Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-05T03:27:29.977Z Has data issue: false hasContentIssue false

Part IV - Symmetries and Structure in Quantum Mechanics

Published online by Cambridge University Press:  06 April 2019

Olimpia Lombardi
Affiliation:
Universidad de Buenos Aires, Argentina
Sebastian Fortin
Affiliation:
Universidad de Buenos Aires, Argentina
Cristian López
Affiliation:
Universidad de Buenos Aires, Argentina
Federico Holik
Affiliation:
Universidad Nacional de La Plata, Argentina
Get access
Type
Chapter
Information
Quantum Worlds
Perspectives on the Ontology of Quantum Mechanics
, pp. 267 - 342
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Albert, D. (2000). Time and Chance. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Ardenghi, J. S., Castagnino, M., and Lombardi, O. (2009). “Quantum mechanics: Modal interpretation and Galilean transformations,” Foundations of Physics, 39: 10231045.Google Scholar
Arntzenius, F. (1997). “Mirrors and the direction of time,” Philosophy of Science, 64: 213222.Google Scholar
Auyang, S. Y. (1995). How Is Quantum Field Theory Possible?. Oxford: Oxford University Press.Google Scholar
Baker, D. (2010). “Symmetry and the metaphysics of physics,” Philosophy Compass, 5: 11571166.Google Scholar
Ballentine, L. (1998). Quantum Mechanics: A Modern Development. Singapore: World Scientific.Google Scholar
Bohm, A. and Gadella, M. (1989). Dirac Kets, Gamow Vectors and Gel’fand Triplets. New York: Springer.Google Scholar
Born, M. (1953). “Physical reality,” Philosophical Quarterly, 3: 139149.CrossRefGoogle Scholar
Bose, S. K. (1995). “The Galilean group in 2+1 space-times and its central extension,” Communications in Mathematical Physics, 169: 385395.Google Scholar
Brading, K. and Castellani, E. (2007). “Symmetries and invariances in classical physics,” pp. 13311367 in Butterfield, J. and Earman, J. (eds.), Philosophy of Physics: Part B. Amsterdam: Elsevier.Google Scholar
Brown, H. (1999). “Aspects of objectivity in quantum mechanics,” pp. 4570 in Butterfield, J. and Pagonis, C. (eds.), From Physics to Philosophy. Cambridge: Cambridge University Press.Google Scholar
Brown, H. and Holland, P. (1999). “The Galilean covariance of quantum mechanics in the case of external fields,” American Journal of Physics, 67: 204214.Google Scholar
Brown, H., Suárez, M., and Bacciagaluppi, G. (1998). “Are ‘sharp values’ of observables always objective elements of reality?”, pp. 289306 in Dieks, D. and Vermaas, P. E.. The Modal Interpretation of Quantum Mechanics. Dordrecht: Kluwer Academic Publishers.Google Scholar
Bub, J. (1997). Interpreting the Quantum World. Cambridge: Cambridge University Press.Google Scholar
Butterfield, J. (2007). “On symplectic reduction in classical mechanics,” pp. 1131 in Butterfield, J. and Earman, J. (eds.), Philosophy of Physics: Part A. Amsterdam: Elsevier.Google Scholar
Callender, C. (2000). “Is time ‘handed’ in a quantum world?”, Proceedings of the Aristotelian Society, 100: 247269.Google Scholar
Colussi, V. and Wickramasekara, S. (2008). “Galilean and U(1)-gauge symmetry of the Schrödinger field,” Annals of Physics, 323: 30203036.CrossRefGoogle Scholar
Costa de Beauregard, O. (1980). “CPT invariance and interpretation of quantum mechanics,” Foundations of Physics, 10: 513530.Google Scholar
Dürr, D. and Teufel, S. (2009). Bohmian Mechanics: The Physics and Mathematics of Quantum Theory. Dordrecht: Springer.Google Scholar
Earman, J. (1974). “An attempt to add a little direction to ‘The Problem of the Direction of Time’”, Philosophy of Science, 41: 1547.Google Scholar
Earman, J. (2004). “Laws, symmetry, and symmetry breaking: Invariance, conservation principles, and objectivity,” Philosophy of Science, 71: 12271241.CrossRefGoogle Scholar
Gasiorowicz, S. (1966). Elementary Particle Physics. New York: John Wiley and Sons.Google Scholar
