Published online by Cambridge University Press: 05 May 2013
So far we have concentrated on the foundations of relational mathematics. Now we switch to applications. A first area of applications concerns all the different variants of orderings as they originated in operations research: weakorders, semiorders, intervalorders, and block-transitive orderings. With the Scott-Suppes Theorem in relational form as well as with the study of the consecutive 1s property, we here approach research level.
The second area of applications concerns modelling preferences with relations. The hierarchy of orderings is considered investigating indifference and incomparability, often starting from so-called preference structures, i.e., relational outcomes of assessment procedures. A bibliography on early preference considerations is contained in [2].
The area of aggregating preferences with relations, studied as a third field of applications, is relatively new. It presents relational measures and integration in order to treat the trust and belief of the Dempster–Shafer Theory in relational form. In contrast, the fuzzy approach is well known, with the coeficients of matrices stemming from the real interval [0, 1]; it comes closer and closer to relational algebra proper. In the present book, a direct attempt is made. Also t-norms and De Morgan triples can be generalized to a relational form.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.