, S., Kirkland, L., Erard, S., Mustard, J., & Robinson, M. (2000) Near-infrared spectral variations of martian surface materials from ISM Imaging Spectrometer Data. Icarus, 147, 444471.Google Scholar
Mustard, J.F. & Bell, J.F. III (1994) New composite reflectance spectra of Mars from 0.4 to 3.14 μm. Geophysical Research Letters, 21, 353356.Google Scholar
Nachon, M., Mangold, N., Forni, O., et al. (2017) Chemistry of diagenetic features analyzed by ChemCam at Pahrump Hills, Gale crater, Mars. Icarus, 281, 121136.Google Scholar
Parente, M., Bishop, J.L., & Bell, J.F. (2009) Spectral unmixing for mineral identification in pancam images of soils in Gusev crater, Mars. Icarus, 203, 421436.Google Scholar
Pollack, J.B., Ockert-Bell, M.E., & Shepard, M.K. (1995) Viking Lander image analysis of martian atmospheric dust. Journal of Geophysical Research, 100, 52355250.Google Scholar
Renno, N.O., Bos, B.J., Catling, D.C., et al. (2009) Physical and thermodynamical evidence for liquid water on Mars. Journal of Geophysical Research, 114, E00E03. DOI:10.1029/2009JE003362.Google Scholar
Rice, M.S. & Bell, J.F. III (2011) Mapping hydrated materials with MER Pancam and MSL Mastcam: Results from Gusev crater and Meridiani Planum, and plans for Gale crater. AGU Fall Meeting, Abstract #P22A-02.Google Scholar
Rice, M.S., Bell, J.F. III, Cloutis, E.A., et al. (2010) Silica-rich deposits and hydrated minerals at Gusev crater, Mars: Vis-NIR spectral characterization and regional mapping. Icarus, 205, 375395.Google Scholar
Rice, M.S., Bell, J.F. III, Cloutis, E.A., et al. (2011) Temporal observations of bright soil exposures at Gusev crater, Mars. Journal of Geophysical Research, 116, E00F14, DOI:10.1029/2010JE003683.Google Scholar
Rice, M.S., Bell, J.F. III, Godber, A., et al. (2013a) Mastcam Multispectral Imaging results from the Mars Science Laboratory investigation in Yellowknife Bay. European Planetary Science Congress, Abstract #762.Google Scholar
Rice, M.S., Cloutis, E.A., Bell, J.F., et al. (2013b) Reflectance spectra diversity of silica-rich materials: Sensitivity to environment and implications for detections on Mars. Icarus, 223, 499533.Google Scholar
Rice, M.S., Bell, J.F. III, Wellington, D.F., et al. (2013c) Hydrated minerals at Yellowknife Bay, Gale crater, Mars: Observations from Mastcam’s science filters. AGU Fall Meeting Abstracts, Abstract #P23C-1795.Google Scholar
Ruff S.W. and J.D. Farmer (2016) Silica deposits on Mars with features resembling hot spring biosignatures at El Tatio in Chile, Nature Communications, 7, 13554, DOI:10.1038/ncomms13554.Google Scholar
Ruff, S.W., Christensen, P.R., Blaney, D.L., et al. (2006) The rocks of Gusev crater as viewed by the Mini-TES instrument. Journal of Geophysical Research, 111, DOI:10.1029/2006JE002747.Google Scholar
Ruff, S.W., Farmer, J.D., Calvin, W.M., et al. (2011) Characteristics, distribution, origin, and significance of opaline silica observed by the Spirit rover in Gusev crater, Mars. Journal of Geophysical Research, 116, E00F23, DOI:10.1029/2010JE003767.Google Scholar
Schröder, C., Rodionov, D.S., McCoy, T.J., et al. (2008) Meteorites on Mars observed with the Mars Exploration Rovers. Journal of Geophysical Research, 113, E06S22. DOI:10.1029/2007JE002990.Google Scholar
Seelos, K.D., Seelos, F.P., Viviano‐Beck, C.E., et al. (2014) Mineralogy of the MSL Curiosity landing site in Gale crater as observed by MRO/CRISM. Geophysical Research Letters, 41, 48804887.Google Scholar
Shaw, A., Arvidson, R.E., Bonitz, R., et al. (2009) Phoenix soil physical properties investigation. Journal of Geophysical Research, 114, E00E05. DOI:10.1029/2009JE003455.Google Scholar
Smith, P.H., Tomasko, M., Britt, D., et al. (1997) The imager for Mars Pathfinder experiment. Journal of Geophysical Research, 102, 40034025.Google Scholar
Smith, P.H., Tamppari, L., Arvidson, R.E., et al. (2008) Introduction to special section on the phoenix mission: Landing site characterization experiments, mission overviews, and expected science. Journal of Geophysical Research, 113, E00A18, DOI:10.1029/2007JE003083.Google Scholar
Smith, P.H., Tamppari, L., Arvidson, R., et al. (2009) Water at the Phoenix landing site. Science, 325, 5861.Google Scholar
Squyres, S.W., Arvidson, R.E., Bell, J.F., et al. (2004) The Spirit rover’s Athena science investigation at Gusev crater, Mars. Science, 305, 794799.Google Scholar
Squyres, S.W., Arvidson, R.E., Blaney, D.L., et al. (2006a) Rocks of the Columbia Hills. Journal of Geophysical Research, 111, E02S11, DOI:10.1029/2005JE002562.Google Scholar
Squyres, S.W., Arvidson, R.E., Bollen, D., et al. (2006b) Overview of the Opportunity Mars Exploration Rover mission to Meridiani Planum: Eagle crater to Purgatory ripple. Journal of Geophysical Research, 111, DOI:10.1029/2006JE002771.Google Scholar
Squyres, S.W., Aharonson, O., Clark, B.C., et al. (2007) Pyroclastic activity at Home Plate in Gusev crater. Science, 316, 738742.Google Scholar
Squyres, S.W., Arvidson, R.E., Ruff, S., et al. (2008) Detection of silica-rich deposits on Mars. Science, 320, 10631067.Google Scholar
Squyres, S.W., Arvidson, R.E., Bell, J., et al. (2012) Ancient impact and aqueous processes at Endeavour crater, Mars. Science, 336, 570576.Google Scholar
Stoker, C.R., Zent, A., Catling, D.C., et al. (2010) Habitability of the Phoenix landing site. Journal of Geophysical Research, 115, E00E20. DOI:10.1029/2009JE003421.Google Scholar
Thomson, B., Bridges, N., Milliken, R., et al. (2011) Constraints on the origin and evolution of the layered mound in Gale crater, Mars using Mars Reconnaissance Orbiter data. Icarus, 214, 413432.Google Scholar
Tomasko, M.G., Doose, L.R., Lemmon, M., Smith, P.H., & Wegryn, E. (1999) Properties of dust in the martian atmosphere from the Imager on Mars Pathfinder. Journal of Geophysical Research, 104, 89879007.Google Scholar
Vaniman, D.T., Bish, D.L., Ming, D.W., et al. (2014) Mineralogy of a Mudstone at Yellowknife Bay, Gale crater, Mars. Science, 343, 1243480.Google Scholar
Vaughan, A.F., Johnson, J.R., Herkenhoff, K.E., et al. (2010) Pancam and Microscopic Imager observations of dust on the Spirit rover: Cleaning events, spectral properties, and aggregates. MARS, 5, 129145.Google Scholar
Wang, A. & Ling, Z. (2011) Ferric sulfates on Mars: A combined mission data analysis of salty soils at Gusev crater and laboratory experimental investigations. Journal of Geophysical Research, 116, E00F17, DOI:10.1029/2010JE003665.Google Scholar
Wang, A., Bell, J.F. III, Li, R., et al. (2008) Light‐toned salty soils and coexisting Si‐rich species discovered by the Mars Exploration Rover Spirit in Columbia Hills. Journal of Geophysical Research, 113, E12S40, DOI:10.1029/2008JE003126.Google Scholar
Wellington, D.F., Bell, J.F., Johnson, J.R., et al. (2017) Visible to near-infrared MSL/Mastcam multispectral imaging: Initial results from select high-interest science targets within Gale crater, Mars. American Mineralogist, 102, 12021217.Google Scholar
Williams, R.M., Grotzinger, J.P., Dietrich, W., et al. (2013) Martian fluvial conglomerates at Gale crater. Science, 340, 10681072.Google Scholar
Wolff, M.J., Smith, M.D., Clancy, R.T., et al. (2009) Wavelength dependence of dust aerosol single scattering albedo as observed by the Compact Reconnaissance Imaging Spectrometer. Journal of Geophysical Research, 114, DOI:10.1029/2009JE003350.Google Scholar
Yen, A.S., Morris, R.V., Clark, B.C., et al. (2008) Hydrothermal processes at Gusev crater: An evaluation of Paso Robles class soils. Journal of Geophysical Research, 113, E06S10, DOI:10.1029/2007JE002978.Google Scholar

References

Arvidson, R.E., Squyres, S.W., Anderson, R.C., et al. (2006) Overview of the spirit Mars Exploration Rover mission to Gusev crater: Landing site to Backstay Rock in the Columbia Hills. Journal of Geophysical Research, 111, E02S01, DOI:10.1029/2005JE002499.Google Scholar
Arvidson, R.E., Ruff, S.W., Morris, R.V., et al. (2008) Spirit Mars rover mission to the Columbia Hills, Gusev crater: Mission overview and selected results from the Cumberland Ridge to Home Plate. Journal of Geophysical Research, 113, E12S33, DOI:10.1029/2008JE003183.Google Scholar
Arvidson, R.E., Bell, J.F. III, Bellutta, P., et al. (2010) Spirit Mars rover mission: Overview and selected results from the northern Home Plate Winter Haven to the side of Scamander crater. Journal of Geophysical Research, 115, E00F15, DOI:10.1029/2010JE003746.Google Scholar
Arvidson, R.E., Ashley, J.W., Bell, J.F., et al. (2011) Opportunity Mars rover mission: Overview and selected results from Purgatory ripple to traverses to Endeavour crater. Journal of Geophysical Research, 116, E00F15, DOI:10.1029/2010JE003746.Google Scholar
Ashley, J.W., Golombek, M., Christensen, P.R., et al. (2011) Evidence for mechanical and chemical alteration of iron‐nickel meteorites on Mars: Process insights for Meridiani Planum. Journal of Geophysical Research, 116, E00F20, DOI:10.1029/2010JE003672.Google Scholar
Bancroft, G.M. (1973) Mössbauer spectroscopy: An introduction for inorganic chemists and geochemists. McGraw-Hill, New York.Google Scholar
Burns, R.G. (1993) Mössbauer spectral characterization of iron in planetary surface materials. Cambridge University Press, Cambridge, 539556.Google Scholar
Burns, R.G. & Solberg, T.C. (1990) 57Fe-bearing oxide, silicate, and aluminosilicate minerals, crystal structure trends in Mössbauer spectra. In: Spectroscopic characterization of minerals and their surfaces (Coyne, L.M., McKeever, S.W.S., & Blake, D.F., eds.). American Chemical Society, Washington, DC, 262283.Google Scholar
Clark, B.C., Morris, R., McLennan, S., et al. (2005) Chemistry and mineralogy of outcrops at Meridiani Planum. Earth and Planetary Science Letters, 240, 7394.Google Scholar
Clark, B.C., Arvidson, R.E., Gellert, R., et al. (2007) Evidence for montmorillonite or its compositional equivalent in Columbia Hills, Mars. Journal of Geophysical Research, 112, E06S01, DOI:10.1029/2006JE002756.Google Scholar
De Grave, E. & Van Alboom, A. (1991) Evaluation of ferrous and ferric Mössbauer fractions. Physics and Chemistry of Minerals, 18, 337342.Google Scholar
Dyar, M.D., Breves, E., Jawin, E., et al. (2013) Mössbauer parameters of iron in sulfate minerals. American Mineralogist, 98, 19431965.Google Scholar
Dyar, M.D., Jawin, E.R., Breves, E., et al. (2014) Mössbauer parameters of iron in phosphate minerals: Implications for interpretation of martian data. American Mineralogist, 99, 914942.Google Scholar
Fleischer, I., Klingelhoefer, G., Schröder, C., et al. (2008) Depth selective Mössbauer spectroscopy: Analysis and simulation of 6.4 keV and 14.4 keV spectra obtained from rocks at Gusev crater, Mars, and layered laboratory samples. Journal of Geophysical Research, 113, E06S21, DOI:10.1029/2007JE003022.Google Scholar
Fleischer, I., Agresti, D., Klingelhöfer, G., & Morris, R. (2010a) Distinct hematite populations from simultaneous fitting of Mössbauer spectra from Meridiani Planum, Mars. Journal of Geophysical Research, 115, E00F06,Google Scholar
DOIg: 10.1029/2010JE003622.Google Scholar