Kochen, S. and Specker, E. (1967). “The problem of hidden variables in quantum mechanics,” Journal of Mathematics and Mechanics, 17: 5987.Google Scholar
Kramer, E. (1970). The Nature and Growth of Modern Mathematics. Princeton: Princeton University Press.Google Scholar
Laue, H. (1996). “Space and time translations commute, don’t they?”, American Journal of Physics, 64: 12031205.Google Scholar
Lombardi, O. and Castagnino, M. (2008). “A modal-Hamiltonian interpretation of quantum mechanics,” Studies in History and Philosophy of Modern Physics, 39: 380443Google Scholar
Lombardi, O., Castagnino, M., and Ardenghi, J. S. (2010). “The modal-Hamiltonian interpretation and the Galilean covariance of quantum mechanics,” Studies in History and Philosophy of Modern Physics, 41: 93103.CrossRefGoogle Scholar
Minkowski, H. (1923). “Space and time,” pp. 7591 in Perrett, W. and Jeffrey, G. B. (eds.), The Principle of Relativity: A Collection of Original Memoirs on the Special and General Theory of Relativity. New York: Dover.Google Scholar
North, J. (2009). “Two views on time reversal,” Philosophy of Science, 75: 201223.Google Scholar
Nozick, R. (2001). Invariances: The Structure of the Objective World. Harvard: Harvard University Press.Google Scholar
Ohanian, H. and Ruffini, R. (1994). Gravitation and Spacetime, 2nd edition. London: W. W. Norton and Company.Google Scholar
Peterson, D. (2015). “Prospect for a new account of time reversal,” Studies in History and Philosophy of Modern Physics, 49: 4256.CrossRefGoogle Scholar
Racah, G. (1937). “Sulla simmetria tra particelle e antiparticelle,” Il Nuovo Cimento, 14: 322326.Google Scholar
Roberts, B. (2017). “Three myths about time reversal invariance,” Philosophy of Science, 84: 315334.Google Scholar
Sachs, R. (1987). The Physics of Time Reversal. London: University Chicago Press.Google Scholar
Sakurai, J. J. (1994). Modern Quantum Mechanics. Revised Edition. Reading, MA: Addison-Wesley.Google Scholar
Savitt, S. (1996). “The direction of time,” The British Journal for the Philosophy of Science, 47: 347370.Google Scholar
Sklar, L. (1974). Space, Time and Spacetime. Berkeley-Los Angeles: University of California Press.Google Scholar
Suppes, P. (2000). “Invariance, symmetry and meaning,” Foundations of Physics, 30: 15691585.Google Scholar
Watanabe, S. (1955). “Symmetry of physical laws. Part 3: Prediction and retrodiction,” Reviews of Modern Physics, 27: 179186.Google Scholar
Weinberg, S. (1995). The Quantum Theory of Fields, Volume I: Foundations. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Weyl, H. (1952). Symmetry. Princeton: Princeton University Press.Google Scholar
Wigner, E. P. (1931/1959). Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra. New York: Academic Press.Google Scholar

References

Andersen, M. E. S., Harshman, N. L., and Zinner, N. T. (2017). “Hybrid model of separable, zero-range, few-body interactions in one-dimensional harmonic traps,” Physical Review A, 96: 033616.CrossRefGoogle Scholar
Baker, G. A. (1956). “Degeneracy of the n-dimensional, isotropic, harmonic oscillator,” Physical Review, 103: 11191120.Google Scholar
Batchelor, M. T., Guan, X.-W., Oelkers, N., and Lee, C. (2005). “The 1d interacting Bose gas in a hard wall box,” Journal of Physics A: Mathematical and General, 38: 77877806.Google Scholar
Benatti, F., Floreanini, R., and Titimbo, K. (2014). “Entanglement of identical particles,” Open Systems & Information Dynamics, 21: 1440003.Google Scholar
Bohigas, O., Giannoni, M. J., and Schmit, C. (1984). “Characterization of chaotic quantum spectra and universality of level fluctuation laws,” Physical Review Letters, 52: 14.Google Scholar
