Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-27T17:44:14.608Z Has data issue: false hasContentIssue false

Explicit mathematics with monotone inductive definitions: A survey

from PART III - APPLICATIVE AND SELF-APPLICATIVE THEORIES

Published online by Cambridge University Press:  31 March 2017

Wilfried Sieg
Affiliation:
Carnegie Mellon University, Pennsylvania
Richard Sommer
Affiliation:
Stanford University, California
Carolyn Talcott
Affiliation:
Stanford University, California
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Reflections on the Foundations of Mathematics
Essays in Honor of Solomon Feferman
, pp. 329 - 346
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] W., Buchholz, S., Feferman, W., Pohlers,W., Sieg: Iterated inductive definitions and subsystems of analysis, Lecture Notes inMath. 897 (Springer, Berlin, 1981) 78-142.
[2] D., Cenzer: Ordinal recursion and inductive definitions in: E., Fenstad and P., Hinman: Generalized Recursion Theory I (North-Holland, Amsterdam, 1974) 221-264.
[3] S., Feferman: A language and axioms for explicit mathematics, in: J.N., Crossley (ed.): Algebra and Logic, Lecture Notes inMath. 450 (Springer, Berlin 1975) 87-139.
[4] S., Feferman: Constructive theories of functions and classes in: Boffa, M., van Dalen, D., McAloon, K. (eds.), Logic Colloquium –78 (North-Holland, Amsterdam 1979) 159-224.
[5] S., Feferman: Monotone inductive definitions in: Troelstra, A. S., van Dalen, D.|(eds), The L.E.J. Brouwer Centenary Symposium (North-Holland, Amsterdam, 1982) 77-89.
[6] S., Feferman: Monotone inductive definitions in: Troelstra, A. S., van Dalen, D.|(eds), The L.E.J. Brouwer Centenary Symposium (North-Holland, Amsterdam, 1982) 77-89.
S.|FefermanandW. Sieg: Proof-theoretic Equivalences between classical and constructive theories of analysis, in: W., Buchholz, S., Feferman, W., Pohlers, W., Sieg: Iterated inductive definitions and subsystems of analysis, Lecture Notes inMath. 897 (Springer, Berlin, 1981) 78-142.
[7] T., Glas: Standardstrukturen für Systeme Expliziter Mathematik, Inaugural-Dissertation (Münster, 1993).
[8] T., Glas, M., Rathjen, A., Schlüter: The strength of monotone inductive definitions in explicit mathematics, Annals of Pure and Applied Logic 85 (1997) 1-46.Google Scholar
[9] L.A., Harrington: Kolmogorov's R-operator and the first nonprojectible ordinal, mimeographed notes (1975) 13 pages.
[10] L.A., Harrington and A.S., Kechris: On monotone versus nonmonotone induction, Bull. Am. Math. Soc. 82, 888-890 (1976).Google Scholar
[11] L.A., Harrington and A.S., Kechris: Inductive definability, unpublished, type-written manuscript, 8 pages.
[12] G., Jäger: A well-ordering proof for Feferman's theory T0, Archiv f. Math. Logik 23 (1983) 65-77.
[13] G., Jäger and W., Pohlers: Eine beweistheoretische Untersuchung von Δ12 - CA + BI und verwandter Systeme, Sitzungsberichte der Bayerischen Akademie der Wissenschaften, Mathematisch- Naturwissenschaftliche Klasse (1982).
[14] A.S., Kechris: Spector second order classes and reflection, in: J.E., Fenstad, R.O., Gandy, G.E., Sacks: Generalized recursion theory II (North-Holland, Amsterdam, 1978) 147-183.
[15] G., Kreisel: Generalized inductive definitions, in: Stanford Report on the Foundations of Analysis (mimeographed), CH. III, Stanford 1963.
[16] T., John: Recursion in Kolmogorov's R-operator and the ordinal _ 3, Journal of Symbolic Logic 51 (1986) 1-11.
[17] M., Rathjen: Untersuchungen zu Teilsystemen der Zahlentheorie zweiter Stufe und der Mengenlehre mit einer zwischen Δ12 - CA und Δ12 - CA + BI liegenden Beweisstärke (Publication of the Institute for Mathematical Logic and Foundational Research of the University ofMünster, 1989).
[18] M., Rathjen: Monotone inductive definitions in explicit mathematics. Journal of Symbolic Logic 61 (1996) 125-146.Google Scholar
[19] M., Rathjen: Explicit mathematics with the monotone fixed point principle. Journal of Symbolic Logic 63 (1998) 509-542.Google Scholar
[20] M., Rathjen: Explicit mathematics with the monotone fixed point principle. II:Models. Journal of Symbolic Logic 64 (1999) 517-550.Google Scholar
[21] S., Takahashi: Monotone inductive definitions in a constructive theory of functions and classes, Ann. Pure Appl. Logic 42 (1989) 255-279.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×