Fleischer, I., Brueckner, J., Schröder, C., et al. (2010b) Mineralogy and chemistry of cobbles at Meridiani Planum, Mars, investigated by the Mars Exploration Rover Opportunity. Journal of Geophysical Research, 115, E00F05, DOI:10.1029/2010JE003621.Google Scholar
Fleischer, I., Schroeder, C., Klingelhoefer, G., et al. (2011) New insights into the mineralogy and weathering of the Meridiani Planum meteorite, Mars. Meteoritics and Planetary Science, 46, 2134.Google Scholar
Graff, T., Morris, R., & Christensen, P. (2001) Effects of palagonitic dust coatings on thermal emission spectra of rocks and minerals: Implications for mineralogical characterization of the martian surface by MGS-TES. 32nd Lunar Planet. Sci. Conf., Abstract #1899.Google Scholar
Gütlich, P. & Schröder, C. (2012) Mössbauer spectroscopy. In: Methods in physical chemistry (Schäfer, R & Schmidt, P.C., eds.). Wiley-VCH, Weinheim, Germany, 351389.Google Scholar
Gütlich, P., Bill, E., & Trautwein, A.X. (2011) Mössbauer spectroscopy and transition metal chemistry. Springer, Berlin and Heidelberg.Google Scholar
Hausrath, E., Golden, D., Morris, R., Agresti, D., & Ming, D. (2013) Acid sulfate alteration of fluorapatite, basaltic glass and olivine by hydrothermal vapors and fluids: Implications for fumarolic activity and secondary phosphate phases in sulfate‐rich Paso Robles soil at Gusev crater, Mars. Journal of Geophysical Research, 118, 113.Google Scholar
Hawthorne, F.C. (1988) Mössbauer spectroscopy. Mineralogical Society of America, 255340.Google Scholar
Klingelhöfer, G., Morris, R.V., Bernhardt, B., et al. (2003) Athena MIMOS II Mössbauer spectrometer investigation. Journal of Geophysical Research, 108, 8067, DOI:10.1029/2003JE002138.Google Scholar
Klingelhöfer, G., Morris, R.V., Bernhardt, B., et al. (2004) Jarosite and hematite at Meridiani Planum from Opportunity’s Mössbauer spectrometer. Science, 306, 17401745.Google Scholar
Klingelhöfer, G., DeGrave, E., Morris, R.V., et al. (2005) Mössbauer spectroscopy on Mars: Goethite in the Columbia Hills at Gusev crater. Hyperfine Interactions, 166, 549554.Google Scholar
Lane, M.D., Dyar, M.D., & Bishop, J.L. (2004) Spectroscopic evidence for hydrous iron sulfate in the martian soil. Geophysical Research Letters, 31, L19702, DOI:10.1029/2004GL021231.Google Scholar
Lane, M.D., Bishop, J.L., Darby Dyar, M., King, P.L., Parente, M., & Hyde, B.C. (2008) Mineralogy of the Paso Robles soils on Mars. American Mineralogist, 93, 728739.Google Scholar
McCammon, C. (1995) Mössbauer spectroscopy of minerals. In: Mineral physics and crystallography: A handbook of physical constants (Ahrens, T.J., ed.). American Geophysical Union, Washington, DC, 332347.Google Scholar
McSween, H.Y., Ruff, S.W., Morris, R.V., et al. (2008) Mineralogy of volcanic rocks in Gusev crater, Mars: Reconciling Mössbauer, Alpha Particle X‐Ray Spectrometer, and Miniature Thermal Emission Spectrometer spectra. Journal of Geophysical Research, 113, E06S04, DOI:10.1029/2007JE002970.Google Scholar
Morris, R.V. & Klingelhöfer, G. (2008) Iron mineralogy and aqueous alteration on Mars from the MER Mössbauer spectrometers. In: The martian surface (Bell, J.F. III, ed.). Cambridge University Press, Cambridge, 339365.Google Scholar
Morris, R.V., Golden, D., Bell, J.F. III, & Lauer, H. Jr. (1995) Hematite, pyroxene, and phyllosilicates on Mars: Implications from oxidized impact melt rocks from Manicouagan crater, Quebec, Canada. Journal of Geophysical Research, 100, 53195328.Google Scholar
Morris, R.V., Golden, D., Ming, D., et al. (2001a) Phyllosilicate‐poor palagonitic dust from Mauna Kea Volcano (Hawaii): A mineralogical analogue for magnetic martian dust? Journal of Geophysical Research, 106, 50575083.Google Scholar
Morris, R.V., Graff, T., Shelfer, T., & Bell, J. III (2001b) Effects of palagonitic dust coatings on visible, near-IR, and Mössbauer spectra of rocks and minerals: Implication for mineralogical remote sensing of Mars. 32nd Lunar Planet. Sci. Conf., Abstract #1912.Google Scholar
Morris, R.V., Klingelhöfer, G., Bernhardt, B., et al. (2004) Mineralogy at Gusev crater from the Mössbauer spectrometer on the Spirit rover. Science, 305, 833836.Google Scholar
Morris, R.V., Klingelhöfer, G., Schröder, C., et al. (2006a) Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit’s journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills. Journal of Geophysical Research, 111, E02S13, DOI:10.1029/2005JE002584.Google Scholar
Morris, R.V., Klingelhöfer, G., Schröder, C., et al. (2006b) Mössbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity’s journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits. Journal of Geophysical Research, 111, E12S15, DOI:10.1029/2006JE002791.Google Scholar
Morris, R.V., Klingelhöfer, G., Schröder, C., et al. (2008) Iron mineralogy and aqueous alteration from Husband Hill through Home Plate at Gusev crater, Mars: Results from the Mössbauer instrument on the Spirit Mars Exploration Rover. Journal of Geophysical Research, 113, E12S42, DOI:10.1029/2008JE003201.Google Scholar
Morris, R.V., Ruff, S.W., Gellert, R., et al. (2010) Identification of carbonate-rich outcrops on Mars by the Spirit rover. Science, 329, 1189667.Google Scholar
Schröder, C., Rodionov, D.S., McCoy, T.J., et al. (2008) Meteorites on Mars observed with the Mars Exploration Rovers. Journal of Geophysical Research, 113, E06S22, DOI:10.1029/2007JE002990.Google Scholar
Schröder, C., Herkenhoff, K.E., Farrand, W.H., et al. (2010) Properties and distribution of paired candidate stony meteorites at Meridiani Planum, Mars. Journal of Geophysical Research, 115, E00F09, DOI:10.1029/2010JE003616.Google Scholar
Schröder, C., Bland, P.A., Golombek, M.P., Ashley, J.W., Warner, N.H., & Grant, J.A. (2016) Amazonian chemical weathering rate derived from stony meteorite finds at Meridiani Planum on Mars. Nature Communications, 7, 13459.Google Scholar
Stevens, J.G., Khasanov, A.M., Miller, J.W., Pollak, H., & Li, Z. (1998) Mössbauer mineral handbook. Biltmore Press, Ashville, NC.Google Scholar
Squyres, S.W., Arvidson, R.E., Baumgartner, E.T., et al. (2003) The Athena Mars rover science investigation. Journal of Geophysical Research, 108, 8062, DOI:10.1029/2003JE002121.Google Scholar
Squyres, S.W., Arvidson, R.E., Bell, J.F., et al. (2004a) The Opportunity rover’s Athena science investigation at Meridiani Planum, Mars. Science, 306, 16981703.Google Scholar
Squyres, S.W., Arvidson, R.E., Bell, J.F., et al. (2004b) The Spirit rover’s Athena science investigation at Gusev crater, Mars. Science, 305, 794799.Google Scholar
Squyres, S.W., Arvidson, R.E., Bollen, D., et al. (2006) Overview of the Opportunity Mars Exploration Rover mission to Meridiani Planum: Eagle crater to Purgatory ripple. Journal of Geophysical Research, 111, DOI:10.1029/2006JE002771.Google Scholar
Squyres, S.W., Arvidson, R.E., Ruff, S., et al. (2008) Detection of silica-rich deposits on Mars. Science, 320, 10631067.Google Scholar
Squyres, S.W., Knoll, A.H., Arvidson, R.E., et al. (2009) Exploration of Victoria crater by the Mars rover Opportunity. Science, 324, 10581061.Google Scholar
Yen, A.S., Gellert, R., Schröder, C., et al. (2005) An integrated view of the chemistry and mineralogy of martian soils. Nature, 436, 4954.Google Scholar
Yen, A.S., Morris, R.V., Clark, B.C., et al. (2008) Hydrothermal processes at Gusev crater: An evaluation of Paso Robles class soils. Journal of Geophysical Research, 113, E06S10, DOI:10.1029/2007JE002978.Google Scholar
Yoshida, Y. & Langouche, G. (2013) Mössbauer spectroscopy. Springer, Berlin.Google Scholar
Zipfel, J., Schröder, C., Jolliff, B.L., et al. (2011) Bounce Rock: A shergottite-like basalt encountered at Meridiani Planum, Mars. Meteoritics and Planetary Science, 46, 120.Google Scholar

References

Arvidson, R.E., Squyres, S.W., Morris, R.V., et al. (2016) High concentrations of manganese and sulfur in deposits on Murray Ridge, Endeavour crater, Mars. American Mineralogist, 101, 13891405.Google Scholar
Ashley, J.W., Golombek, M., Christensen, P.R., et al. (2011) Evidence for mechanical and chemical alteration of iron‐nickel meteorites on Mars: Process insights for Meridiani Planum. Journal of Geophysical Research, 116, E00F20, DOI:10.1029/2010JE003672.Google Scholar
Berger, J.A., Schmidt, M.E., Gellert, R., et al. (2016) A global Mars dust composition refined by the Alpha-Particle X-ray Spectrometer in Gale crater. Geophysical Research Letters, 43, 6775.Google Scholar
Berger, J.A., Schmidt, M.E., Gellert, R., et al. (2017) Zinc and germanium in the sedimentary rocks of Gale crater on Mars indicate hydrothermal enrichment followed by diagenetic fractionation. Journal of Geophysical Research, 122, 17471772.Google Scholar
Boynton, W.V., Taylor, G.J., Evans, L.G., et al. (2007) Concentration of H, Si, Cl, K, Fe, and Th in the low- and mid-latitude regions of Mars. Journal of Geophysical Research, 112, DOI:10.1029/2007JE002887.Google Scholar
Campbell, J.L., Perrett, G.M., Gellert, R., et al. (2012) Calibration of the Mars Science Laboratory Alpha Particle X-ray Spectrometer. Space Science Reviews, 170, 319340.Google Scholar
Clark, B.C., Morris, R.V., McLennan, S.M., et al. (2005) Chemistry and mineralogy of outcrops at Meridiani Planum. Earth and Planetary Science Letters, 240, 7394.Google Scholar
Clark, B.C., Morris, R.V., Herkenhoff, K.E., et al. (2016) Esperance: Multiple episodes of aqueous alteration involving fracture fills and coatings at Matijevic Hill, Mars. American Mineralogist, 101, 15151526.Google Scholar
Fleischer, I., Schröder, C., Klingelhöfer, G., et al. (2011) New insights into the mineralogy and weathering of the Meridiani Planum meteorite, Mars. Meteoritics and Planetary Science, 46, 2134.Google Scholar
Gellert, R., Rieder, R., Brückner, J., et al. (2006) Alpha Particle X-ray Spectrometer (APXS): Results from Gusev crater and calibration report. Journal of Geophysical Research, 111, E02S05, DOI:10.1029/2005JE002555.Google Scholar
Gellert, R., Clark, B.C. & MSL and MER Science Teams. (2015) In situ compositional measurements of rocks and soils with the Alpha Particle X-ray Spectrometer on NASA’s Mars rovers. Elements, 11, 3944.Google Scholar
Gellert, R., Arvidson, R.E., Clark, B.C., et al. (2016) Igneous and sedimentary compositions from four landing sites on Mars from the Alpha Particle X-ray Spectrometer (APXS). Meteoritics and Planetary Science, 51, A280.Google Scholar
Grotzinger, J.P., Gupta, S., Malin, M.C., et al. (2015) Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars. Science, 350, aac7575.Google Scholar
Hurowitz, J.A., Grotzinger, J.P., Fischer, W.W., et al. (2017) Redox stratification of an ancient lake in Gale crater, Mars. Science, 356, eaah6849.Google Scholar
Klingelhöfer, G., Morris, R.V., Bernhardt, B., et al. (2004) Jarosite and Hematite at Meridiani Planum from Opportunity’s Mössbauer spectrometer. Science, 306, 17401745.Google Scholar
Lanza, N.L., Wiens, R.C., Arvidson, R.E., et al. (2016) Oxidation of manganese in an ancient aquifer, Kimberley formation, Gale crater, Mars. Geophysical Research Letters, 43, 73987407.Google Scholar