Bohm, A. and Gadella, M. (1989). Dirac Kets, Gamow Vectors and Gel’fand Triplets: Lecture Notes in Physics No. 348. Berlin-Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Bohm, A. and Harshman, N. L. (1998). “Quantum theory in the rigged Hilbert space − irreversibility from causality,” pp. 179237 in Bohm, A., Doebner, H.-D., and Kielanowski, P. (eds.), Irreversibility and Causality Semigroups and Rigged Hilbert Spaces: Lecture Notes in Physics. Berlin-Heidelberg: Springer.Google Scholar
Caux, J.-S. and Mossel, J. (2011). “Remarks on the notion of quantum integrability,” Journal of Statistical Mechanics, 2011: P02023.Google Scholar
Cazalilla, M. A., Citro, R., Giamarchi, T., Orignac, E., and Rigol, M. (2011). “One-dimensional bosons: From condensed matter systems to ultracold gases,” Reviews of Modern Physics, 83: 14051466.Google Scholar
Cooper, F., Khare, A., and Sukhatme, U. (1995). “Supersymmetry and quantum mechanics,” Physics Reports, 251: 267385.Google Scholar
Fernández, F. M. (2013). “On the symmetry of the quantum-mechanical particle in a cubic box,” arXiv:1310.5136.Google Scholar
Fortin, S. and Lombardi, O. (2016). “A top-down view of the classical limit of quantum mechanics,” pp. 435468 in Kastner, R. E., Jeknić-Dugić, J., and Jaroszkiewicz, G. (eds.), Quantum Structural Studies. Singapore: World Scientific.Google Scholar
Girardeau, M. (1960). “Relationship between systems of impenetrable bosons and fermions in one dimension,” Journal of Mathematical Physics, 1: 516523.Google Scholar
Gómez, I., Losada, M., and Lombardi, O. (2017). “About the concept of quantum chaos,” Entropy, 19: 205.CrossRefGoogle Scholar
Guan, X.-W., Batchelor, M. T., and Lee, C. (2013). “Fermi gases in one dimension: From Bethe ansatz to experiments,” Reviews of Modern Physics, 85: 16331691.Google Scholar
Gutzwiller, M. C. (1990). Chaos in Classical and Quantum Mechanics: Interdisciplinary Applied Mathematics No. 1. New York: Springer-Verlag.Google Scholar
Haag, R. (1992). Local Quantum Physics: Fields, Particles, Algebras: Texts and Monographs in Physics. Berlin-New York: Springer-Verlag.Google Scholar
Harshman, N. L. (2005). “Basis states for relativistic dynamically entangled particles,” Physical Review A, 71: 022312.Google Scholar
Harshman, N. L. (2014). “Spectroscopy for a few atoms harmonically trapped in one dimension,” Physical Review A, 89: 033633.Google Scholar
Harshman, N. L. (2016a) “One-dimensional traps, two-body interactions, few-body symmetries: I. One, two, and three particles,” Few-Body Systems, 57: 1143.CrossRefGoogle Scholar
Harshman, N. L. (2016b) “One-dimensional traps, two-body interactions, few-body symmetries: II. N particles,” Few-Body Systems, 57: 4569.Google Scholar
Harshman, N. L. (2016c). “Symmetry and natural quantum structures for three-particles in one-dimension,” pp. 373400 in Kastner, R. E., Jeknić-Dugić, J., and Jaroszkiewicz, G. (eds.), Quantum Structural Studies. Singapore: World Scientific.Google Scholar
Harshman, N. L. (2017a). “Infinite barriers and symmetries for a few trapped particles in one dimension,” Physical Review A, 95: 053616.Google Scholar
Harshman, N. L. (2017b). “Identical wells, symmetry breaking, and the near-unitary limit,” Few-Body Systems, 58: 41.Google Scholar
Harshman, N. L., Olshanii, M., Dehkharghani, A. S., Volosniev, A. G., Jackson, S. G., and Zinner, N. T. (2017). “Integrable families of hard-core particles with unequal masses in a one-dimensional harmonic trap,” Physical Review X, 7: 041001.Google Scholar
Harshman, N. L. and Ranade, K. S. (2011). “Observables can be tailored to change the entanglement of any pure state,” Physical Review A, 84: 012303.Google Scholar
Harshman, N. L. and Wickramasekara, S. (2007a). “Galilean and dynamical invariance of entanglement in particle scattering,” Physical Review Letters, 98: 080406–4.Google Scholar
Harshman, N. L. and Wickramasekara, S. (2007b). “Tensor product structures, entanglement, and particle scattering,” Open Systems & Information Dynamics, 14: 341351.Google Scholar
Jackiw, R. (1972). “Introducing scale symmetry,” Physics Today, 25: 2327.CrossRefGoogle Scholar
