Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T15:28:16.723Z Has data issue: false hasContentIssue false

10 - Forced motion of an elastic layer

Published online by Cambridge University Press:  10 December 2009

J. D. Achenbach
Affiliation:
Northwestern University, Illinois
Get access

Summary

Introduction

As discussed in Chapter 9, the modes of wave propagation in an elastic layer are well known from Lamb's (1917) classical work. The Rayleigh–Lamb frequency equations, as well as the corresponding equations for horizontally polarized wave modes, have been analyzed in considerable detail; see Achenbach (1973) and Mindlin (1960). It appears, however, that a simple direct way of expressing wave fields due to the time-harmonic loading of a layer in terms of mode expansions, and a suitable method to obtain the coefficients in the expansions by reciprocity considerations, has so far not been recognized. Of course, wave modes have entered the solutions to problems of the forced wave motion of an elastic layer, at least in the case of surface forces applied normally to the faces of the layer, but via the more cumbersome method of integral transform techniques and the subsequent evaluation of Fourier integrals by contour integration and residue calculus. For examples, we refer to the work of Lyon (1955) for the plane-strain case, and that of Vasudevan and Mal (1985) for axial symmetry.

In this chapter the displacements excited by a time-harmonic point load of arbitrary direction, either applied internally or to one of the surfaces of the layer, are obtained directly as summations over symmetric and/or antisymmetric modes of wave propagation along the layer. This is possible by virtue of an application of the reciprocity relation between time-harmonic elastodynamic states.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×