McSween, H.Y., Murchie, S.L., Crisp, J., et al. (1999) Chemical, multispectral, and textural constraints on the composition and origin of rocks at the Mars Pathfinder landing site. Journal of Geophysical Research, 104, 86798715.Google Scholar
McSween, H.Y., Arvidson, R.E., Bell, J.F. III, et al. (2004) Basaltic rocks analyzed by the Spirit rover in Gusev crater. Science, 305, 842845.Google Scholar
McSween, H.Y., Ruff, S.W., Morris, R.V., et al. (2008) Mineralogy of volcanic rocks in Gusev crater, Mars: Reconciling Mössbauer, Alpha Particle X‐Ray Spectrometer, and Miniature Thermal Emission Spectrometer spectra. Journal of Geophysical Research, 113, E06S04, DOI:10.1029/2007JE002970.Google Scholar
Ming, D.W., Gellert, R., Morris, R.V., et al. (2008) Geochemical properties of rocks and soils in Gusev crater, Mars: Results of the Alpha Particle X-Ray Spectrometer from Cumberland Ridge to Home Plate. Journal of Geophysical Research, 113, E12S39, DOI:10.1029/2008JE003195.Google Scholar
Mittlefehldt, D.W., Gellert, R., vanBommel, S., et al. (2018) Diverse lithologies and alteration events on the rim of Noachian-aged Endeavour crater, Meridiani Planum, Mars: In situ compositional evidence. Journal of Geophysical Research, 123, 12551306.Google Scholar
Morris, R.V., Klingelhöfer, G., Bernhardt, B., et al. (2004) Mineralogy at Gusev crater from the Mössbauer spectrometer on the Spirit rover. Science, 305, 833836.Google Scholar
Morris, R.V., Klingelhöfer, G., Schröder, C., et al. (2006) Mössbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity’s journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits. Journal of Geophysical Research, 111, DOI:10.1029/2006JE002791.Google Scholar
Morris, R.V., Vaniman, D.T., Blake, D.F., et al. (2016) Silicic volcanism on Mars evidenced by tridymite in high-SiO2 sedimentary rock at Gale crater. Proceedings of the National Academy of Sciences of the USA, 113, 70717076.Google Scholar
O’Connell-Cooper, C.D., Spray, J.G., Thompson, L.M., et al. (2017) APXS-derived chemistry of the Bagnold dune sands: Comparisons with Gale crater soils and the global martian average. Journal of Geophysical Research, 122, 26232643.Google Scholar
Radchenko, V., Andreichikov, B., Wänke, H., et al. (2000) Curium-244 alpha-sources for space research. Applied Radiation and Isotopes, 53, 821824.Google Scholar
Rampe, E.B., Ming, D., Blake, D., et al. (2017) Mineralogy of an ancient lacustrine mudstone succession from the Murray formation, Gale crater, Mars. Earth and Planetary Science Letters, 471, 172185.Google Scholar
Rieder, R., Economou, T., Wänke, H., et al. (1997) The chemical composition of martian soil and rocks returned by the Mobile Alpha Proton X-ray Spectrometer: Preliminary results from the X-ray mode. Science, 278, 17711774.Google Scholar
Rieder, R., Gellert, R., Brückner, J., et al. (2003) The new Athena alpha particle X-ray spectrometer for the Mars Exploration Rovers. Journal of Geophysical Research, 108, DOI:10.1029/2003JE002150.Google Scholar
Ruff, S.W., Farmer, J.D., Calvin, W.M., et al. (2011) Characteristics, distribution, origin, and significance of opaline silica observed by the Spirit rover in Gusev crater, Mars. Journal of Geophysical Research, 116, DOI:E00F2310.1029/2010JE003767.Google Scholar
Schmidt, M.E., Ruff, S.W., McCoy, T.J., et al. (2008) Hydrothermal origin of halogens at Home Plate, Gusev crater. Journal of Geophysical Research, 113, E06S12. DOI:10.1029/2007JE003027.Google Scholar
Schröder, C., Rodionov, D.S., McCoy, T.J., et al. (2008) Meteorites on Mars observed with the Mars Exploration Rovers. Journal of Geophysical Research, 113, E06S22. DOI:10.1029/2007JE002990.Google Scholar
Squyres, S.W., Arvidson, R.E., Blaney, D.L., et al. (2006a) Rocks of the Columbia Hills. Journal of Geophysical Research, 111, E02S11, DOI:10.1029/2005JE002562.Google Scholar
Squyres, S.W., Arvidson, R.E., Bollen, D., et al. (2006b) Overview of the Opportunity Mars Exploration Rover mission to Meridiani Planum: Eagle crater to Purgatory ripple. Journal of Geophysical Research, 111, DOI:10.1029/2006JE002771.Google Scholar
Squyres, S.W., Arvidson, R.E., Ruff, S., et al. (2008) Detection of silica-rich deposits on Mars. Science, 320, 10631067.Google Scholar
Squyres, S.W., Arvidson, R.E., Bell, J.F., et al. (2012) Ancient impact and aqueous processes at Endeavour crater, Mars. Science, 336, 570576.Google Scholar
Stolper, E.M., Baker, M.B., Newcombe, M.E., et al. (2013) The petrochemistry of Jake_M: A martian mugearite. Science, 341, 1239463.Google Scholar
Taylor, R. & McLennan, S.M. (2008) Planetary crusts: Their composition, origin, and evolution. Cambridge University Press, Cambridge.Google Scholar
Thompson, L.M., Schmidt, M.E., Spray, J.G., et al. (2016) Potassium-rich sandstones within the Gale impact crater, Mars: The APXS perspective. Journal of Geophysical Research, 121, 19812003.Google Scholar
VanBommel, S.J., Gellert, R., Clark, B.C., & Ming, D.W. (2018) Seasonal atmospheric argon variability measured in the equatorial region of Mars by the Mars Exploration Rover Alpha Particle X-Ray Spectrometers: Evidence for an annual argon-enriched front. Journal of Geophysical Research, 123, 544558.Google Scholar
Vaniman, D., Martínez, G.M., Rampe, E.B., et al. (2018) Gypsum, bassanite, and anhydrite at Gale crater, Mars. American Mineralogist, 103, 10111020.Google Scholar
Yen, A.S., Gellert, R., Schröder, C., et al. (2005) An integrated view of the chemistry and mineralogy of martian soils. Nature, 436, 4954.Google Scholar
Yen, A.S., Mittlefehldt, D.W., McLennan, S.M., et al. (2006) Nickel on Mars: Constraints on meteoritic material at the surface. Journal of Geophysical Research, 111, DOI:10.1029/2006JE002797.Google Scholar
Yen, A.S., Morris, R.V., Clark, B.C., et al. (2008) Hydrothermal processes at Gusev crater: An evaluation of Paso Robles class soils. Journal of Geophysical Research, 113, E06S10, DOI:10.1029/2007JE002978.Google Scholar
Yen, A.S., Ming, D.W., Vaniman, D.T., et al. (2017) Multiple stages of aqueous alteration along fractures in mudstone and sandstone strata in Gale crater, Mars. Earth and Planetary Science Letters, 471, 186198.Google Scholar
Zipfel, J., Schroder, C., Jolliff, B., et al. (2011) Bounce Rock: A shergottite-like basalt encountered at Meridiani Planum, Mars. Meteoritics and Planetary Science, 46, 120.Google Scholar

References

Bishop, J.L. & Murad, E. (2005) The visible and infrared spectral properties of jarosite and alunite. American Mineralogist, 90, 11001107.Google Scholar
Blake, D.F., Morris, R.V., Kocurek, G., et al. (2013) Curiosity at Gale crater, Mars: Characterization and analysis of the Rocknest sand shadow. Science, 341, DOI:10.1126/science.1239505.Google Scholar
Boynton, W.V., Feldman, W.C., Squyres, S.W., et al. (2002) Distribution of hydrogen in the near surface of Mars: Evidence for subsurface ice deposits. Science, 297, 8185.Google Scholar
Carter, J., Poulet, F., Bibring, J.-P., Mangold, N., & Murchie, S. (2013) Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: Updated global view. Journal of Geophysical Research, 118, 831858.Google Scholar
Chide, B., Maurice, S., Murdoch, N., et al. (2019a) Listening to laser sparks: A link between Laser-Induced Breakdown Spectroscopy, acoustic measurements and crater morphology. Spectrochimica Acta B, 153, 5060.Google Scholar
Chide, B., Maurice, S., Bousquet, B., et al. (2019b) The Mars 2020 SuperCam Microphone to constrain rock hardness and LIBS crater volume. 50th Lunar Planet. Sci. Conf., Abstract #1411.Google Scholar
Clegg, S.M., Wiens, R.C., Maurice, S., et al. (2015) Remote geochemical and mineralogical analysis with SuperCam for the Mars 2020 rover. 46th Lunar Planet. Sci. Conf., Abstract #2781.Google Scholar
Cloutis, E.A., Hawthorne, F.C., Mertzman, S.A., et al. (2006) Detection and discrimination of sulfate minerals using reflectance spectroscopy. Icarus, 184, 121157.Google Scholar
Coleman, S.M. & Pierce, K.L. (1981) Weathering rinds on andesitic and basaltic stones as a Quaternary age indicator, western United States. US Geological Survey Professional Paper 1210.Google Scholar
Cousin, A., Clegg, S., Dehouck, E., et al. (2014) ChemCam blind targets: A helpful way of analyzing soils and rocks along the traverse. 45th Lunar Planet. Sci. Conf., Abstract #1278.Google Scholar
Cousin, A., Sautter, V., Payré, V., et al. (2017) Classification of igneous rocks analyzed by ChemCam at Gale crater, Mars. Icarus, 288, 265283.Google Scholar
Cremers, D. & Radziemski, L.L. (2013) Handbook of Laser-Induced Breakdown Spectroscopy. John Wiley & Sons, Hoboken, NJ.Google Scholar
Dixon, J.C., Thorn, C.E., Darmody, R.G., & Campbell, S.W. (2002) Weathering rinds and rock coatings from an Arctic alpine environment, northern Scandinavia. GSA Bulletin, 114, 226238.Google Scholar
Edgett, K.S., Yingst, R.A., Ravine, M.A., et al. (2012) Curiosity’s Mars Hand Lens Imager (MAHLI) investigation. Space Science Reviews, 170, 259317.Google Scholar
Estlin, T.A., Bornstein, B.J., Gaines, D.M., et al. (2012) AEGIS automated science targeting for the MER Opportunity rover. ACM Transactions on Intelligent Systems and Technology, 3, 119.Google Scholar
Fabre, C., Maurice, S., Cousin, A., et al. (2011) Onboard calibration igneous targets for the Mars Science Laboratory Curiosity rover and the Chemistry Camera laser induced breakdown spectroscopy instrument. Spectrochimica Acta B: Atomic Spectroscopy, 66, 280289.Google Scholar
Feldman, W.C., Prettyman, T.H., Maurice, S., et al. (2004) Global distribution of near-surface hydrogen on Mars. Journal of Geophysical Research, 109, E09006, DOI:10.1029/2003JE002160.Google Scholar
Forni, O., Gaft, M., Toplis, M.J., et al. (2015) First detection of fluorine on Mars: Implications for Gale crater’s geochemistry. Geophysical Research Letters, 42, 10201028.Google Scholar
Francis, R., Estlin, T., Gaines, D., et al. (2016) AEGIS intelligent targeting deployed for the Curiosity rover’s ChemCam instrument. 47th Lunar Planet. Sci. Conf., Abstract #2487.Google Scholar
Francis, R., Estlin, T., Doran, G., et al. (2017) AEGIS autonomous targeting for ChemCam on Mars Science Laboratory: Deployment and results of initial science team use. Science Robotics, 2, eaan4582.Google Scholar
Frydenvang, J., Gasda, P.J., Hurowitz, J.A., et al. (2017) Discovery of silica-rich lacustrine and eolian sedimentary rocks in Gale crater, Mars. Geophysical Research Letters, 4, DOI:10.1002/2017GL073323.Google Scholar
Gasda, P.J., DeLapp, D.M., McInroy, R.E., et al. (2016) Identification of fresh feldspars in Gale crater using ChemCam. 47th Lunar Planet. Sci. Conf., Abstract #1604.Google Scholar
Gasda, P.J., Haldeman, E.B., Wiens, R.C., et al. (2017) In situ detection of boron by ChemCam on Mars. Geophysical Research Letters, 44, 87398748.Google Scholar
Gellert, R., Clark, B., & MSL and MER Science Teams (2015) In situ compositional Measurements of Rocks and Soils with the Alpha Particle X-ray Spectrometer on NASA’s Mars rovers. Elements, 11, 3944.Google Scholar
