from PART I - PROOF THEORETIC ANALYSIS
Published online by Cambridge University Press: 31 March 2017
Abstract. An approach to ordinal analysis is presented which is finitary, but highlights the semantic content of the theories under consideration, rather than the syntactic structure of their proofs. In this paper the methods are applied to the analysis of theories extending Peano arithmetic with transfinite induction and transfinite arithmetic hierarchies.
Introduction. As the name implies, in the field of proof theory one tends to focus on proofs. Nowhere is this emphasis more evident than in the field of ordinal analysis, where one typically designs procedures for “unwinding” derivations in appropriate deductive systems. One might wonder, however, if this emphasis is really necessary; after all, the results of an ordinal analysis describe a relationship between a system of ordinal notations and a theory, and it is natural to think of the latter as the set of semantic consequences of some axioms. From this point of view, it may seem disappointing that we have to choose a specific deductive system before we can begin the ordinal analysis.
In fact, Hilbert's epsilon substitution method, historically the first attempt at finding a finitary consistency proof for arithmetic, has a more semantic character. With this method one uses so-called epsilon terms to reduce arithmetic to a quantifier-free calculus, and then one looks for a procedure that assigns numerical values to any finite set of closed terms, in a manner consistent with the axioms. The first ordinal analysis of arithmetic using epsilon terms is due to Ackermann [1]; for further developments see, for example, [20].
More recently, investigations of nonstandard models of arithmetic due to Paris and Kirby have given rise to another approach, which incorporates Ketonen and Solovay's finitary combinatorial notion of an α-large set of natural numbers. Roughly speaking, to show that the proof-theoretic ordinal of a theory T is bounded by α, one uses an α-large interval in a nonstandard model of arithmetic to construct a model of T. These methods are surveyed and extended in [3, 4]; some of the constructions found in the second paper are derived from modeltheoretic methods due to Friedman [12, 13]. Sommer [28] has shown that one can avoid references to nonstandard models and instead view the methods as providing a way of building “finite approximations” to models of arithmetic, an idea which traces its way back to Herbrand [18].
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.