Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-05T03:27:31.501Z Has data issue: false hasContentIssue false

16 - Majorization, across the (Quantum) Universe

from Part IV - Symmetries and Structure in Quantum Mechanics

Published online by Cambridge University Press:  06 April 2019

Olimpia Lombardi
Affiliation:
Universidad de Buenos Aires, Argentina
Sebastian Fortin
Affiliation:
Universidad de Buenos Aires, Argentina
Cristian López
Affiliation:
Universidad de Buenos Aires, Argentina
Federico Holik
Affiliation:
Universidad Nacional de La Plata, Argentina
Get access
Type
Chapter
Information
Quantum Worlds
Perspectives on the Ontology of Quantum Mechanics
, pp. 323 - 342
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmadi, M., Jennings, D., and Rudolph, T. (2013). “The Wigner–Araki–Yanase theorem and the quantum resource theory of asymmetry,” New Journal of Physics, 15: 013057.Google Scholar
Alicki, R. and Lendi, K. (1987). Quantum Dynamical Semigroups and Applications. Berlin: Springer-Verlag.Google Scholar
Arnold, B. (2007). “Majorization: Here, there and everywhere,” Statistical Science, 22: 407413.Google Scholar
Barrett, J., Linden, N., Massar, S., Pironio, S., Popescu, S., and Roberts, D. (2005). “Nonlocal correlations as an information-theoretic resource,” Physical Review A, 71: 022101.Google Scholar
Bengtsson, I. and Życzkowski, K. (2017). Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge: Cambridge University Press.Google Scholar
Birkhoff, G. (1946). “Tres observaciones sobre el álgebra lineal,” Universidad Nacional de Tucumán Revista, Serie A, 5: 147151.Google Scholar
Bosyk, G. M., Bellomo, G., and Luis, A. (2018a). “A resource-theoretic approach to vectorial coherence,” Optics Letters, 43: 14631466.Google Scholar
Bosyk, G. M., Bellomo, G., and Luis, A. (2018b). “Polarization monotones of two-dimensional and three-dimensional random electromagnetic fields,” Physical Review A, 97: 023804.CrossRefGoogle Scholar
Bosyk, G. M., Bellomo, G., Zozor, S., Portesi, M., and Lamberti, P. W. (2016). “Unified entropic measures of quantum correlations induced by local measurements,” Physica A: Statistical Mechanics and its Applications, 462: 930939.CrossRefGoogle Scholar
Bosyk, G. M., Freytes, H., Bellomo, G., and Sergioli, G. (2018). “The lattice of trumping majorization for 4D probability vectors and 2D catalysts.” Scientific Reports, 8: 3671.Google Scholar
Bosyk, G. M., Sergioli, G., Freytes, H., Holik, F., and Bellomo, G. (2017). “Approximate transformations of bipartite pure-state entanglement from the majorization lattice,” Physica A: Statistical Mechanics and its Applications, 473: 403411.Google Scholar
Bosyk, G. M., Tristán, M. O., Lamberti, P. W., and Portesi, M. (2014). “Geometric formulation of the uncertainty principle,” Physical Review A, 89: 034101.CrossRefGoogle Scholar
Bosyk, G. M., Zozor, S., Holik, F., Portesi, M., and Lamberti, P. W. (2016). “A family of generalized quantum entropies: Definition and properties,” Quantum Information Processing, 15: 33933420.Google Scholar
Brandao, F. G., Horodecki, M., Oppenheim, J., Renes, J. M., and Spekkens, R. W. (2013). “Resource theory of quantum states out of thermal equilibrium,” Physical Review Letters, 111: 250404.Google Scholar
Burg, J. P. (1967). “Maximum entropy spectral analysis,” Proceedings 37th Annual Meeting of the Society of Exploration Geophysicists. Oklahoma City, OK.Google Scholar
Chefles, A. (2002). “Quantum operations, state transformations and probabilities,” Physical Review A, 65: 052314.Google Scholar
Cicalese, F., Gargano, L., and Vaccaro, U. (2013). “Information theoretic measures of distances and their econometric applications,” pp. 409413 in Information Theory Proceedings (ISIT), 2013 IEEE International Symposium. IEEE.Google Scholar