Goetz, W., Payre, V., Wiens, R.C., et al. (2017) Detection of copper by the ChemCam instrument along the traverse of the Curiosity rover, Gale crater, Mars. 48th Lunar Planet. Sci. Conf., Abstract #2894.Google Scholar
Grotzinger, J., Crisp, J., Vasavada, A.R., & MSL Science Team. (2015a) Curiosity’s Mission of Exploration at Gale crater, Mars. Elements, 11, 1926.Google Scholar
Grotzinger, J.P., Gupta, S., Malin, M.C., et al. (2015b) Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars. Science, 350, aac7575.Google Scholar
Johnson, J.R., Bell, J.F., Bender, S., et al. (2015) ChemCam passive reflectance spectroscopy of surface materials at the Curiosity landing site, Mars. Icarus, 249, 7492.Google Scholar
Johnson, J.R., Bell, J.F., Bender, S., et al. (2016a) Constraints on iron sulfate and iron oxide mineralogy from ChemCam visible/near-infrared reflectance spectroscopy of Mt. Sharp basal units, Gale crater, Mars. American Mineralogist, 101, 15011514.Google Scholar
Johnson, J.R., Cloutis, E., Fraeman, A.A., et al. (2016b) ChemCam passive reflectance spectroscopy of recent drill tailings, hematite-bearing rocks, and dune sands. 47th Lunar Planet. Sci. Conf., Abstract #1155.Google Scholar
Johnson, J.R., Achilles, C., Bell, J.F., et al. (2017) Visible/near-infrared spectral diversity from in situ observations of the Bagnold Dune Field sands in Gale crater, Mars. Journal of Geophysical Research, 122, 26552684.Google Scholar
Lanza, N.L., Fischer, W.W., Wiens, R.C., et al. (2014) High manganese concentrations in rocks at Gale crater, Mars. Geophysical Research Letters, 41, 57555763.Google Scholar
Lanza, N.L., Ollila, A.M., Cousin, A., et al. (2015) Understanding the signature of rock coatings in Laser-Induced Breakdown Spectroscopy Data. Icarus, 249, 6273.Google Scholar
Lanza, N.L., Wiens, R.C., Arvidson, R.E., et al. (2016) Oxidation of manganese in an ancient aquifer, Kimberley formation, Gale crater, Mars. Geophysical Research Letters, 43, 73987407.Google Scholar
Lasue, J., Mangold, N., Hauber, E., et al. (2013) Quantitative assessments of the martian hydrosphere. Space Science Reviews, 174, 155212.Google Scholar
Lasue, J., Clegg, S.M., Forni, O., et al. (2016) Observation of >5 wt % zinc at the Kimberley outcrop, Gale crater, Mars. Journal of Geophysical Research, 121, 338352.Google Scholar
Lasue, J., Maurice, S., Cousin, A., et al. (2018) Martian eolian dust probed by ChemCam. Geophysical Research Letters, 45(20), 10,96810,977.Google Scholar
Le Deit, L., Mangold, N., Forni, O., et al. (2016) The potassic sedimentary rocks in Gale crater, Mars, as seen by ChemCam on board Curiosity. Journal of Geophysical Research, 121, 784804.Google Scholar
Leshin, L.A., Mahaffy, P.R., Webster, C.R., et al. (2013) Volatile, isotope, and organic analysis of martian fines with the Mars Curiosity rover. Science, 341, 1238937.Google Scholar
Léveillé, R.J., Bridges, J., Wiens, R.C., et al. (2014) Chemistry of fracture-filling raised ridges in Yellowknife Bay, Gale crater: Window into past aqueous activity and habitability on Mars. Journal of Geophysical Research, 119, 23982415.Google Scholar
Malin, M.C., Caplinger, M.A., Edgett, K.S., et al. (2010) The Mars Science Laboratory (MSL) Mast-Mounted Cameras (Mastcams) flight instruments. 41st Lunar Planet. Sci. Conf., Abstract #1123.Google Scholar
Mangold, N., Thompson, L.M., Forni, O., et al. (2016) Composition of conglomerates analyzed by the Curiosity rover: Implications for Gale crater crust and sediment sources. Journal of Geophysical Research, 121, 353387.Google Scholar
Mangold, N., Dehouck, E., Fedo, C., et al. (2019) Chemical alteration of fine-grained sedimentary rocks at Gale crater. Icarus, 321, 619631.Google Scholar
Maurice, S., Wiens, R.C., Saccoccio, M., et al. (2012) The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) rover: Science objectives and mast unit description. Space Science Reviews, 170, 95166.Google Scholar
Maurice, S., Wiens, R.C., Le Mouélic, S., et al. (2015) The SuperCam instrument for the Mars 2020 rover. European Planetary Science Congress, Abstract #EPSC2015-185.Google Scholar
Maurice, S., Clegg, S.M., Wiens, R.C., et al. (2016a) ChemCam activities and discoveries during the nominal mission of the Mars Science Laboratory in Gale crater, Mars. Journal of Analytical Atomic Spectrometry, 31, 863889.Google Scholar
Maurice, S., Wiens, R.C., Rapin, W., et al. (2016b) A microphone supporting LIBS investigation on Mars. 47th Lunar Planet. Sci. Conf., Abstract #3044.Google Scholar
McCollom, T.M., Ehlmann, B.L., Wang, A., Hynek, B., Moskowitz, B.,& Berquó, T.S. (2014) Detection of iron substitution in natroalunite-natrojarosite solid solutions and potential implications for Mars. American Mineralogist, 99, 948964.Google Scholar
McConnochie, T.H., Smith, M.D., Bender, S., et al. (2017) Water vapor and aerosols from ChemCam passive sky observations. 6th International Workshop on the Mars Atmosphere: Modeling and Observations. Abstract # 3201.Google Scholar
McConnochie, T.H., Smith, M.D., Wolff, M.J., et al. (2018) Retrieval of water vapor column abundance and aerosol properties from ChemCam passive sky spectroscopy. Icarus, 307, 294326.Google Scholar
Melikechi, N., Mezzacappa, A., Cousin, A., et al. (2014) Correcting for variable laser-target distances of Laser-Induced Breakdown Spectroscopy measurements with ChemCam using emission lines of martian dust spectra. Spectrochimica Acta B: Atomic Spectroscopy, 96, 5160.Google Scholar
Meslin, P.-Y., Gasnault, O., Forni, O., et al. (2013) Soil diversity and hydration as observed by ChemCam at Gale crater, Mars. Science, 341, 1238670.Google Scholar
Morris, R.V., Vaniman, D.T., Blake, D.F., et al. (2016) Silicic volcanism on Mars evidenced by tridymite in high-SiO2 sedimentary rock at Gale crater. Proceedings of the National Academy of Sciences of the USA, 113, 70717076.Google Scholar
Murchie, S.L., Mustard, J.F., Ehlmann, B.L., et al. (2009) A synthesis of martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter. Journal of Geophysical Research, 114, E00D06, DOI:10.1029/2009JE003342.Google Scholar
Murdoch, N., Chide, B., Lasue, J., et al. (2019) Laser-induced breakdown spectroscopy acoustic testing of the Mars 2020 microphone. Planetary and Space Science, 165, 260271.Google Scholar
Mustard, J.F., Adler, M., Allwood, A., et al. (2013) Report of the Mars 2020 Science Definition Team.Google Scholar
Nachon, M., Clegg, S.M., Mangold, N., et al. (2014) Calcium sulfate veins characterized by ChemCam/Curiosity at Gale crater, Mars. Journal of Geophysical Research, 119, 19912016.Google Scholar
Ollila, A.M., Newsom, H.E., Clark, B., et al. (2014) Trace element geochemistry (Li, Ba, Sr, and Rb) using Curiosity’s ChemCam: Early results for Gale crater from Bradbury landing site to Rocknest. Journal of Geophysical Research, 119, 255285.Google Scholar
Payré, V., Fabre, C., Sautter, V., et al. (2019) Copper enrichments in Kimberley formation, Gale crater, Mars, Evidence for a Cu deposit at the source. Icarus, 321, 736751.Google Scholar
Payré, V., Fabre, C., Cousin, A., et al. (2017) Alkali trace elements in Gale crater, Mars, with ChemCam: Calibration update and geological implications. Journal of Geophysical Research, 122, 650679.Google Scholar
Rapin, W., Meslin, P.Y., Maurice, S., et al. (2016) Hydration state of calcium sulfates in Gale crater, Mars: Identification of bassanite veins. Earth and Planetary Science Letters, 452, 197205.Google Scholar
Rapin, W., Chauviré, B., Gabriel, T., et al. (2018) In situ analysis of opal in Gale crater, Mars. Journal of Geophysical Research, 123, 1955–1972.Google Scholar
Rice, M.S., Gupta, S., Treiman, A.H., et al. (2017) Geologic overview of the Mars Science Laboratory rover mission at the Kimberley, Gale crater, Mars. Journal of Geophysical Research, 122, 220.Google Scholar
Salvatore, M.R., Mustard, J.F., Head, J.W., Cooper, R.F., Marchant, D.R., & Wyatt, M.B. (2013) Development of alteration rinds by oxidative weathering processes in Beacon Valley, Antarctica, and implications for Mars. Geochimica et Cosmochimica Acta, 115, 137161.Google Scholar
Sautter, V., Fabre, C., Forni, O., et al. (2014) Igneous mineralogy at Bradbury Rise: The first ChemCam campaign at Gale crater. Journal of Geophysical Research, 119, 3046.Google Scholar
Sautter, V., Toplis, M.J., Wiens, R.C., et al. (2015) In situ evidence for early continental crust on Mars. Nature Geoscience, 8, 605609.Google Scholar
Schröder, S., Meslin, P.Y., Gasnault, O., et al. (2015) Hydrogen detection with ChemCam at Gale crater. Icarus, 249, 4361.Google Scholar
Sklute, E.C., Jensen, H.B., Rogers, A.D., & Reeder, R.J. (2015) Morphological, structural, and spectral characteristics of amorphous iron sulfates. Journal of Geophysical Research, 120, 809830.Google Scholar
Smith, P.H., Tamppari, L.K., Arvidson, R.E., et al. (2009) H2O at the Phoenix landing site. Science, 325, 5861.Google Scholar
Sobron, P., Bishop, J.L., Blake, D.F., Chen, B., & Rull, F. (2014) Natural Fe-bearing oxides and sulfates from the Rio Tinto Mars analog site: Critical assessment of VNIR reflectance spectroscopy, laser Raman spectroscopy, and XRD as mineral identification tools. American Mineralogist, 99, 11991205.Google Scholar
Taylor, S.R. & McLennan, S. (2009) Planetary crusts: Their composition, origin and evolution. Cambridge University Press, New York.Google Scholar
Thomas, N.H., Ehlmann, B.L., Anderson, D.E., et al. (2018) Characterization of hydrogen in basaltic materials with Laser-Induced Breakdown Spectroscopy (LIBS) for application to MSL ChemCam data. Journal of Geophysical Research, 123, 1996–2021.Google Scholar
Treiman, A.H. & Medard, E. (2016) Mantle metasomatism in Mars: Potassic basaltic sandstone in Gale crater derived from partial melt of phlogopite-peridotite. GSA Annual Meeting, Abstract #49–12.Google Scholar
Treiman, A.H. Bish, D.L., Vaniman, D.T., et al. (2016) Mineralogy, provenance, and diagenesis of a potassic basaltic sandstone on Mars: CheMin X-ray diffraction of the Windjana sample (Kimberley area, Gale crater). Journal of Geophysical Research, 121, 75106.Google Scholar
Vaniman, D., Dyar, M.D., Wiens, R., et al. (2012) Ceramic ChemCam calibration targets on Mars Science Laboratory. Space Science Reviews, 170, 229255.Google Scholar
Vaniman, D., Martinez, G.M., Rampe, E., et al. (2018) Gypsum, bassanite, and anhydrite at Gale crater, Mars. American Mineralogist, 103(7), 1011–1020.Google Scholar
Whiteway, J.A., Komguem, L., Dickinson, C., et al. (2009) Mars water-ice clouds and precipitation. Science, 325, 6870.Google Scholar
Wiens, R.C., Maurice, S., Barraclough, B., et al. (2012) The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) rover: Body unit and combined system tests. Space Science Reviews, 170, 167227.Google Scholar
Wiens, R.C., Maurice, S., Lasue, J., et al. (2013) Pre-flight calibration and initial data processing for the ChemCam Laser-Induced Breakdown Spectroscopy instrument on the Mars Science Laboratory rover. Spectrochimica Acta B: Atomic Spectroscopy, 82, 127.Google Scholar
Wiens, R.C., Maurice, S., & the MSL Team. (2015) ChemCam: Chemostratigraphy by the first Mars microprobe. Elements, 11, 3338.Google Scholar
