Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-09T16:03:10.870Z Has data issue: false hasContentIssue false

6 - ZigBee networks and low-rate UWB communications

from Part II - Low-rate systems

Published online by Cambridge University Press:  01 June 2011

Zafer Sahinoglu
Affiliation:
Mitsubishi Electric Research Laboratories, Massachusetts, USA
Ismail Guvenc
Affiliation:
DOCOMO Communications Laboratories USA, Inc., California, USA
Ismail Guvenc
Affiliation:
DoCoMo Communications Laboratories USA, Inc.
Sinan Gezici
Affiliation:
Bilkent University, Ankara
Zafer Sahinoglu
Affiliation:
Mitsubishi Electric Research Laboratories, Cambridge, Massachusetts
Ulas C. Kozat
Affiliation:
DoCoMo Communications Laboratories USA, Inc.
Get access

Summary

In this chapter, technologies and standards for low data rate communication systems for wireless personal area networks (WPANs) and wireless sensor networks (WSNs) are discussed. First, ZigBee technology based on the IEEE 802.15.4 standard, and then low-rate UWB technology based on the IEEE 802.15.4a standard are reviewed. Finally, some of the related standards that are being developed by IEEE 802.15 working groups (WGs) are summarized.

Overview and application examples

Together with the recent advances in radio frequency (RF) and MEMS integrated circuit technologies, wireless sensors are becoming cheaper, smaller, and more capable. Through WSNs, a wealth of new applications are becoming possible, including surveillance, building control, factory automation, and in-vehicle sensing [1]. In the near future, we will observe that buildings, furniture, cars, streets, highways, etc. will all comprise WSNs. The Wireless World Research Forum (WWRF) envisions that by the year 2017 about 7 billion people in the world are expected to be using 7 trillion wireless devices, and the majority of these devices will be short-range wireless devices including small-size, low-power, low-complexity WSNs [2]. In order to provide a better picture of potential WSN applications, recent example applications in the literature are listed in Table 6.8 towards the end of the chapter.

WSNs may be typically deployed in large numbers and the network may need to operate for an extensive duration on the same battery. Therefore, key requirements for WSN transceivers include low-cost sensor nodes, small form factors, and low energy consumption.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×