Cicalese, F. and Vaccaro, U. (2002). “Supermodularity and subadditivity properties of the entropy on the majorization lattice,” IEEE Transactions on Information Theory, 48: 933938.Google Scholar
Daftuar, S. and Klimesh, M. (2001). “Mathematical structure of entanglement catalysis,” Physical Review A, 64: 042314.Google Scholar
Dalton, H. (1920). “The measurement of the inequality of incomes,” The Economic Journal, 30: 348361.Google Scholar
Deutsch, D. (1983). “Uncertainty in quantum measurements,” Physical Review Letters, 50: 631633.Google Scholar
de Vicente, J. I. (2014). “On nonlocality as a resource theory and nonlocality measures,” Journal of Physics A: Mathematical and Theoretical, 47: 424017.Google Scholar
Friedland, S., Gheorghiu, V., and Gour, G. (2013). “Universal uncertainty relations,” Physical Review Letters, 111: 230401.Google Scholar
Gini, C. (1912). “Variabilità e mutabilità,” reprinted in Memorie di Metodologica Statistica. Rome: Libreria Eredi Virgilio Veschi.Google Scholar
Gour, G., Müller, M. P., Narasimhachar, V., Spekkens, R. W., and Halpern, N. Y. (2015). “The resource theory of informational nonequilibrium in thermodynamics,” Physics Reports, 583: 158.Google Scholar
Gour, G. and Spekkens, R. W. (2008). “The resource theory of quantum reference frames: Manipulations and monotones,” New Journal of Physics, 10: 033023.Google Scholar
Hardy, G. H., Littlewood, J. E., and Pólya, G. (1929). “Some simple inequalities satisfied by convex functions,” Messenger of Mathematics, 58: 145152.Google Scholar
Hardy, G. H., Littlewood, J. E., and Pólya, G. (1934). Inequalities, 1st edition. (2nd edition 1952). London and New York: Cambridge University Press.Google Scholar
Harremoës, P. (2004). “A new look on majorization,” pp. 14221425 in Proceedings ISITA. Parma, Italy.Google Scholar
Heisenberg, W. (1927). “Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik,” Zeitschrift für Physik, 43: 172198.Google Scholar
Horn, A. (1954). “Doubly stochastic matrices and the diagonal of a rotation matrix,” American Journal of Mathematics, 76 : 620630.Google Scholar
Horodecki, R., Horodecki, P., and Horodecki, M. (1996). “Quantum α-entropy inequalities: Independent condition for local realism?”, Physics Letters A, 210: 377381.Google Scholar
Horodecki, M., Horodecki, P., Horodecki, R., Oppenheim, J., Sen, A., Sen, U., and Synak-Radtke, B. (2005). “Local versus nonlocal information in quantum-information theory: Formalism and phenomena,” Physical Review A, 71: 062307.Google Scholar
Jonathan, D. and Plenio, M. B. (1999). “Entanglement-assisted local manipulation of pure quantum states,” Physical Review Letters, 83: 3566.CrossRefGoogle Scholar
Landau, H. J. and Pollak, H. O. (1961). “Prolate spheroidal wave functions, Fourier analysis and uncertainty–II,” Bell System Technical Journal, 40: 6584.Google Scholar
Lo, H. K. and Popescu, S. (1999). “Classical communication cost of entanglement manipulation: Is entanglement an interconvertible resource?”, Physical Review Letters, 83: 14591462.Google Scholar
Lorenz, M. O. (1905). “Methods of measuring the concentration of wealth,” Publications of the American Statistical Association, 9: 209219.Google Scholar
Luo, S. (2008). “Using measurement-induced disturbance to characterize correlations as classical or quantum,” Physical Review A, 77: 022301.Google Scholar
Maassen, H. and Uffink, J. (1988). “Generalized entropic uncertainty relations,” Physical Review Letters, 60: 11031106.Google Scholar
Marshall, A. W. and Olkin, I. (1979). Inequalities: Theory of Majorization and Its Applications. New York: Springer Science & Business Media.Google Scholar
Marshall, A. W., Olkin, I., and Arnold, B. (2010). Inequalities: Theory of Majorization and Its Applications. New York: Academic Press.Google Scholar