Wiens, R.C., Maurice, S., McCabe, K., et al. (2016) The SuperCam Remote Sensing Instrument Suite for Mars 2020. 47th Lunar Planet. Sci. Conf., Abstract #1322.Google Scholar
Wiens, R.C., Maurice, S., & Rull Perez, F. (2017) The SuperCam remote sensing instrument suite for the Mars 2020 rover mission: A preview. Spectroscopy 32(5), 5055.Google Scholar
Williams, R.M.E., Grotzinger, J.P., Dietrich, W.E., et al. (2013) Martian fluvial conglomerates at Gale crater. Science, 340, 10681072.Google Scholar
Ytsma, C.R., Dyar, M.D., Lepore, K.H., Wagoner, C.M., & Hanlon, A.E. (2017) Normalization and baseline removal effects on univariate and multivariate hydrogen prediction accuracy using laser-induced breakdown spectroscopy. 48th Lunar Planet. Sci. Conf., Abstract #2979.Google Scholar

References

Adler, I., Trombka, J., Gerard, J., et al. (1972a) The Apollo 15 X-ray fluorescence experiment. Science, 175, 436440.Google Scholar
Adler, I., Trombka, J., Gerard, J., et al. (1972b) Apollo 15 Geochemical X-ray Fluorescence experiment: Preliminary report. Science, 175, 436440.Google Scholar
Adler, I., Trombka, J.I., Yin, L.I., Gorenstein, P., Bjorkholm, P., & Gerard, J. (1973a) Lunar composition from Apollo orbital measurements. Naturwissenschaften, 60, 231242.Google Scholar
Adler, I., Trombka, J.I., Lowman, P., et al. (1973b) Apollo 15 and 16 results of the integrated geochemical experiment. The Moon, 7, 487504.Google Scholar
Adler, I., Podwysocki, M., Andre, C.G., et al. (1974) The role of horizontal transport as evaluated from the Apollo 15 and 16 orbital experiments. Proceedings of the 5th Lunar Sci. Conf., 975–979.Google Scholar
Andre, C.G., Bielefeld, M.J., Elaison, E., Soderblom, L.A., Adler, I., & Philpotts, J.A. (1977) Lunar surface chemistry: A new imaging technique. Science, 197, 986989.Google Scholar
Andre, C.G., Wolfe, R., & Adler, I. (1978) Evidence for a high-magnesium subsurface basalt in Mare Crisium from orbital X-ray fluorescence data. Mare Crisium: The View from Luna 24, 112.Google Scholar
Arai, T., Okada, T., Yamamoto, Y., Ogawa, K., Shirai, K., & Kato, M. (2008) Sulfur abundance of asteroid 25143 Itokawa observed by X-ray fluorescence spectrometer onboard Hayabusa. Earth, Planets and Space, 60, 2131.Google Scholar
Arnold, J.R., Metzger, A.E., Anderson, E.C., & Van Dilla, M.A. (1962) Gamma rays in space, Ranger 3. Journal of Geophysical Research, 67, 48784880.Google Scholar
Arvidson, R.E., Bonitz, R.G., Robinson, M.L., et al. (2009) Results from the Mars Phoenix Lander Robotic Arm experiment. Journal of Geophysical Research, 114, DOI:10.1029/2009je003408.Google Scholar
Athiray, P.S., Narendranath, S., Sreekumar, P., & Grande, M. (2014) C1XS results: First measurement of enhanced sodium on the lunar surface. Planetary and Space Science, 104, 279287.Google Scholar
Ban, C., Zheng, Y., Zhu, Y., Zhang, F., Xu, L., & Zou, Y. (2014) Research on the inversion of elemental abundances from Chang’E-2 X-ray spectrometry data. Chinese Journal of Geochemistry, 33, 289299.Google Scholar
Bielefeld, M.J., Reedy, R.C., Metzger, A.E., Trombka, J., & Arnold, J.R. (1976) Surface chemistry of selected lunar regions. Proceedings of the 7th Lunar Sci. Conf., 2661–2676.Google Scholar
Boynton, W., Feldman, W., Squyres, S., et al. (2002) Distribution of hydrogen in the near surface of Mars: Evidence for subsurface ice deposits. Science, 297, 8185.Google Scholar
Boynton, W., Feldman, W., Mitrofanov, I., et al. (2004) The Mars Odyssey gamma-ray spectrometer instrument suite. Space Science Reviews, 110, 37–83.Google Scholar
Boynton, W.V., Taylor, G.J., Evans, L.G., et al. (2007) Concentration of H, Si, Cl, K, Fe, and Th in the low- and mid-latitude regions of Mars. Journal of Geophysical Research, 112, DOI:10.1029/2007je002887.Google Scholar
Byrne, S., Dundas, C.M., Kennedy, M.R., et al. (2009) Distribution of mid-latitude ground ice on Mars from new impact craters. Science, 325, 16741676.Google Scholar
Davis, P.A. (1980) Iron and titanium distribution on the moon from orbital gamma ray spectrometry with implications for crustal evolutionary models. Journal of Geophysical Research, 85, 32093224.Google Scholar
Dong, W.-D., Zhang, X.-P., Zhu, M.-H., Xu, A.-A., & Tang, Z.-S. (2016) Global Mg/Si and Al/Si distributions on the lunar surface derived from Chang’E-2 X-ray Spectrometer. Research in Astronomy and Astrophysics, 16(4), DOI:10.1088/1674–4527/16/1/004.Google Scholar
Dundas, C.M., Byrne, S., McEwen, A.S., et al. (2014) HiRISE observations of new impact craters exposing martian ground ice. Journal of Geophysical Research, 119, 109127.Google Scholar
Elphic, R.C., Lawrence, D.J., Feldman, W.C., et al. (1998) Lunar Fe and Ti abundances: Comparison of Lunar Prospector and Clementine data. Science, 281, 14931496.Google Scholar
Elphic, R.C., Lawrence, D.J., Feldman, W.C., et al. (2000) Lunar rare earth element distribution and ramifications for FeO and TiO2: Lunar Prospector neutron spectrometer observations. Journal of Geophysical Research, 105, 20,33320,345.Google Scholar
Evans, L.G., Starr, R.D., Brückner, J., et al. (2001) Elemental composition from gamma-ray spectroscopy of the NEAR-Shoemaker landing site on 433 Eros. Meteoritics and Planetary Science, 36, 16391660.Google Scholar
Evans, L.G., Peplowski, P.N., Rhodes, E.A., et al. (2012) Major-element abundances on the surface of Mercury: Results from the MESSENGER Gamma-Ray Spectrometer. Journal of Geophysical Research, 117, DOI:10.1029/2012JE004178.Google Scholar
Evans, L.G., Peplowski, P.N., McCubbin, F.M., et al. (2015) Chlorine on the surface of Mercury: MESSENGER gamma-ray measurements and implications for the planet’s formation and evolution. Icarus, 257, 417427.Google Scholar
Feldman, W.C., Lawrence, D.J., Elphic, R.C., Vaniman, D.T., Thomsen, D.R., & Barraclough, B.L. (2000) Chemical information content of lunar thermal and epithermal neutrons. Journal of Geophysical Research, 105, 20,34720,363.Google Scholar
Feldman, W.C., Maurice, S., Lawrence, D.J., et al. (2001) Evidence for water ice near the lunar poles. Journal of Geophysical Research, 106, 23,23123,251.Google Scholar
Feldman, W.C., Boynton, W.V., Tokar, R.L., et al. (2002) Global distribution of neutrons from Mars: Results from Mars Odyssey. Science, 297, 7578.Google Scholar
Feldman, W., Head, J., Maurice, S., et al. (2004a) Recharge mechanism of near-equatorial hydrogen on Mars: Atmospheric redistribution or sub-surface aquifer. Geophysical Research Letters, 31, L18701, DOI:10.1029/2004GL020661.Google Scholar
Feldman, W., Mellon, M., Maurice, S., et al. (2004b) Hydrated states of MgSO4 at equatorial latitudes on Mars. Geophysical Research Letters, 31, L16702, DOI:10.1029/2004GL020181.Google Scholar
Feldman, W.C., Ahola, K., Barraclough, B.L., et al. (2004c) Gamma-ray, neutron, and alpha-particle spectrometers for the Lunar Prospector mission. Journal of Geophysical Research, 109, E07S06, DOI:10.1029/2003JE002207.Google Scholar
Feldman, W.C., Prettyman, T.H., Maurice, S., et al. (2004d) Global distribution of near-surface hydrogen on Mars. Journal of Geophysical Research, 109, DOI:10.1029/2003JE002160.Google Scholar
Fraser, G.W., Carpenter, J.D., Rothery, D.A., et al. (2010) The Mercury Imaging X-ray Spectrometer (MIXS) on bepicolombo. Planetary and Space Science, 58, 7995.Google Scholar
Gasnault, O., Feldman, W.C., Maurice, S., et al. (2001) Composition from fast neutrons: Application to the Moon. Geophysical Research Letters, 28, 37973800.Google Scholar
Glodo, J., Higgins, W.M., van Loef, E.V.D., & Shah, K.S. (2008) Scintillation properties of 1 Inch Cs2LiYCl6: CeCrystals. IEEE Transactions on Nuclear Science, 55, 12061209.Google Scholar
Goldsten, J.O., Mcnutt, R.L., Gold, R.E., et al. (1997) The X-ray/gamma-ray spectrometer on the Near Earth Asteroid Rendezvous Mission. In: The near Earth asteroid rendezvous mission (C.T. Russell, ed.). Springer, Dordrecht, 169–216.Google Scholar
Goldsten, J.O., Rhodes, E.A., Boynton, W.V., et al. (2007) The MESSENGER gamma-ray and neutron spectrometer. Space Science Reviews, 131, 339391.Google Scholar
Grande, M., Kellett, B.J., Howe, C., et al. (2007) The D-CIXS X-ray spectrometer on the SMART-1 mission to the Moon: First results. Planetary and Space Science, 55, 494502.Google Scholar
Haines, E.L. & Metzger, A.E. (1980) Lunar highland crustal models based on iron concentrations: Isostasy and center-of-mass displacement. Proceedings of the 11th Lunar Planet. Sci. Conf., 689–718.Google Scholar
Haines, E.L., Etchegaray-Ramirez, M.I., & Metzger, A.E. (1978) Thorium concentrations in the lunar surface. II: Deconvolution modeling and its application to the regions of Aristarchus and Mare Smythii. Proceedings of the 9th Lunar Planet. Sci. Conf., 2985–3013.Google Scholar
Hardgrove, C., West, S.T., Heffern, L.E., et al. (2018) Development of the Miniature Neutron Spectrometer for the Lunar Polar Hydrogen Mapper mission. 49th Lunar Planet. Sci. Conf., Abstract #2341.Google Scholar
Harrington, T.M., Marshall, J.H., Arnold, J.R., Peterson, L.E., Trombka, J.I., & Metzger, A.E. (1974) The Apollo gamma-ray spectrometer. Nuclear Instruments and Methods, 118, 401411.Google Scholar
Hasebe, N., Shibamura, E., Miyachi, T., et al. (2008) Gamma-ray spectrometer (GRS) for lunar polar orbiter SELENE. Earth, Planets and Space, 60, 299312.Google Scholar
Kelly, N.J., Boynton, W.V., Kerry, K., et al. (2006) Seasonal polar carbon dioxide frost on Mars: CO2 mass and columnar thickness distribution. Journal of Geophysical Research, 112, DOI:10.1029/2006je002678.Google Scholar
Kozyrev, A., Mitrofanov, I., Owens, A., et al. (2016) A comparative study of LaBr3(Ce(3+)) and CeBr3 based gamma-ray spectrometers for planetary remote sensing applications. Review of Scientific Instruments, 87(8), 085112. DOI:10.1063/1.4958897.Google Scholar
Lawrence, D.J., Feldman, W.C., Barraclough, B.L., et al. (1998) Global elemental maps of the Moon: The Lunar Prospector gamma-ray spectrometer. Science, 281, 14841489.Google Scholar
Lawrence, D.J., Feldman, W., Elphic, R., et al. (2002) Iron abundances on the lunar surface as measured by the Lunar Prospector gamma-ray and neutron spectrometers. Journal of Geophysical Research, 107, 5130.Google Scholar
Lawrence, D.J., Feldman, W.C., Goldsten, J.O., et al. (2010) Identification and measurement of neutron-absorbing elements on Mercury’s surface. Icarus, 209, 195209.Google Scholar
Lawrence, D.J., Peplowski, P.N., Prettyman, T.H., et al. (2013a) Constraints on Vesta’s elemental composition: Fast neutron measurements by Dawn’s Gamma Ray and Neutron Detector. Meteoritics and Planetary Science, 48, 22712288.Google Scholar
Lawrence, D.J., Feldman, W.C., Goldsten, W.C., et al. (2013b) Evidence for water ice near Mercury’s north pole from MESSENGER neutron spectrometer measurements. Science, 339, 292296.Google Scholar
Lawrence, D.J., Peplowski, P.N., Goldsten, J.O., et al. (2016) The Psyche gamma-ray and neutron spectrometer: Characterizing the composition of a metal-rich body using nuclear spectroscopy. 47th Lunar Planet. Sci. Conf., Abstract #1622.Google Scholar