Jeknić-Dugić, J., Arsenijević, M., and Dugić, M. (2013). Quantum Structures: A View of the Quantum World. Saarbrücken: Lambert Academic Publishing.Google Scholar
Leinaas, J. M. and Myrheim, J. (1977). “On the theory of identical particles,” Nuovo Cimento B, 37: 123.CrossRefGoogle Scholar
Lévy-Leblond, J.-M. (1967). “Nonrelativistic particles and wave equations,” Communications in Mathematical Physics, 6: 286311.CrossRefGoogle Scholar
Leyvraz, F., Frank, A., Lemus, R., and Andrés, M. V. (1997). “Accidental degeneracy in a simple quantum system: A new symmetry group for a particle in an impenetrable square-well potential,” American Journal of Physics, 65: 10871094.Google Scholar
Lieb, E. H. and Liniger, W. (1963). “Exact analysis of an interacting bose gas. I. The general solution and the ground state,” Physical Review, 130: 16051616.Google Scholar
Lombardi, O. and Fortin, S. (2015). “The role of symmetry in the interpretation of quantum mechanics,” Electronic Journal of Theoretical Physics, 12: 255275.Google Scholar
Louck, J. D. (1965). “Group theory of harmonic oscillators in n-dimensional space,” Journal of Mathematical Physics, 6: 17861804.CrossRefGoogle Scholar
Oelkers, N., Batchelor, M. T., Bortz, M., and Guan, X.-W. (2006). “Bethe ansatz study of one-dimensional Bose and Fermi gases with periodic and hard wall boundary conditions,” Journal of Physics A: Mathematical and General, 39: 10731098.Google Scholar
Olshanski, G. (2003). “The problem of harmonic analysis on the in_nite-dimensional unitary group,” Journal of Functional Analysis, 205: 464524.Google Scholar
Post, S., Tsujimoto, S., and Vinet, L. (2012). “Families of superintegrable Hamiltonians constructed from exceptional polynomials,” Journal of Physics A: Mathematical and Theoretical, 45: 405202.Google Scholar
Reck, M., Zeilinger, A., Bernstein, H. J., and Bertani, P. (1994). “Experimental realization of any discrete unitary operator,” Physical Review Letters, 73: 5861.Google Scholar
Sen, D. (1999). “Perturbation theory for singular potentials in quantum mechanics,” International Journal of Modern Physics A, 14: 17891807.Google Scholar
Serwane, F., Zürn, G., Lompe, T., Ottenstein, T. B., Wenz, A. N., and Jochim, S. (2011). “Deterministic preparation of a tunable few-fermion system,” Science, 332: 336338.Google Scholar
Shaw, G. B. (1974). “Degeneracy in the particle-in-a-box problem,” Journal of Physics A: Mathematica, Nuclear and General, 7: 15371543.Google Scholar
Streater, R. F. and Wightman, A. S. (1964). PCT, Spin and Statistics, and All That: The Mathematical Physics Monograph Series. New York: W.A. Benjamin.Google Scholar
Sutherland, B. (2004). Beautiful Models: 70 Years of Exactly Solved Quantum Many-Body Problems. River Edge, NJ: World Scientific.CrossRefGoogle Scholar
Ullmo, D. (2016). “Bohigas-Giannoni-Schmit conjecture,” Scholarpedia, 11: 31721.Google Scholar
Weinberg, S. (1995). The Quantum Theory of Fields, 1st edition. Cambridge: Cambridge University Press.Google Scholar
Wenz, A. N., Zürn, G., Murmann, S., Brouzos, I., Lompe, T., and Jochim, S. (2013). “From few to many: Observing the formation of a Fermi sea one atom at a time,” Science, 342: 457460.Google Scholar
Wigner, E. P. (1939). “On unitary representations of the inhomogeneous Lorentz group,” Annals of Mathematics, 40: 149204.Google Scholar
Wigner, E. P. (1959). Group Theory and its Application to the Quantum Mechanics of Atomic Spectra. New York: Academic Press.Google Scholar
Wilczek, F. (1982). “Quantum mechanics of fractional-spin particles,” Physical Review Letters, 49: 957959.Google Scholar
Wilczek, F. (2015). A Beautiful Question: Finding Nature’s Deep Design. New York: Penguin Press.Google Scholar
Wybourne, B. G. (1974). Classical Groups for Physicists. New York: Wiley.Google Scholar