Muirhead, R. F. (1903). “Some methods applicable to identities and inequalities of symmetric algebraic functions of n letters,” Proceedings of the Edinburgh Mathematical Society, 21: 144157.CrossRefGoogle Scholar
Müller, M. P. and Pastena, M. (2016). “A generalization of majorization that characterizes Shannon entropy,” IEEE Transactions on Information Theory, 62: 17111720.Google Scholar
Nielsen, M. A. (1999). “Conditions for a class of entanglement transformations,” Physical Review Letters, 83: 436439.Google Scholar
Nielsen, M. A. (2000). “Probability distributions consistent with a mixed state,” Physical Review A, 62: 052308.Google Scholar
Nielsen, M. A. (2002). An Introduction to Majorization and Its Applications to Quantum Mechanics. Lecture Notes, Department of Physics. Brisbane: University of Queensland.Google Scholar
Nielsen, M. A. and Kempe, J. (2001). “Separable states are more disordered globally than locally,” Physical Review Letters, 86: 51845187.CrossRefGoogle ScholarPubMed
Nielsen, M. A. and Vidal, G. (2001). “Majorization and the interconversion of bipartite states,” Quantum Information & Computation, 1: 7693.Google Scholar
Partovi, M. H. (2011). “Majorization formulation of uncertainty in quantum mechanics,” Physical Review A, 84: 052117.Google Scholar
Piani, M., Cianciaruso, M., Bromley, T. R., Napoli, C., Johnston, N., and Adesso, G. (2016). “Robustness of asymmetry and coherence of quantum states,” Physical Review A, 93: 042107.Google Scholar
Puchała, Z., Rudnicki, Ł., and Życzkowski, K. (2013). “Majorization entropic uncertainty relations,” Journal of Physics A: Mathematical and Theoretical, 46: 272002.Google Scholar
Rényi, A. (1961). “On measures of information and entropy,” pp. 547561 in Proceedings of the Fourth Berkeley Symposium on Mathematics, Statistics and Probability. Berkeley.Google Scholar
Robertson, H. P. (1929). “The uncertainty principle,” Physical Review, 34: 163164.Google Scholar
Rossignoli, R., Canosa, N., and Ciliberti, L. (2010). “Generalized entropic measures of quantum correlations,” Physical Review A, 82: 052342.Google Scholar
Rudnicki, Ł., Toranzo, I. V., Sánchez-Moreno, P., and Dehesa, J. S. (2016). “Monotone measures of statistical complexity,” Physics Letters A, 380: 377380.Google Scholar
Schrödinger, E. (1936). “Probability relations between separated systems,” Mathematical Proceedings of the Cambridge Philosophical Society, 32: 446452.Google Scholar
Schur, I. (1923). “Über eine Klasse von Mittelbildungen mit Anwendungen auf die Determinantentheorie,” Sitzungsberichte der Berliner Mathematischen Gesellschaft, 22: 920. English translation: (1973). pp. 416–427 in A. Brauer and H. Rohrbach (eds.), Issai Schur Collected Works. Berlin: Springer-Verlag.Google Scholar
Shannon, C. (1948). “The mathematical theory of communication,” Bell System Technical Journal27: 379423.Google Scholar
Tsallis, C. (1988). “Possible generalization of Boltzmann-Gibbs statistics,” Journal of Statistical Physics, 52: 479487.Google Scholar
Uhlmann, A. (1970). “On the Shannon entropy and related functionals on convex sets,” Reports on Mathematical Physics, 1: 147159.Google Scholar
Vidal, G. (1999). “Entanglement of pure states for a single copy,” Physical Review Letters, 83: 10461049.CrossRefGoogle Scholar
Vidal, G., Jonathan, D., and Nielsen, M. A. (2000). “Approximate transformations and robust manipulation of bipartite pure-state entanglement,” Physical Review A, 62: 012304.Google Scholar
Wehrl, A. (1978). “General properties of entropy,” Reviews of Modern Physics, 50: 221260.Google Scholar
Zozor, S., Bosyk, G. M., and Portesi, M. (2014). “General entropy-like uncertainty relations in finite dimensions,” Journal of Physics A: Mathematical and Theoretical, 47: 495302.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×