Lim, L.F. & Nittler, L.R.J.I. (2009) Elemental composition of 433 Eros: New calibration of the NEAR-Shoemaker XRS data. Icarus, 200, 129146.Google Scholar
Lingenfelter, R.E., Canfield, E.H., & Hess, W.N. (1961) The lunar neutron flux. Journal of Geophysical Research, 66, 26652671.Google Scholar
Lingenfelter, R.E., Canfield, E.H., & Hampel, V.E. (1972) The lunar neutron flux revisited. Earth and Planetary Science Letters, 16, 355369.Google Scholar
Litvak, M., Mitrofanov, I., Kozyrev, A., et al. (2006) Comparison between polar regions of Mars from HEND/Odyssey data. Icarus, 180, 2337.Google Scholar
Litvak, M.L., Mitrofanov, I.G., Barmakov, Y.N., et al. (2008) The Dynamic Albedo of Neutrons (DAN) experiment for NASA’s 2009 Mars Science Laboratory. Astrobiology, 8, 605612.Google Scholar
Litvak, M.L., Mitrofanov, I.G., Sanin, A., et al. (2012) Global maps of lunar neutron fluxes from the LEND instrument. Journal of Geophysical Research, 117, DOI:10.1029/2011JE003949.Google Scholar
Litvak, M.L., Mitrofanov, I.G., Hardgrove, C., et al. (2016) Hydrogen and chlorine abundances in the Kimberley formation of Gale crater measured by the DAN instrument on board the Mars Science Laboratory Curiosity rover. Journal of Geophysical Research, 121, 836845.Google Scholar
Mandel’shtam, S.L., Tindo, I.T., & Karev, V.I. (1966) Investigation of lunar X-Ray emission with the help of the lunar satellite Luna-10. Kosmicheskie Issledovaniia, 4, 827837.Google Scholar
Mandel’shtam, S.L., Tindo, I.P., Cheremukhin, G.S., Sorokin, L.S., & Dmitriev, A.B. (1968) X radiation of the Moon and X-ray cosmic background in the lunar Sputnik Luna-12. Kosmicheskie Issledovaniia, 6, 119127.Google Scholar
Masterson, R.A., Chodas, M., Bayley, L., et al. (2018) Regolith X-Ray Imaging Spectrometer (REXIS) aboard the OSIRIS-REx asteroid sample return mission. Space Science Reviews, 214, 48. DOI:10.1007/s11214-018-0483-8.Google Scholar
Maurice, S., Lawrence, D.J., Feldman, W.C., Elphic, R.C., & Gasnault, O. (2004) Reduction of neutron data from Lunar Prospector. Journal of Geophysical Research, 109, E07S04, DOI:10.1029/2003JE002208.Google Scholar
McSween, H.Y., Jr., Taylor, G.J., & Wyatt, M.B. (2009) Elemental composition of the martian crust. Science, 324, 736739.Google Scholar
Mellon, M.T., Feldman, W.C., & Prettyman, T.H. (2004) The presence and stability of ground ice in the southern hemisphere of Mars. Icarus, 169, 324340.Google Scholar
Metzger, A.E. & Parker, R.E. (1979) The distribution of titanium on the lunar surface. Earth and Planetary Science Letters, 45, 155171.Google Scholar
Metzger, A.E., Anderson, E.C., Van Dilla, M.A., & Arnold, J.R. (1964) Detection of an interstellar flux of gamma rays. Nature, 204, 766767.Google Scholar
Metzger, A.E., Haines, E., Parker, R., & Radocinski, R. (1977) Thorium concentrations in the lunar surface. I-Regional values and crustal content. Proceedings of the 10th Lunar Sci. Conf., 10, 949–999.Google Scholar
Metzger, A.E., Haines, E., Etchegaray-Ramirez, M., & Hawke, B. (1979) Thorium concentrations in the lunar surface. III-Deconvolution of the Apenninus region. Proceedings of the 10th Lunar Planet. Sci. Conf., 1701–1718.Google Scholar
Mitrofanov, I., Anfimov, D., Kozyrev, A., et al. (2002) Maps of subsurface hydrogen from the high energy neutron detector, Mars Odyssey. Science, 297, 7881.Google Scholar
Naito, M., Hasebe, N., Nagaoka, H., et al. (2018) Iron distribution of the Moon observed by the Kaguya gamma-ray spectrometer: Geological implications for the south pole-Aitken basin, the Orientale basin, and the Tycho crater. Icarus, 310, 2131.Google Scholar
Narendranath, S., Athiray, P.S., Sreekumar, P., et al. (2011) Lunar X-ray fluorescence observations by the Chandrayaan-1 X-ray Spectrometer (C1XS): Results from the nearside southern highlands. Icarus, 214, 5366.Google Scholar
Nittler, L.R., Starr, R.D., Lev, L., et al. (2001) X-ray fluorescence measurements of the surface elemental composition of asteroid 433 Eros. Meteoritics and Planetary Science, 36, 16731695.Google Scholar
Nittler, L.R., Starr, R.D., Weider, S.Z., et al. (2011) The major-element composition of Mercury’s surface from MESSENGER X-ray spectrometry. Science, 333, 18471850.Google Scholar
Okada, T., Shirai, K., Yamamoto, Y., et al. (2009) X-ray fluorescence spectrometry of Lunar Surface by XRS onboard SELENE (Kaguya). Transactions of the Japan Society for Aeronautical and Space Sciences, Space Technology Japan, 7, Tk_39–Tk_42.Google Scholar
Peng, W.-X., Wang, H.-Y., Zhang, C.-M., et al. (2009) Prospective results of CHANG’E-2 X-ray spectrometer. Chinese Physics C, 33(10), 819825.Google Scholar
Peplowski, P.N., Evans, L.G., Hauck, S.A., et al. (2011) Radioactive elements on Mercury’s surface from MESSENGER: Implications for the planet’s formation and evolution. Science, 333, 18501852.Google Scholar
Peplowski, P.N., Rhodes, E.A., Hamara, D.K., et al. (2012) Aluminum abundance on the surface of Mercury: Application of a new background-reduction technique for the analysis of gamma-ray spectroscopy data. Journal of Geophysical Research, 117, DOI:10.1029/2012JE004181.Google Scholar
Peplowski, P.N., Lawrence, D.J., Prettyman, T.H., et al. (2013) Compositional variability on the surface of 4 Vesta revealed through GRaND measurements of high-energy gamma rays. Meteoritics and Planetary Science, 48, 22522270.Google Scholar
Peplowski, P.N., Bazell, D., Evans, L.G., Goldsten, J.O., Lawrence, D.J., & Nittler, L.R. (2015) Hydrogen and major element concentrations on 433 Eros: Evidence for an L- or LL-chondrite-like surface composition. Meteoritics and Planetary Science, 50, 353367.Google Scholar
Peplowski, P.N., Klima, R.L., Lawrence, D.J., et al. (2016) Remote sensing evidence for an ancient carbon-bearing crust on Mercury. Nature Geoscience, 9, 273276.Google Scholar
Prettyman, T.H., Feldman, W., Mellon, M., et al. (2004) Composition and structure of the martian surface at high southern latitudes from neutron spectroscopy. Journal of Geophysical Research, 109, DOI:10.1029/2003je002139.Google Scholar
Prettyman, T.H., Hagerty, J.J., Elphic, R.C., et al. (2006) Elemental composition of the lunar surface: Analysis of gamma ray spectroscopy data from Lunar Prospector. Journal of Geophysical Research, 111, E12007, DOI:10.1029/2005JE002656.Google Scholar
Prettyman, T.H., Feldman, W.C., & Titus, T.N. (2009) Characterization of Mars’ seasonal caps using neutron spectroscopy. Journal of Geophysical Research, 114, 10.1029/2008je003275.Google Scholar
Prettyman, T.H., Feldman, W.C., McSween, H.Y., Jr., et al. (2011) Dawn’s gamma ray and neutron detector. Space Science Reviews, 163, 371459.Google Scholar
Prettyman, T.H., Mittlefehldt, D.W., Yamashita, N., et al. (2012) Elemental mapping by Dawn reveals exogenic H in Vesta’s regolith. Science, 338, 242246.Google Scholar
Prettyman, T.H., Mittlefehldt, D.W., Yamashita, N., et al. (2013) Neutron absorption constraints on the composition of 4 Vesta. Meteoritics and Planetary Science, 48, 22112236.Google Scholar
Prettyman, T.H., Yamashita, N., Lambert, J.L., Stassun, K.G., & Raymond, C.A. (2015a) Ultra-bright scintillators for planetary gamma-ray spectroscopy. SPIE Newsroom, DOI:10.1117/2.1201510.006162.Google Scholar
Prettyman, T.H., Yamashita, N., Reedy, R.C., et al. (2015b) Concentrations of potassium and thorium within Vesta’s regolith. Icarus, 259, 3952.Google Scholar
Prettyman, T.H., Yamashita, N., Toplis, M.J., et al. (2017) Extensive water ice within Ceres’ aqueously altered regolith: Evidence from nuclear spectroscopy. Science, 355, 5559.Google Scholar
Prettyman, T.H., Yamashita, N., Ammannito, E., et al. (2019a) Elemental composition and mineralogy of Vesta and Ceres: Distribution and origins of hydrogen-bearing species. Icarus, 318, 4255.Google Scholar
Prettyman, T.H., Yamashita, N., Landis, M.E., et al. (2019b) Dawn’s GRaND finale: High spatial-resolution elemental measurements reveal an anomaly at Occator crater. 50th Lunar Planet. Sci. Conf., Abstract #1356.Google Scholar
Sprague, A.L., Boynton, W.V., Kerry, K.E., et al. (2007) Mars’ atmospheric argon: Tracer for understanding martian atmospheric circulation and dynamics. Journal of Geophysical Research, 112, DOI:10.1029/2005je002597.Google Scholar
Surkov, Y.A., Moskalyova, L.P., Manvelyan, O.S., Basilevsky, A.T., & Kharyukova, V.P. (1980), Geochemical interpretation of the results of measuring gamma-radiation of Mars. Proceedings of the 11th Lunar Planet. Sci. Conf., 669–676.Google Scholar
Surkov, Y.A. (1984) Nuclear-physical methods of analysis in lunar and planetary investigations. Isotopenpraxis Isotopes in Environmental and Health Studies, 20, 321329.Google Scholar
Surkov, Y.A., Kirnozov, F.F., Glazov, V.N., Dunchenko, A.G., Tatsy, L.P., & Sobornov, O.P. (1987) Uranium, thorium, and potassium in the Venusian rocks at the landing sites of Vega 1 and 2. Journal of Geophysical Research, 92, E537E540.Google Scholar
Surkov, Y.A., Barsukov, V.L., Moskaleva, L.P., et al. (1989) Determination of the elemental composition of martian rocks from Phobos 2. Nature, 341, 595598.Google Scholar
Toplis, M.J., Mizzon, H., Monnereau, M., et al. (2013) Chondritic models of 4 Vesta: Implications for geochemical and geophysical properties. Meteoritics and Planetary Science, 48, 23002315.Google Scholar
Vander Kaaden, K.E., McCubbin, F.M., Nittler, L.R., et al. (2017) Geochemistry, mineralogy, and petrology of boninitic and komatiitic rocks on the mercurian surface: Insights into the mercurian mantle. Icarus, 285, 155168.Google Scholar
Weider, S.Z., Kellett, B.J., Swinyard, B., et al. (2012) The Chandrayaan-1 X-ray Spectrometer: First results. Planetary and Space Science, 60, 217228.Google Scholar
Weider, S.Z., Nittler, L.R., Starr, R.D., McCoy, T.J., & Solomon, S.C. (2014) Variations in the abundance of iron on Mercury’s surface from MESSENGER X-Ray Spectrometer observations. Icarus, 235, 170186.Google Scholar
Weider, S.Z., Nittler, L.R., Starr, R.D., et al. (2015) Evidence for geochemical terranes on Mercury: Global mapping of major elements with MESSENGER’s X-Ray Spectrometer. Earth and Planetary Science Letters, 416, 109120.Google Scholar
Weider, S.Z., Nittler, L.R., Murchie, S.L., et al. (2016) Evidence from MESSENGER for sulfur- and carbon-driven explosive volcanism on Mercury. Geophysical Research Letters, 43, 36533661.Google Scholar
Yamashita, N., Hasebe, N., Reedy, R.C., et al. (2010) Uranium on the Moon: Global distribution and U/Th ratio. Geophysical Research Letters, 37, L10201, DOI:10.1029/2010GL043061.Google Scholar
Yamashita, N., Gasnault, O., Forni, O., et al. (2012) The global distribution of calcium on the Moon: Implications for high-Ca pyroxene in the eastern mare region. Earth and Planetary Science Letters, 353354, 9398.Google Scholar
Yamashita, N., Prettyman, T.H., Mittlefehldt, D.W., et al. (2013) Distribution of iron on Vesta. Meteoritics and Planetary Science, 48, 22372251.Google Scholar
Yin, L.I., Trombka, J.I., Adler, I., & Bielefeld, M. (1993) X-ray remote sensing techniques for geochemical analysis of planetary surfaces. In: Remote geochemical analysis: Elemental and mineralogical composition (Pieters, C.M. & Englert, P.A.J., eds.). Cambridge University Press, Cambridge, 199212.Google Scholar