Yang, C. N. (1967). “Some exact results for the many-body problem in one dimension with repulsive delta-function interaction,” Physical Review Letters, 19: 13121315.CrossRefGoogle Scholar
Zanardi, P. (2001). “Virtual quantum subsystems,” Physical Review Letters, 87: 077901.CrossRefGoogle ScholarPubMed
Zanardi, P., Lidar, D. A., and Lloyd, S. (2004). “Quantum tensor product structures are observable induced,” Physical Review Letters, 92: 060402.Google Scholar
Zanardi, P. and Lloyd, S. (2004). “Universal control of quantum subspaces and subsystems,” Physical Review A, 69: 022313.CrossRefGoogle Scholar
Zürn, G., Serwane, F., Lompe, T., Wenz, A. N., Ries, M. G., Bohn, J. E., and Jochim, S. (2012). “Fermionization of two distinguishable fermions,” Physical Review Letters, 108: 075303.Google Scholar
Zürn, G., Wenz, A. N., Murmann, S., Bergschneider, A., Lompe, T., and Jochim, S. (2013). “Pairing in few-fermion systems with attractive interactions,” Physical Review Letters, 111: 175302.Google Scholar

References

Ahmadi, M., Jennings, D., and Rudolph, T. (2013). “The Wigner–Araki–Yanase theorem and the quantum resource theory of asymmetry,” New Journal of Physics, 15: 013057.Google Scholar
Alicki, R. and Lendi, K. (1987). Quantum Dynamical Semigroups and Applications. Berlin: Springer-Verlag.Google Scholar
Arnold, B. (2007). “Majorization: Here, there and everywhere,” Statistical Science, 22: 407413.CrossRefGoogle Scholar
Barrett, J., Linden, N., Massar, S., Pironio, S., Popescu, S., and Roberts, D. (2005). “Nonlocal correlations as an information-theoretic resource,” Physical Review A, 71: 022101.CrossRefGoogle Scholar
Bengtsson, I. and Życzkowski, K. (2017). Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge: Cambridge University Press.Google Scholar
Birkhoff, G. (1946). “Tres observaciones sobre el álgebra lineal,” Universidad Nacional de Tucumán Revista, Serie A, 5: 147151.Google Scholar
Bosyk, G. M., Bellomo, G., and Luis, A. (2018a). “A resource-theoretic approach to vectorial coherence,” Optics Letters, 43: 14631466.Google Scholar
Bosyk, G. M., Bellomo, G., and Luis, A. (2018b). “Polarization monotones of two-dimensional and three-dimensional random electromagnetic fields,” Physical Review A, 97: 023804.Google Scholar
Bosyk, G. M., Bellomo, G., Zozor, S., Portesi, M., and Lamberti, P. W. (2016). “Unified entropic measures of quantum correlations induced by local measurements,” Physica A: Statistical Mechanics and its Applications, 462: 930939.Google Scholar
Bosyk, G. M., Freytes, H., Bellomo, G., and Sergioli, G. (2018). “The lattice of trumping majorization for 4D probability vectors and 2D catalysts.” Scientific Reports, 8: 3671.CrossRefGoogle ScholarPubMed
Bosyk, G. M., Sergioli, G., Freytes, H., Holik, F., and Bellomo, G. (2017). “Approximate transformations of bipartite pure-state entanglement from the majorization lattice,” Physica A: Statistical Mechanics and its Applications, 473: 403411.Google Scholar
Bosyk, G. M., Tristán, M. O., Lamberti, P. W., and Portesi, M. (2014). “Geometric formulation of the uncertainty principle,” Physical Review A, 89: 034101.Google Scholar
Bosyk, G. M., Zozor, S., Holik, F., Portesi, M., and Lamberti, P. W. (2016). “A family of generalized quantum entropies: Definition and properties,” Quantum Information Processing, 15: 33933420.Google Scholar
Brandao, F. G., Horodecki, M., Oppenheim, J., Renes, J. M., and Spekkens, R. W. (2013). “Resource theory of quantum states out of thermal equilibrium,” Physical Review Letters, 111: 250404.Google Scholar
Burg, J. P. (1967). “Maximum entropy spectral analysis,” Proceedings 37th Annual Meeting of the Society of Exploration Geophysicists. Oklahoma City, OK.Google Scholar
Chefles, A. (2002). “Quantum operations, state transformations and probabilities,” Physical Review A, 65: 052314.Google Scholar
Cicalese, F., Gargano, L., and Vaccaro, U. (2013). “Information theoretic measures of distances and their econometric applications,” pp. 409413 in Information Theory Proceedings (ISIT), 2013 IEEE International Symposium. IEEE.Google Scholar
