Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-05T03:53:10.075Z Has data issue: false hasContentIssue false

Part III - Individuality, Distinguishability, and Locality

Published online by Cambridge University Press:  06 April 2019

Olimpia Lombardi
Affiliation:
Universidad de Buenos Aires, Argentina
Sebastian Fortin
Affiliation:
Universidad de Buenos Aires, Argentina
Cristian López
Affiliation:
Universidad de Buenos Aires, Argentina
Federico Holik
Affiliation:
Universidad Nacional de La Plata, Argentina
Get access
Type
Chapter
Information
Quantum Worlds
Perspectives on the Ontology of Quantum Mechanics
, pp. 183 - 266
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Arenhart, J. R. B. (2017). “The received view on quantum non-individuality: Formal and metaphysical analysis,” Synthese, 194: 13231347.Google Scholar
Bueno, O. (2014). “Why identity is fundamental,” American Philosophical Quarterly, 51: 325332.Google Scholar
Bueno, O. (2019). “Weyl, identity, indistinguishability, realism,” in Cordero, A. (ed.), Philosophers Look at Quantum Mechanics. Dordrecht: Springer.Google Scholar
Cantor, G. (1915/1955). Contributions to the Founding of the Theory of Transfinite Numbers. New York: Dover.Google Scholar
Cao, T. (ed.) (1999). Conceptual Foundations of Quantum Field Theories. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Church, A. (1956). Introduction to Mathematical Logic. Princeton: Princeton University Press.Google Scholar
da Costa, N. C. A. and Bueno, O. (2009). “Non-reflexive logics,” Revista Brasileira de Filosofia, 232: 181196.Google Scholar
da Costa, N. C. A., Krause, D., and Bueno, O. (2007). “Paraconsistent logics and paraconsistency,” pp. 791911 in Jacquette, D. (ed.), Philosophy of Logic. Amsterdam: North-Holland.CrossRefGoogle Scholar
Domenech, G., Holik, F., and Krause, D. (2008). “Q-Spaces and the foundations of quantum mechanics,” Foundations of Physics, 38: 969994.CrossRefGoogle Scholar
Falkenburg, B. (2007). Particle Metaphysics: A Critical Account of Subatomic Reality. Dordrecht: Springer.Google Scholar
Forster, T. (2014). “Quine’s new foundations,” in Zalta, E. N. (ed.), The Stanford Encyclopedia of Philosophy (Fall 2014 Edition), https://plato.stanford.edu/archives/fall2014/entries/quine-nf/Google Scholar
Frege, G. (1960). “On sense and reference,” pp. 5678 in Geach, P. and Black, M. (eds.), Translations from the Philosophical Writings of Gottlob Frege. Oxford: Basil Blackwell.Google Scholar
French, S. and Krause, D. (2006). Identity in Physics: A Historical, Philosophical, and Formal Analysis. Oxford: Oxford University Press.CrossRefGoogle Scholar
Heisenberg, W. (1998). “The nature of elementary particles,” pp. 211222 in Castellani, E. (ed.), Interpreting Bodies: Classical and Quantum Objects in Modern Physics. Princeton: Princeton University Press.Google Scholar
Holland, P. R. (2010). The Quantum Theory of Motion. Cambridge: Cambridge University Press.Google Scholar
Krause, D. (2019). “Does Newtonian space provide identity for quantum systems?,” Foundations of Science, https://link.springer.com/article/10.1007/s10699-018-9561-3Google Scholar
Krause, D. and Arenhart, J. R. B. (2016). “Presenting non-reflexive quantum mechanics: Formalism and metaphysics,” Cadernos de História e Filosofia da Ciência, 4: 5991.Google Scholar
Krause, D. and Arenhart, J. R. B. (2018). “Quantum non-individuality: Background concepts and possibilities,” pp. 281306 in Wuppuluri, S. and Doria, F. A.. (eds.), The Map and the Territory: Exploring the Foundations of Science, Thought and Reality. Dordrecht: Springer.Google Scholar