Zhang, C., Lechner, P., Lutz, G., et al. (2006) Development of DEPFET Macropixel detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 568, 207216.Google Scholar
Zhu, M.H., Ma, T., & Chang, J. (2010) Chang’E-1 gamma ray spectrometer and preliminary radioactive results on the lunar surface. Planetary and Space Science, 58, 15471554.Google Scholar
Zhu, M.H., Chang, J., Ma, T., et al. (2013) Potassium map from Chang’E-2 constraints the impact of Crisium and Orientale basin on the Moon. Scientific Reports, 3, 1611, DOI:10.1038/srep01611.Google Scholar

References

Asphaug, E., Belton, M., Bockelee-Morvan, D., et al. (2014) The Comet Radar Explorer mission. DPS Annual Meeting, Abstract # 209.07.Google Scholar
Barsukov, V.L., Basilevsky, A.T., Burba, G.A., et al. (1986) The geology and geomorphology of the Venus surface as revealed by the radar images obtained by Veneras 15 and 16. Journal of Geophysical Research, 91, 378398.Google Scholar
Basilevsky, A. & Head, J.W. (2002) Venus: Timing and rates of geologic activity. Geology, 30, 10151018.Google Scholar
Basilevsky, A.T. & McGill, G.E. (2007) Surface evolution of Venus. In: Exploring Venus as a terrestrial planet (Esposito, L.W., Stofan, E.R., & Cravens, T.E., eds.). American Geophysical Union, Washington, DC, 2343.Google Scholar
Basilevsky, A.T., Head, J.W., & Setyaeva, I.V. (2003) Venus: Estimation of age of impact craters on the basis of degree of preservation of associated radar-dark deposits. Geophysical Research Letters, 30, DOI:10.1029/2003GL017504.Google Scholar
Benner, L.A.M., Nolan, M.C., Ostro, S.J., et al. (2006) Near-Earth Asteroid 2005 CR37: Radar images and photometry of a candidate contact binary. Icarus, 182, 474481.Google Scholar
Benner, L.A.M., Busch, M.W., Giorgini, J.D., Taylor, P.A., & Margot, J.-L. (2015) Radar observations of near-Earth and main-belt asteroids. In: Asteroids IV (Michel, P., DeMeo, F., & Bottke, W., eds.). University of Arizona Press, Tucson, 165182.Google Scholar
Black, G.J., Campbell, D.B., & Nicholson, P.D. (2001) Icy Galilean satellites: Modeling radar reflectivities as a coherent backscatter effect. Icarus, 151, 167180.Google Scholar
Black, G.J., Campbell, D.B., & Carter, L.M. (2007) Arecibo radar observations of Rhea, Dione, Tethys, and Enceladus. Icarus, 191, 702711.Google Scholar
Black, G.J., Campbell, D.B., & Carter, L.M. (2011) Ground-based radar observations of Titan: 2000–2008. Icarus, 212, 300320.Google Scholar
Bondarenko, N.V. & Head, J.W. (2009) Crater-associated dark diffuse features on Venus: Properties of surficial deposits and their evolution. Journal of Geophysical Research, 114, DOI:10.1029/2008JE003163.Google Scholar
Bramson, A.M., Byrne, S., Putzig, N.E., et al. (2015) Widespread excess ice in Arcadia Planitia, Mars. Geophysical Research Letters, 42, 65666574.Google Scholar
Bruzzone, L., Plaut, J.J., Alberti, G., et al. (2013) RIME: Radar for Icy Moon Exploration. IEEE IGARSS, 39073910.Google Scholar
Butler, B.J., Muhleman, D.O., & Slade, M.A. (1993) Mercury: Full-disk radar images and the detection and stability of ice at the north pole. Journal of Geophysical Research, 98, 15,00315,023.Google Scholar
Butrica, A.J. (1996) To see the unseen: A history of planetary radar astronomy. NASA History Office, Washington, DC.Google Scholar
Byrnes, J.M. & Crown, D.A. (2002) Morphology, stratigraphy, and surface roughness properties of Venusian lava flow fields. Journal of Geophysical Research, 107, DOI:10.1029/2001JE001828.Google Scholar
Cahill, J.T.S., Thomson, B.J., Patterson, G.W., et al. (2014) The Miniature Radio Frequency instrument’s (Mini-RF) global observations of Earth’s Moon. Icarus, 243, 173190.Google Scholar
Campbell, B.A. (2002) Radar remote sensing of planetary surfaces. Cambridge University Press, Cambridge.Google Scholar
Campbell, B.A. (2006) Eagle: A synthetic aperture radar mapper for the Mars Scout Program. 37th Lunar Planet. Sci. Conf., Abstract #2188.Google Scholar
Campbell, B.A. (2012) High circular polarization ratios in radar scattering from geologic targets. Journal of Geophysical Research, 117, DOI:10.1029/2012JE004061.Google Scholar
Campbell, B., Carter, L., Phillips, R., et al. (2008) SHARAD radar sounding of the Vastitas Borealis Formation in Amazonis Planitia. Journal of Geophysical Research, 113, DOI:10.1029/2008JE003177.Google Scholar
Campbell, B.A., Campbell, D.B., Morgan, G.A., Carter, L.M., Nolan, M.C., & Chandler, J.F. (2015) Evidence for crater ejecta on Venus tessera terrain from Earth-based radar images. Icarus, 250, 123130.Google Scholar
Campbell, D.B. & Burns, B.A. (1980) Earth-based radar imagery of Venus. Journal of Geophysical Research, 85, 82718281.Google Scholar
Campbell, D.B., Chandler, J.F., Pettengill, G.H., & Shapiro, I.I. (1977) Galilean satellites of Jupiter: 12.6-Centimeter radar observations. Science, 196, 650653.Google Scholar
Campbell, D.B., Black, G.J., Carter, L.M., & Ostro, S.J. (2003) Radar evidence for liquid surfaces on Titan. Science, 302, 431434.Google Scholar
Campbell, D.B., Campbell, B.A., Carter, L.M., Margot, J.-L., & Stacy, N.J.S. (2006) No evidence for thick deposits of ice at the lunar south pole. Nature, 443, 835837.Google Scholar
Carter, L.M., Campbell, D.B., & Campbell, B.A. (2004) Impact crater related surficial deposits on Venus: Multipolarization radar observations with Arecibo. Journal of Geophysical Research, 109, DOI:10.1029/2003JE002227.Google Scholar
Carter, L.M., Campbell, D.B., & Campbell, B.A. (2006) Volcanic deposits in shield fields and highland regions on Venus: Surface properties from radar polarimetry. Journal of Geophysical Research, 111, DOI:10.1029/2005JE002519.Google Scholar
Carter, L.M., Campbell, B.A., Watters, T.R., et al. (2009) Shallow Radar (SHARAD) sounding observations of the Medusae Fossae Formation, Mars. Icarus, 199, 295302.Google Scholar
Carter, L.M., Neish, C.D., Bussey, D.B.J., et al. (2012) Initial observations of lunar impact melts and ejecta flows with the Mini-RF radar. Journal of Geophysical Research, 117, DOI:10.1029/2011JE003911.Google Scholar
Chabot, N.L., Ernst, C., Harmon, J.K., et al. (2012) Craters hosting radar-bright deposits in Mercury’s north polar region: Areas of persistent shadow determined from MESSENGER images. Journal of Geophysical Research, 118, 2636.Google Scholar
Clifford, S.M., Lasue, J., Heggy, E., Boisson, J., McGovern, P., & Max, M.D. (2010) Depth of the martian cryosphere: Revised estimates and implications for the existence and detection of subpermafrost groundwater. Journal of Geophysical Research, 115, DOI:10.1029/2009JE003462.Google Scholar
Cook, C.M., Melosh, H.J., & Bottke, W.F. (2003) Doublet craters on Venus. Icarus, 165, 90100.Google Scholar
Dewitt, J.H. & Stodola, E.K. (1949) Detection of radio signals reflected from the Moon. Proceedings of the IRE, 37(3), 229242.Google Scholar
Eke, V.R., Bartram, S.A., Lane, D.A., Smith, D., & Teodoro, L.F.A. (2014) Lunar polar craters – Icy, rough or just sloping? Icarus, 241, 6678.Google Scholar
Elachi, C., Wall, S., Allison, M., et al. (2005) Cassini radar views the surface of Titan. Science, 308, 970974.Google Scholar
Elachi, C., Wall, S., Janssen, M., et al. (2006) Titan Radar Mapper observations from Cassini’s TA and T3 flybys. Nature, 441, 709713.Google Scholar
Fa, W. & Cai, Y. (2013) Circular polarization ratio characteristics of impact craters from Mini-RF observations and implications for ice detection at the polar regions of the Moon. Journal of Geophysical Research, 118, 15821608.Google Scholar
Ford, J.P., Plaut, J.J., Weitz, C.M., et al. (1993) Guide to Magellan image interpretation. JPL Publication #93-24.Google Scholar
Ghent, R.R., Hayne, P.O., Bandfield, J.L., et al. (2014) Constraints on the recent rate of lunar ejecta breakdown and implications for crater ages. Geology, 42, 10591062.Google Scholar
Gurnett, D.A., Kirchner, D.L., Huff, R.L., et al. (2005) Radar soundings of the ionosphere of Mars. Science, 310, 19291933.Google Scholar
Gurnett, D.A., Huff, R.L., Morgan, D.D., et al. (2008) An overview of radar soundings of the martian ionosphere from the Mars Express spacecraft. Advances in Space Research, 41, 13351346.Google Scholar
Gurnett, D.A., Morgan, D.D., Persoon, A.M., et al. (2015) An ionized layer in the upper atmosphere of Mars caused by dust impacts from comet Siding Spring. Geophysical Research Letters, 42, 47454751.Google Scholar
Harmon, J.K. & Nolan, M.C. (2017) Arecibo radar imagery of Mars: II. Chryse–Xanthe, polar caps, and other regions. Icarus, 281, 162199.Google Scholar
Harmon, J.K., Slade, M.A., Vélez, R.A., Crespo, A., Dryer, M.J., & Johnson, J.M. (1994) Radar mapping of Mercury’s polar anomalies. Nature, 369, 213215.Google Scholar
Harmon, J.K., Slade, M.A., & Rice, M.S. (2011) Radar imagery of Mercury’s putative polar ice: 1999–2005 Arecibo results. Icarus, 211, 3750.Google Scholar
Harmon, J.K., Nolan, M.C., Husmann, D.I., & Campbell, B.A. (2012) Arecibo radar imagery of Mars: The major volcanic provinces. Icarus, 220, 9901030.Google Scholar
Hayes, A., Aharonson, O., Callahan, P., et al. (2008) Hydrocarbon lakes on Titan: Distribution and interaction with a porous regolith. Geophysical Research Letters, 35, DOI:10.1029/2008GL033409.Google Scholar
Head, J.W., Neukum, G., Jaumann, R., et al. (2005) Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars. Nature, 434, 346351.Google Scholar
Hensley, S., Smrekar, S.E., Nunes, D.C., & The_VERITAS_Science_Team. (2016) VERITAS: Towards the next generation of cartography for the planet Venus. 47th Lunar Planet. Sci. Conf., Abstract #1965.Google Scholar
Holt, J.W., Safaeinili, A., Plaut, J.J., et al. (2008) Radar sounding evidence for buried glaciers in the southern mid-latitudes of Mars. Science, 322, 12351238.Google Scholar
Holt, J.W., Fishbaugh, K.E., Byrne, S., et al. (2010) The construction of Chasma Boreale on Mars. Nature, 465, 446449.Google Scholar
Janssen, M., Le Gall, A., Lopes, R.M., et al. (2016) Titan’s surface at 2.2-cm wavelength imaged by the Cassini RADAR radiometer: Results and interpretations through the first ten years of observation. Icarus, 270, 443459.Google Scholar
Jordan, R., Picardi, G., Plaut, J., et al. (2009) The Mars express MARSIS sounder instrument. Planetary and Space Science, 57, 19751986.Google Scholar
Jurgens, R.F., Slade, M.A., & Saunders, R.S. (1988a) Evidence for highly reflecting materials on the surface and subsurface of Venus. Science, 240, 10211023.Google Scholar
Jurgens, R.F., Slade, M.A., Robinett, L., et al. (1988b) High resolution images of Venus from ground-based radar. Geophysical Research Letters, 15, 577580.Google Scholar
Kofman, W., Barbin, Y., Klinger, J., et al. (1998) Comet nucleus sounding experiment by radiowave transmission. Advances in Space Research, 21, 15891598.Google Scholar
Kofman, W., Herique, A., Barbin, Y., et al. (2015) Properties of the 67P/Churyumov–Gerasimenko interior revealed by CONSERT radar. Science, 349, aab0639.Google Scholar
