Published online by Cambridge University Press: 05 May 2014
In this chapter, we will develop methods for mapping operator equations to equivalent c-number equations. This results in a continuous phase-space representation of a many-body quantum system, using phase-space distributions instead of density matrices. In order to do this, we will first find c-number representations of operators. We have already seen one such representation, the Glauber–Sudarshan P-representation for the density matrix. We now introduce several more such representations. The main focus will be on the truncated Wigner representation, valid at large photon number, and the positive P-representation, which uses a double-dimensional phase space and exists as a positive probability for all quantum density matrices.
Phase-space techniques have a great advantage over conventional matrix-type solutions to the Schrödinger equation, in that they do not have an exponential growth in complexity with mode and particle number. Instead, the equations that describe the dynamics of these c-number representations of the density matrix are Fokker–Planck equations. These have equivalent stochastic differential equations, which behave as c-number analogs of Heisenberg-picture equations of motion.
This means that problems that would be essentially impossible to solve using conventional number-state representations can be transformed into readily soluble differential equations. In many cases, no additional approximations, such as perturbation theory or factorization assumptions, are needed.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.