Lowe, E. J. (2003). “Individuation,” pp. 7595 in Loux, M. J. and Zimmerman, D. W. (eds.), The Oxford Handbook of Metaphysics. Oxford: Oxford University Press.Google Scholar
Lowe, E. J. (2016). “Non-individuals,” pp. 4960 in Guay, A. and Pradeu, T., T. (eds.), Individuals Across the Sciences. New York: Oxford University Press.Google Scholar
Maitland Wright, J. D. (1973). “All operators on a Hilbert space are bounded,” Bulletin of the American Mathematical Society, 79: 12471251.CrossRefGoogle Scholar
Maudlin, T. (2018). “The labyrinth of quantum theory,” https://arxiv.org/abs/1802.01834Google Scholar
Muller, F. A. and Saunders, S. (2008). “Discerning fermions,” British Journal for the Philosophy of Science, 59: 499548.Google Scholar
Nozick, R. (1981). Philosophical Explanations. Cambridge, MA: Harvard University Press.Google Scholar
Schrödinger, E. (1996). Nature and the Greeks and Science and Humanism (Foreword by Roger Penrose). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Schrödinger, E. (1998). “What is an elementary particle?,” pp. 197210 in Castellani, E. (ed.), Interpreting Bodies: Classical and Quantum Objects in Modern Physics. Princeton: Princeton University Press.Google Scholar
Styer, D. F., Balkin, M. S., Becker, K. M., Burns, M. R., Dudley, C. E., Forth, S. T., … Wotherspoon, T. D. (2002). “Nine formulations of quantum mechanics,” American Journal of Physics, 70: 288297.Google Scholar
Szabó, Z. G. (2018). “Compositionality,” in Zalta, E. N. (ed.), The Stanford Encyclopedia of Philosophy (Summer 2017 Edition), https://plato.stanford.edu/archives/sum2017/entries/compositionality/Google Scholar
Teller, P. (1998). “Quantum mechanics and haecceities,” pp. 114141 in Castellani, E. (ed.), Interpreting Bodies: Classical and Quantum Objects in Modern Physics. Princeton: Princeton University Press.Google Scholar
Weinberg, S. (1992). Dreams of a Final Theory. New York: Vintage Books.Google Scholar
Weyl, H. (1950). The Theory of Groups and Quantum Mechanics. New York: Dover.Google Scholar
Wilczek, F. and Devine, B. (1987). Longing for Harmonies: Themes and Variations from Modern Physics. London: Penguin Books.Google Scholar

References

Cramer, J. G. (1986). “The transactional interpretation of quantum mechanics,”’ Reviews of Modern Physics, 58: 647688.CrossRefGoogle Scholar
Dugić, M. and Jeknić-Dugić, J. (2012). “Parallel decoherence in composite quantum systems,” Pramana, 79: 199209.CrossRefGoogle Scholar
Einstein, A. (1948/1971). “Quantum mechanics and reality,” pp. 168173 in Born, M. (trans.). The Born-Einstein Letters. London: Walker and Co.Google Scholar
Einstein, A., Podolsky, B., and Rosen, N. (1935). “Can quantum mechanical description of reality be considered complete?”, Physical Review, 47: 777780.CrossRefGoogle Scholar
Fields, C. (2010). “Quantum Darwinism requires an extra-theoretical assumption of encoding redundancy,” International Journal of Theoretical Physics, 49: 25232527.CrossRefGoogle Scholar
French, S. (2015). “Identity and individuality in quantum theory,” in Zalta, E. N. (ed.), The Stanford Encyclopedia of Philosophy (Fall 2015 Edition), https://plato.stanford.edu/archives/fall2015/entries/qt-idind/Google Scholar
French, S. and Redhead, M. (1988). “Quantum physics and the identity of indiscernibles,” The British Journal for the Philosophy of Science, 39: 233246.CrossRefGoogle Scholar
Ghirardi, G. C., Rimini, A., and Weber, T. (1986). “Unified dynamics for microscopic and macroscopic systems,” Physical Review D, 34: 470491.CrossRefGoogle ScholarPubMed