Lai, J., Xu, Y., Zhang, X., & Tang, Z. (2016) Structural analysis of lunar subsurface with Chang׳E-3 lunar penetrating radar. Planetary and Space Science, 120, 96102.Google Scholar
Lawrence, D.J., Feldman, W.C., Goldsten, J.O., et al. (2012) Evidence for water ice near Mercury’s north pole from MESSENGER neutron spectrometer measurements. Science, 339, 292296.Google Scholar
Lorenz, R.D., Stiles, B.W., Aharonson, O., et al. (2013) A global topographic map of Titan. Icarus, 225, 367377.Google Scholar
Magri, C., Nolan, M.C., Ostro, S.J., & Giorgini, J.D. (2007) A radar survey of main-belt asteroids: Arecibo observations of 55 objects during 1999–2003. Icarus, 186, 126151.Google Scholar
Mastrogiuseppe, M., Poggiali, V., Hayes, A., et al. (2014) The bathymetry of a Titan sea. Geophysical Research Letters, 41, 14321437.Google Scholar
Morgan, G.A., Campbell, B.A., Carter, L.M., Plaut, J.J., & Phillips, R.J. (2013) 3D Reconstruction of the source and scale of buried young flood channels on Mars. Science, 340, 607610.Google Scholar
Morgan, G.A., Campbell, B.A., Carter, L.M., & Plaut, J.J. (2015) Evidence for the episodic erosion of the Medusae Fossae Formation preserved within the youngest volcanic province on Mars. Geophysical Research Letters, 42, 73367342.Google Scholar
Mouginis-Mark, P.J. (2016) Geomorphology and volcanology of Maat Mons, Venus. Icarus, 277, 433441.Google Scholar
Muhleman, D.O., Butler, B.J., Grossman, A.W., & Slade, M.A. (1991) Radar images of Mars. Science, 253, 15081513.Google Scholar
Neish, C.D., Bussey, D.B.J., Spudis, P., et al. (2011) The nature of lunar volatiles as revealed by Mini-RF observations of the LCROSS impact site. Journal of Geophysical Research, 116, DOI:10.1029/2010JE003647.Google Scholar
Neish, C.D., Madden, J., Carter, L.M., et al. (2014) Global distribution of lunar impact melt flows. Icarus, 239, 105117.Google Scholar
Nozette, S., Spudis, P., Bussey, B., et al. (2010) The lunar Reconnaissance Orbiter Miniature Radio Frequency (Mini-RF) technology demonstration. Space Science Reviews, 150, 285302.Google Scholar
Ono, T., Kumamoto, A., Nakagawa, H., et al. (2009) Lunar Radar Sounder observations of subsurface layers under the nearside Maria of the Moon. Science, 323, 909912.Google Scholar
Orosei, R., Lauro, S.E., Pettinelli, E., et al. (2018) Radar evidence of subglacial liquid water on Mars. Science, 361, 490493.Google Scholar
Oshigami, S., Watanabe, S., Yamaguchi, Y., et al. (2014) Mare volcanism: Reinterpretation based on Kaguya Lunar Radar Sounder data. Journal of Geophysical Research, 119, 10371045.Google Scholar
Ostro, S.J. (1982) Radar properties of Europa, Ganymede, and Callisto. In: Satellites of Jupiter (Morrison, D., ed.). University of Arizona Press, Tucson, 213236.Google Scholar
Ostro, S.J. (1989) Radar observations of asteroids. In: Asteroids II (Binzel, R.P., Gehrels, T., & Matthews, M.S., eds.). University of Arizona Press, Tucson, 192212.Google Scholar
Ostro, S.J., Campbell, D.B., Simpson, R.A., et al. (1992) Europa, Ganymede, and Callisto: New radar results from Arecibo and Goldstone. Journal of Geophysical Research, 97, 1822718244.Google Scholar
Ostro, S.J., Hudson, R.S., Benner, L.A.M., et al. (2002) Asteroid radar astronomy. In: Asteroids III (Bottke, W., Cellino, A., Paolicchi, P., & Binzel, R.P., eds.). University of Arizona Press, Tucson, 151168.Google Scholar
Patterson, G.W., Blankenship, D., Moussessian, A., et al. (2015) REASON for Europa. DPS Annual Meeting, Abstract #312.09.Google Scholar
Patterson, G.W., Stickle, A.M., Turner, F.S., et al. (2017) Bistatic radar observations of the Moon using Mini-RF on LRO and the Arecibo Observatory. Icarus, 283, 219.Google Scholar
Peeples, W.J., Sill, W.R., May, T.W., et al. (1978) Orbital radar evidence for lunar subsurface layering in Maria Serenitatis and Crisium. Journal of Geophysical Research, 83, 34593470.Google Scholar
Pettengill, G.H., Eliason, E., Ford, P.G., Loriot, G.B., Masursky, H., & McGill, G.E. (1980) Pioneer Venus radar results altimetry and surface properties. Journal of Geophysical Research, 85, 82618270.Google Scholar
Phillips, R.J., Adams, G.F., Brown, W.E. Jr., et al. (1973) Apollo Lunar Sounder experiment. In: Apollo 17 Preliminary Science Report. NASA, Washington, DC.Google Scholar
Phillips, R.J., Zuber, M.T., Smrekar, S.E., et al. (2008) Mars north polar deposits: Stratigraphy, age, and geodynamical response. Science, 320, 11821185.Google Scholar
Picardi, G., Plaut, J.J., Biccari, D., et al. (2005) Radar soundings of the subsurface of Mars. Science, 310, 19251928.Google Scholar
Plaut, J.J., Ivanov, A., Safaeinili, A., et al. (2007a) Radar sounding of subsurface layers in the south polar plains of Mars: Correlation with the Dorsa Argentea formation. 39th Lunar Planet. Sci. Conf., Abstract #2144.Google Scholar
Plaut, J.J., Picardi, G., Safaeinili, A., et al. (2007b) Subsurface radar sounding of the south polar layered deposits of Mars. Science, 316, 9295.Google Scholar
Plaut, J.J., Safaeinili, A., Holt, J.W., et al. (2009a) Radar evidence for ice in lobate debris aprons in the mid-northern latitudes of Mars. Geophysical Research Letters, 36, DOI:10.1029/2008GL036379.Google Scholar
Plaut, J.J., Safaeinili, A., Campbell, B.A., et al. (2009b) A widespread radar-transparent layer detected by SHARAD in Arcadia Planitia, Mars. 40th Lunar Planet. Sci. Conf., Abstract #2312.Google Scholar
Pommerol, A., Kofman, W., Audouard, J., et al. (2010) Detectability of subsurface interfaces in lunar maria by the LRS/SELENE sounding radar: Influence of mineralogical composition. Geophysical Research Letters, 37, DOI:10.1029/2009GL041681.Google Scholar
Porcello, L.J., Jordan, R.L., Zelenka, J.S., et al. (1974) The Apollo lunar sounder radar system. Proceedings of the IEEE, 62, 769783.Google Scholar
Putzig, N.E., Phillips, R.J., Campbell, B.A., et al. (2009) Subsurface structure of Planum Boreum from Mars Reconnaissance Orbiter Shallow Radar soundings. Icarus, 204, 443457.Google Scholar
Romeo, I. & Turcotte, D.L. (2009) The frequency-area distribution of volcanic units on Venus: Implications for planetary resurfacing. Icarus, 203, 1319.Google Scholar
Saunders, R.S. (1992) Foreword to special section on Magellan at Venus. Journal of Geophysical Research, 97, 15921, DOI:10.1029/92JE02288.Google Scholar
Saunders, R.S., Spear, A.J., Allin, P.C., et al. (1992) Magellan mission summary. Journal of Geophysical Research, 97, 13,06713,090.Google Scholar
Selvans, M.M., Plaut, J.J., Aharonson, O., & Safaeinili, A. (2010) Internal structure of Planum Boreum, from Mars advanced radar for subsurface and ionospheric sounding data. Journal of Geophysical Research, 115, DOI:10.1029/2009JE003537.Google Scholar
Seu, R., Phillips, R.J., Biccari, D., et al. (2007) SHARAD sounding radar on the Mars Reconnaissance Orbiter. Journal of Geophysical Research, 112, DOI:10.1029/2006JE002745.Google Scholar
Shepard, M.K., Taylor, P.A., Nolan, M.C., et al. (2015) A radar survey of M- and X-class asteroids. III. Insights into their composition, hydration state, & structure. Icarus, 245, 3855.Google Scholar
Simpson, R.A., Harmon, J.K., Zisk, S.H., Thompson, T., & Muhleman, D.O. (1992) Radar determination of Mars surface properties. In: Mars (Kieffer, H.H., Jakosky, B., Snyder, C.W., & Matthews, M.S., eds.). University of Arizona Press, Tucson, 652685.Google Scholar
Slade, M.A., Butler, B.J., & Muhleman, D.O. (1992) Mercury radar imaging: Evidence for polar ice. Science, 258, 635640.Google Scholar
Smith, I.B. & Holt, J.W. (2010) Onset and migration of spiral troughs on Mars revealed by orbital radar. Nature, 465, 450453.Google Scholar
Spudis, P.D., Bussey, D.B.J., Baloga, S.M., et al. (2010) Initial results for the north pole of the Moon from Mini-SAR, Chandrayaan-1 mission. Geophysical Research Letters, 37, DOI:10.1029/2009GL042259.Google Scholar
Spudis, P.D., Bussey, D.B.J., Baloga, S.M., et al. (2013) Evidence for water ice on the Moon: Results for anomalous polar craters from the LRO Mini-RF imaging radar. Journal of Geophysical Research, 118, 20162029.Google Scholar
Stacy, N.J.S., Campbell, D.B., & Ford, P.G. (1997) Arecibo radar mapping of the lunar poles: A search for ice deposits. Science, 276, 15271530.Google Scholar
Stillman, D.E. & Grimm, R.E. (2011) Radar penetrates only the youngest geological units on Mars. Journal of Geophysical Research, 116, DOI:10.1029/2010JE003661.Google Scholar
Stofan, E.R., Lunine, J.I., Lopes, R., et al. (2006) Mapping of Titan: Results from the first Titan radar passes. Icarus, 185, 443456.Google Scholar
Stofan, E.R., Elachi, C., Lunine, J.I., et al. (2007) The lakes of Titan. Nature, 445, 6164.Google Scholar
Stuurman, C.M., Osinski, G.R., Holt, J.W., et al. (2016) SHARAD detection and characterization of subsurface water ice deposits in Utopia Planitia, Mars. Geophysical Research Letters, 43, 94849491.Google Scholar
Su, Y., Fang, G.-Y., Feng, J.-Q., et al. (2014) Data processing and initial results of Chang’e-3 lunar penetrating radar. Research in Astronomy and Astrophysics, 14, 16231632.Google Scholar
Talpe, M.J., Zuber, M.T., Yang, D., et al. (2012) Characterization of the morphometry of impact craters hosting polar deposits in Mercury’s north polar region. Journal of Geophysical Research, 117, DOI:10.1029/2012JE004155.Google Scholar
Thompson, T.W. (1978) High resolution lunar radar map at 7.5 meter wavelength. Icarus, 36, 174188.Google Scholar
Thompson, T.W. (1987) High-resolution lunar radar map at 70-cm wavelength. Earth, Moon, and Planets, 37, 5970.Google Scholar
Thompson, T.W., Pollack, J.B., Campbell, M.J., & O’Leary, B.T. (1970) Radar maps of the moon at 70-cm wavelength and their interpretation. Radio Science, 5, 253262.Google Scholar
Thomson, B.J., Bussey, D.B.J., Neish, C.D., et al. (2012) An upper limit for ice in Shackleton crater as revealed by LRO Mini-RF orbital radar. Geophysical Research Letters, 39, DOI:10.1029/2012GL052119.Google Scholar
Victor, W.K. & Stevens, R. (1961) Exploration of Venus by radar. Science, 134, 4648.Google Scholar
Watters, T.R., Campbell, B., Carter, L., et al. (2007) Radar sounding of the Medusae Fossae Formation Mars: Equatorial ice or dry, low-density deposits? Science, 318, 11251128.Google Scholar
Whitten, J.L. & Campbell, B.A. (2016) Recent volcanic resurfacing of Venusian craters. Geology, 44, 519522.Google Scholar
Wye, L.C., Zebker, H.A., Ostro, S.J., & the Cassini Research Team. (2007) Electrical properties of Titan’s surface from Cassini RADAR scatterometer measurements. Icarus, 188, 367385.Google Scholar
Yan, S., Guang-You, F., Jian-Qing, F., et al. (2014) Data processing and initial results of Chang’e-3 lunar penetrating radar. Research in Astronomy and Astrophysics, 14, 1623.Google Scholar
Zimbelman, J.R. (2003) Flow field stratigraphy surrounding Sekmet Mons Volcano, Kawelu Planitia, Venus. Journal of Geophysical Research, 108, DOI:10.1029/2002JE001965.Google Scholar
Zisk, S.H., Pettengill, G.H., & Catuna, G.W. (1974) High-resolution radar maps of the lunar surface at 3.8-cm wavelength. The Moon, 10, 1750.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×