Cicalese, F. and Vaccaro, U. (2002). “Supermodularity and subadditivity properties of the entropy on the majorization lattice,” IEEE Transactions on Information Theory, 48: 933938.Google Scholar
Daftuar, S. and Klimesh, M. (2001). “Mathematical structure of entanglement catalysis,” Physical Review A, 64: 042314.CrossRefGoogle Scholar
Dalton, H. (1920). “The measurement of the inequality of incomes,” The Economic Journal, 30: 348361.Google Scholar
Deutsch, D. (1983). “Uncertainty in quantum measurements,” Physical Review Letters, 50: 631633.CrossRefGoogle Scholar
de Vicente, J. I. (2014). “On nonlocality as a resource theory and nonlocality measures,” Journal of Physics A: Mathematical and Theoretical, 47: 424017.Google Scholar
Friedland, S., Gheorghiu, V., and Gour, G. (2013). “Universal uncertainty relations,” Physical Review Letters, 111: 230401.Google Scholar
Gini, C. (1912). “Variabilità e mutabilità,” reprinted in Memorie di Metodologica Statistica. Rome: Libreria Eredi Virgilio Veschi.Google Scholar
Gour, G., Müller, M. P., Narasimhachar, V., Spekkens, R. W., and Halpern, N. Y. (2015). “The resource theory of informational nonequilibrium in thermodynamics,” Physics Reports, 583: 158.CrossRefGoogle Scholar
Gour, G. and Spekkens, R. W. (2008). “The resource theory of quantum reference frames: Manipulations and monotones,” New Journal of Physics, 10: 033023.Google Scholar
Hardy, G. H., Littlewood, J. E., and Pólya, G. (1929). “Some simple inequalities satisfied by convex functions,” Messenger of Mathematics, 58: 145152.Google Scholar
Hardy, G. H., Littlewood, J. E., and Pólya, G. (1934). Inequalities, 1st edition. (2nd edition 1952). London and New York: Cambridge University Press.Google Scholar
Harremoës, P. (2004). “A new look on majorization,” pp. 14221425 in Proceedings ISITA. Parma, Italy.Google Scholar
Heisenberg, W. (1927). “Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik,” Zeitschrift für Physik, 43: 172198.Google Scholar
Horn, A. (1954). “Doubly stochastic matrices and the diagonal of a rotation matrix,” American Journal of Mathematics, 76 : 620630.Google Scholar
Horodecki, R., Horodecki, P., and Horodecki, M. (1996). “Quantum α-entropy inequalities: Independent condition for local realism?”, Physics Letters A, 210: 377381.Google Scholar
Horodecki, M., Horodecki, P., Horodecki, R., Oppenheim, J., Sen, A., Sen, U., and Synak-Radtke, B. (2005). “Local versus nonlocal information in quantum-information theory: Formalism and phenomena,” Physical Review A, 71: 062307.Google Scholar
Jonathan, D. and Plenio, M. B. (1999). “Entanglement-assisted local manipulation of pure quantum states,” Physical Review Letters, 83: 3566.Google Scholar
Landau, H. J. and Pollak, H. O. (1961). “Prolate spheroidal wave functions, Fourier analysis and uncertainty–II,” Bell System Technical Journal, 40: 6584.Google Scholar
Lo, H. K. and Popescu, S. (1999). “Classical communication cost of entanglement manipulation: Is entanglement an interconvertible resource?”, Physical Review Letters, 83: 14591462.Google Scholar
Lorenz, M. O. (1905). “Methods of measuring the concentration of wealth,” Publications of the American Statistical Association, 9: 209219.Google Scholar
Luo, S. (2008). “Using measurement-induced disturbance to characterize correlations as classical or quantum,” Physical Review A, 77: 022301.Google Scholar
Maassen, H. and Uffink, J. (1988). “Generalized entropic uncertainty relations,” Physical Review Letters, 60: 11031106.CrossRefGoogle ScholarPubMed
Marshall, A. W. and Olkin, I. (1979). Inequalities: Theory of Majorization and Its Applications. New York: Springer Science & Business Media.Google Scholar
Marshall, A. W., Olkin, I., and Arnold, B. (2010). Inequalities: Theory of Majorization and Its Applications. New York: Academic Press.Google Scholar