Huggett, N. (1999). “Atomic metaphysics,” The Journal of Philosophy, 96: 524.CrossRefGoogle Scholar
Joos, J. and Zeh, D. H. (1985). “The emergence of classical properties through interaction with the environment,” Zeitschrift für Physik B, 59: 223243.Google Scholar
Kastner, R. E. (2012). The Transactional Interpretation of Quantum Mechanics: The Reality of Possibility. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Kastner, R. E. (2014). “Einselection of pointer observables: The new H-theorem?”, Studies in History and Philosophy of Modern Physics, 48: 5658.Google Scholar
Kastner, R. E. (2016a). “The Transactional Interpretation and its evolution into the 21st century: An overview,” Philosophy Compass, 11: 923932. Preprint version: https://arxiv.org/abs/1608.00660.Google Scholar
Kastner, R. E. (2016b). “The Relativistic Transactional Interpretation: Immune to the Maudlin challenge,” https://arxiv.org/abs/1610.04609Google Scholar
Kastner, R. E. (2017). “On quantum non-unitarity as a basis for the second law of thermodynamics,” Entropy, 19: 106. Preprint version: https://arxiv.org/abs/1612.08734.CrossRefGoogle Scholar
Kelly, J. (2002). “Semiclassical statistical mechanics,” (lecture notes), www.physics.umd.edu/courses/Phys603/kelly/Notes/Semiclassical.pdfGoogle Scholar
Lewis, D. (1986). On the Plurality of Worlds. Oxford: Blackwell.Google Scholar
Maudlin, T. (1996). Quantum Nonlocality and Relativity. Oxford: Blackwell.Google Scholar

References

Albert, D. Z. (2015). After Physics. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Allori, V., Goldstein, S., Tumulka, R., and Zanghì, N. (2008). “On the common structure of Bohmian mechanics and the Ghirardi-Rimini-Weber theory,” The British Journal for the Philosophy of Science, 59: 353389.Google Scholar
Allori, V., Goldstein, S., Tumulka, R., and Zanghì, N. (2014). “Predictions and primitive ontology in quantum foundations: A study of examples,” The British Journal for the Philosophy of Science, 65: 323352.CrossRefGoogle Scholar
Barrett, J. A. (2014). “Entanglement and disentanglement in relativistic quantum mechanics,” Studies in History and Philosophy of Modern Physics, 48: 168174.CrossRefGoogle Scholar
Bedingham, D., Dürr, D., Ghirardi, G. C., Goldstein, S., Tumulka, R., and Zanghì, N. (2014). “Matter density and relativistic models of wave function collapse,” Journal of Statistical Physics, 154: 623631.Google Scholar
Bell, J. S. (2004). Speakable and Unspeakable in Quantum Mechanics, 2nd edition. Cambridge: Cambridge University Press.Google Scholar
Bhogal, H. and Perry, Z. R. (2017). “What the Humean should say about entanglement,” Noûs, 51: 7494.CrossRefGoogle Scholar
Bohm, D. (1952). “A suggested interpretation of the quantum theory in terms of ‘hidden’ variables,” Physical Review, 85: 166179, 180–193.Google Scholar
Brown, H. R., Dewdney, C., and Horton, G. (1995). “Bohm particles and their detection in the light of neutron interferometry,” Foundations of Physics, 25: 329347.CrossRefGoogle Scholar
Brown, H. R., Elby, A., and Weingard, R. (1996). “Cause and effect in the pilot-wave interpretation of quantum mechanics,” pp. 309319 in Cushing, J. T., Fine, A., and Goldstein, S. (eds.), Boston Studies in the Philosophy of Science: Bohmian Mechanics and Quantum Theory: An Appraisal, Vol. 184. Dordrecht: Springer.CrossRefGoogle Scholar
Callender, C. (2015). “One world, one beable,” Synthese, 192: 31533177.Google Scholar
Colin, S. and Struyve, W. (2007). “A Dirac sea pilot-wave model for quantum field theory,” Journal of Physics A, 40: 73097341.Google Scholar
Cowan, C. W. and Tumulka, R. (2016). “Epistemology of wave function collapse in quantum physics,” The British Journal for the Philosophy of Science, 67: 405434.CrossRefGoogle Scholar
Curceanu, C., Bartalucci, S., Bassi, A., Bazzi, M., Bertolucci, S., Berucci, C., … Zmeskal, J. (2016). “Spontaneously emitted x-rays: An experimental signature of the dynamical reduction models,” Foundations of Physics, 46: 263268.Google Scholar
de Broglie, L. (1928). “La nouvelle dynamique des quanta,” pp. 105–132 in Electrons et photons. Rapports et discussions du cinquième Conseil de Physique tenu à Bruxelles du 24 au 29 octobre 1927 sous les auspices de l’Institut International de Physique Solvay. Paris: Gauthier-Villars. English translation: (2009), pp. 341371 in G. Bacciagaluppi and A. Valentini (eds.), Quantum Theory at the Crossroads. Reconsidering the 1927 Solvay Conference. Cambridge: Cambridge University Press.Google Scholar
de Broglie, L. (1964). The Current Interpretation of Wave Mechanics. A Critical Study. Amsterdam: Elsevier.Google Scholar
Dowker, F. and Herbauts, I. (2005). “The status of the wave function in dynamical collapse models,” Foundations of Physics Letters, 18: 499518.Google Scholar
Dürr, D., Goldstein, S., Tumulka, R., and Zanghì, N. (2005). “Bell-type quantum field theories,” Journal of Physics A: Mathematical and General, 38: R1R43.Google Scholar
Dürr, D., Goldstein, S., and Zanghì, N. (2013). Quantum Physics without Quantum Philosophy. Berlin: Springer.Google Scholar
Egg, M. and Esfeld, M. (2014). “Non-local common cause explanations for EPR,” European Journal for Philosophy of Science, 4: 181196.Google Scholar
Egg, M. and Esfeld, M. (2015). “Primitive ontology and quantum state in the GRW matter density theory,” Synthese, 192: 32293245.CrossRefGoogle Scholar
Esfeld, M. (2014). “Quantum Humeanism, or: Physicalism without properties,” The Philosophical Quarterly, 64: 453470.Google Scholar
Esfeld, M. and Deckert, D.-A. (2017). A Minimalist Ontology of the Natural World. New York: Routledge.CrossRefGoogle Scholar
Esfeld, M. and Gisin, N. (2014). “The GRW flash theory: A relativistic quantum ontology of matter in space-time?”, Philosophy of Science, 81: 248264.Google Scholar
Esfeld, M., Lazarovici, D., Lam, V., and Hubert, M. (2017). “The physics and metaphysics of primitive stuff,” The British Journal for the Philosophy of Science, 68: 133161.Google Scholar
Ghirardi, G. C., Grassi, R., and Benatti, F. (1995). “Describing the macroscopic world: Closing the circle within the dynamical reduction program,” Foundations of Physics, 25: 538.Google Scholar
Ghirardi, G. C., Pearle, P., and Rimini, A. (1990). “Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles,” Physical Review A, 42: 7889.CrossRefGoogle ScholarPubMed
Ghirardi, G. C., Rimini, A., and Weber, T. (1986). “Unified dynamics for microscopic and macroscopic systems,” Physical Review D, 34: 470491.CrossRefGoogle ScholarPubMed
Goldstein, S. and Struyve, W. (2007). “On the uniqueness of quantum equilibrium in Bohmian mechanics,” Journal of Statistical Physics, 128: 11971209.Google Scholar
Hall, N. (2009). “Humean reductionism about laws of nature,” unpublished manuscript. http://philpapers.org/rec/halhra.Google Scholar
Kochen, S. and Specker, E. (1967). “The problem of hidden variables in quantum mechanics,” Journal of Mathematics and Mechanics, 17: 5987.Google Scholar