Muirhead, R. F. (1903). “Some methods applicable to identities and inequalities of symmetric algebraic functions of n letters,” Proceedings of the Edinburgh Mathematical Society, 21: 144157.CrossRefGoogle Scholar
Müller, M. P. and Pastena, M. (2016). “A generalization of majorization that characterizes Shannon entropy,” IEEE Transactions on Information Theory, 62: 17111720.CrossRefGoogle Scholar
Nielsen, M. A. (1999). “Conditions for a class of entanglement transformations,” Physical Review Letters, 83: 436439.Google Scholar
Nielsen, M. A. (2000). “Probability distributions consistent with a mixed state,” Physical Review A, 62: 052308.Google Scholar
Nielsen, M. A. (2002). An Introduction to Majorization and Its Applications to Quantum Mechanics. Lecture Notes, Department of Physics. Brisbane: University of Queensland.Google Scholar
Nielsen, M. A. and Kempe, J. (2001). “Separable states are more disordered globally than locally,” Physical Review Letters, 86: 51845187.Google Scholar
Nielsen, M. A. and Vidal, G. (2001). “Majorization and the interconversion of bipartite states,” Quantum Information & Computation, 1: 7693.Google Scholar
Partovi, M. H. (2011). “Majorization formulation of uncertainty in quantum mechanics,” Physical Review A, 84: 052117.Google Scholar
Piani, M., Cianciaruso, M., Bromley, T. R., Napoli, C., Johnston, N., and Adesso, G. (2016). “Robustness of asymmetry and coherence of quantum states,” Physical Review A, 93: 042107.CrossRefGoogle Scholar
Puchała, Z., Rudnicki, Ł., and Życzkowski, K. (2013). “Majorization entropic uncertainty relations,” Journal of Physics A: Mathematical and Theoretical, 46: 272002.Google Scholar
Rényi, A. (1961). “On measures of information and entropy,” pp. 547561 in Proceedings of the Fourth Berkeley Symposium on Mathematics, Statistics and Probability. Berkeley.Google Scholar
Robertson, H. P. (1929). “The uncertainty principle,” Physical Review, 34: 163164.Google Scholar
Rossignoli, R., Canosa, N., and Ciliberti, L. (2010). “Generalized entropic measures of quantum correlations,” Physical Review A, 82: 052342.CrossRefGoogle Scholar
Rudnicki, Ł., Toranzo, I. V., Sánchez-Moreno, P., and Dehesa, J. S. (2016). “Monotone measures of statistical complexity,” Physics Letters A, 380: 377380.Google Scholar
Schrödinger, E. (1936). “Probability relations between separated systems,” Mathematical Proceedings of the Cambridge Philosophical Society, 32: 446452.Google Scholar
Schur, I. (1923). “Über eine Klasse von Mittelbildungen mit Anwendungen auf die Determinantentheorie,” Sitzungsberichte der Berliner Mathematischen Gesellschaft, 22: 920. English translation: (1973). pp. 416–427 in A. Brauer and H. Rohrbach (eds.), Issai Schur Collected Works. Berlin: Springer-Verlag.Google Scholar
Shannon, C. (1948). “The mathematical theory of communication,” Bell System Technical Journal27: 379423.CrossRefGoogle Scholar
Tsallis, C. (1988). “Possible generalization of Boltzmann-Gibbs statistics,” Journal of Statistical Physics, 52: 479487.CrossRefGoogle Scholar
Uhlmann, A. (1970). “On the Shannon entropy and related functionals on convex sets,” Reports on Mathematical Physics, 1: 147159.Google Scholar
Vidal, G. (1999). “Entanglement of pure states for a single copy,” Physical Review Letters, 83: 10461049.CrossRefGoogle Scholar
Vidal, G., Jonathan, D., and Nielsen, M. A. (2000). “Approximate transformations and robust manipulation of bipartite pure-state entanglement,” Physical Review A, 62: 012304.Google Scholar
Wehrl, A. (1978). “General properties of entropy,” Reviews of Modern Physics, 50: 221260.Google Scholar
Zozor, S., Bosyk, G. M., and Portesi, M. (2014). “General entropy-like uncertainty relations in finite dimensions,” Journal of Physics A: Mathematical and Theoretical, 47: 495302.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×