Mach, E. (1919). The Science of Mechanics: A Critical and Historical Account of Its Development, 4th edition. McCormack, T. J. (trans.). Chicago: Open Court.Google Scholar
Maudlin, T. (1995). “Three measurement problems,” Topoi, 14: 715.Google Scholar
Maudlin, T. (2010). “Can the world be only wave-function?” pp. 121143 in Saunders, S., Barrett, J., Kent, A., and Wallace, D. (eds.), Many Worlds? Everett, Quantum Theory, and Reality. Oxford: Oxford University Press.Google Scholar
Maudlin, T. (2011). Quantum Non-Locality and Relativity, 3rd edition. Chichester: Wiley-Blackwell.Google Scholar
Miller, E. (2014). “Quantum entanglement, Bohmian mechanics, and Humean supervenience,” Australasian Journal of Philosophy, 92: 567583.Google Scholar
Norsen, T. (2005). “Einstein’s boxes,” American Journal of Physics, 73: 164176.Google Scholar
Norsen, T. (2014). “The pilot-wave perspective on spin,” American Journal of Physics, 82: 337348.Google Scholar
Pylkkänen, P., Hiley, B. J., and Pättiniemi, I. (2015). “Bohm’s approach and individuality,” pp. 226246 in Guay, A. and Pradeu, T. (eds.), Individuals Across the Sciences. Oxford: Oxford University Press.Google Scholar
Rovelli, C. (1997). “Halfway through the woods: Contemporary research on space and time,” pp. 180223 in Earman, J. and Norton, J. (eds.), The Cosmos of Science. Pittsburgh: University of Pittsburgh Press.Google Scholar
Schrödinger, E. (1935). “Die gegenwärtige Situation in der Quantenmechanik,” Naturwissenschaften, 23: 807812.CrossRefGoogle Scholar
Tumulka, R. (2006). “A relativistic version of the Ghirardi-Rimini-Weber model,” Journal of Statistical Physics, 125: 821840.CrossRefGoogle Scholar
Vassallo, A. and Ip, P. H. (2016). “On the conceptual issues surrounding the notion of relational Bohmian dynamics,” Foundations of Physics, 46: 943972.Google Scholar
Wallace, D. (2014). “Life and death in the tails of the GRW wave function,” arXiv:1407.4746 [quant-ph].Google Scholar

References

Abarbanel, H. (1983) “The analysis of observed chaotic data in physical systems,” Reviews of Modern Physics, 65: 13311392.CrossRefGoogle Scholar
Agüero, M., Hnilo, A., Kovalsky, M., and Larotonda, M. (2009). “Time stamping in EPRB experiments: Application on the test of non-ergodic theories,” European Physical Journal D, 55: 705709.Google Scholar
Agüero, M., Hnilo, A., and Kovalsky, M. (2012). “Time resolved measurement of the Bell’s inequalities and the coincidence-loophole,” Physical Review A, 86: 052121.CrossRefGoogle Scholar
Agüero, M., Hnilo, A., and Kovalsky, M. (2014). “Measuring the entanglement of photons produced by a nanosecond pulsed source,” Journal of the Optical Society of America B, 31: 30883096.Google Scholar
Ballentine, L. E. (1998). Quantum Mechanics. A Modern Development. Singapore: World Scientific Publishing.Google Scholar
Bonazzola, C., Hnilo, A., Kovalsky, M., and Tredicce, J. (2015). “Features of the extreme events observed in an all-solid-state laser with saturable absorber,” Physical Review A, 92: 053816.Google Scholar
Buonomano, V. (1978). “A limitation on Bell’s inequality,” Annales de l’Institut Henri Poincaré, 29A: 379394.Google Scholar
Clauser, J. and Shimony, A. (1978). “Bell’s theorem: Experimental tests and implications,” Reports on Progress in Physics, 41: 18811927.Google Scholar
d’Espagnat, B. (1984). “Nonseparability and the tentative descriptions of reality,” Physics Reports, 110: 201264.Google Scholar
Gisin, N. (1990). “Weinberg’s non-linear quantum mechanics and superluminal communications,” Physics Letters A, 143: 12.Google Scholar
Giustina, M., Versteegh, M. A. M., Wengerowsky, S., Handsteiner, J., Hochrainer, A., Phelan, K., … Zeilinger, A. (2015). “A significant loophole-free test of Bell’s theorem with entangled photons,” Physical Review Letters, 115: 250401.Google Scholar
Goldstein, H. (1950). Classical Mechanics. Reading, MA: Addison‐Wesley.Google Scholar
Hnilo, A. (1994). “On testing objective local theories by using GHZ states,” Foundations of Physics, 24: 139162.Google Scholar
Hnilo, A. (2012). “Observable consequences of a hypothetical transient deviation from Quantum Mechanics,” arXiv/quant-ph/1212.5722.Google Scholar
Hnilo, A. (2013). “Time weakens the Bell’s inequalities,” arXiv/quant-ph/1306.1383v2.Google Scholar
Hnilo, A. (2014). “On the meaning of an additional hypothesis in the Bell’s inequalities,” arXiv/quant-ph/1402.6177.Google Scholar
Hnilo, A. (2017a). “Consequences of recent loophole-free experiments on a relaxation of measurement independence,” Physical Review A, 95: 022102.Google Scholar
Hnilo, A. (2017b). “Using measured values in Bell’s inequalities entails at least one hypothesis additional to Local Realism,” Entropy, 19: 80.Google Scholar
Hnilo, A. and Agüero, M. (2015). “Simple experiment to test a hypothetical transient deviation from Quantum Mechanics,” arXiv/abs/1507.01766.Google Scholar
Hnilo, A., Peuriot, A., and Santiago, G. (2002). “Local realistic models tested by the EPRB experiment with random variable analyzers,” Foundations of Physics Letters, 15: 359371.Google Scholar
Jaynes, E. T. (1980). “Quantum beats,” pp. 3743 in Barut, A. (ed.), Foundations of Radiation Theory and Quantum Electrodynamics. New York: Plenum Press.Google Scholar
Khrennikov, A. (2017). “Buonomano against Bell: Nonergodicity or nonlocality?”, International Journal of Quantum Information, 8: 1740010.Google Scholar
Kovalsky, M. and Hnilo, A. (2004). “Different routes to chaos in the Ti: Sapphire laser,” Physical Review A, 70: 043813.Google Scholar
Kurtsiefer, C., Oberparleiter, M., and Weinfurter, H. (2001). “High efficiency entangled photon pair collection in type II parametric fluorescence,” Physical Review A, 64: 023802.CrossRefGoogle Scholar
Mermin, D. (1990). “Extreme quantum entanglement in a superposition of macroscopically distinct states,” Physical Review, 65: 18381840.Google Scholar
Peng, C., Yang, T., Bao, X., Zhang, J., Jin, X., Feng, F., … Pan, J. W. (2005). “Experimental free-space distribution of entangled photon pairs over 13km: towards satellite-based global quantum communication,” Physical Review Letters, 94: 150501.Google Scholar
Polchinski, J. (1991). “Weinberg’s nonlinear quantum mechanics and the Einstein-Podolsky-Rosen paradox,” Physical Review Letters, 66: 397400.Google Scholar
Scheidl, T., Ursin, R., Kofler, J., Ramelow, S., Ma, X. -S., Herbst, T., … Zeilinger, A. (2010). “Violation of local realism with freedom of choice,” Proceedings of the National Academy of Sciences of the United States of America, 107: 1970819713.CrossRefGoogle ScholarPubMed
Scully, O. M. and Zubairy, M. S. (1997). Quantum Optics. Cambridge: Cambridge University Press.Google Scholar
Shalm, L. Meyer-Scott, E., Christensen, B., Bierhorst, P., Wayne, M., Stevens, M., … Nam, S. W. (2015). “A strong loophole-free test of local realism,” Physical Review Letters, 115: 250402.Google Scholar
Weihs, G., Jennewein, T., Simon, C., Weinfurter, H., and Zeilinger, A. (1998). “Violation of Bell’s inequality under strict Einstein locality conditions,” Physical Review Letters, 81: 50395043.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×