Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T13:10:45.520Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  05 February 2015

Mou-Hsiung Chang
Affiliation:
Mathematical Sciences Division, US Army Research Office
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Quantum Stochastics , pp. 397 - 406
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[Acc78] Accardi, L.On the quantum Feynman-Kac formula. Rendiconti del Seminario Mathematico e Fisico di Milano, 48, pp. 135–180, 1978.Google Scholar
[AC82] Accardi, L., Cechini, C.Conditional expectation in von Neumann algebra and a theorem of Takesaki. J. Funct. Anal., 45, pp. 245–273, 1982.CrossRefGoogle Scholar
[AFH06] Accardi, L., Fagnola, F., Hachicha, R.Generic q-Markov semigroups and speed of convergence of q-algorithms, Infinite Dim. Anal. Quant. Prob. and Related Topics, 9, pp. 567–594, 2006.Google Scholar
[AFL82] Accardi, L., Frigerio, A., Lewis, J.T.Quantum stochastic processes. Publ. Res. Inst. Math. Sci., 18, pp. 97–133, 1982.CrossRefGoogle Scholar
[AFL90] Accardi, L., Frigerio, A., Lu, Y.The weak coupling limit as a quantum functional central limit. Comm. Math. Phys., 131, pp. 537–570, 1990.CrossRefGoogle Scholar
[AK91] Accardi, L., Koroliuk, D.Quantum Markov chains: The recurrence problem. Quantum Probability and Related Topics, 7, 63–73, 1991.Google Scholar
[AK02] Accardi, L., Kozyrev, S.Lectures on quantum interacting particle systems, Quantum interacting particle systems (Trento, 2000). QP-PQ Quantum Probability and White Noise Analysis, 14, World Scientific, Singapore, 14, 1–192, 2002.Google Scholar
[AL91] L., Accardi and Y. G., Lu. Squeezing noises as weak coupling limit of a Hamiltonian system. Rep. Math. Phys., 29, 227–256, 1991.Google Scholar
[ALV02] Accardi, L., Lu, Y.G., Volovich, I.Quantum Theory and Its Stochastic Limit. Springer, Berlin, 2002.
[AL87] Alicki, R., Lendi, K.Quantum Dynamical Semigroups and Applications. Lecture Notes in Physics, 286, Springer, Berlin, 1987.
[Arv02] Arveson, W.The heat flow of the CCR algebra. Bull. London Math. Soc., 34, 73–83, 2002.CrossRefGoogle Scholar
[Att03] Attal, S.Quantum Noises. Lecture Notes of the Summer School on Quantum Open Systems. Grenoble, 2003.Google Scholar
[AC04] Attal, S., Coquio, A.Quantum stopping times and quasi-left continuity. Ann. Inst. H. Poincaré Probab. Statist., 40, pp. 497–512, 2004.CrossRefGoogle Scholar
[AL04] Attal, S., Lindsay, J.M.Quantum stochastic calculus with maximal operator domains. Ann. Probability, 32, pp. 488–529, 2004.Google Scholar
[AP96] Attal, S., Parthasarathy, K. P.Strong Markov processes and the Dirichlet problems on C*-algebras. Prepublications de l'Institute Fourier, Grenoble, 357, 1996.
[AS98] Attal, S., Sinha, K.B.Stopping semimartingales on Fock space. Quantum Probability Com-munication, X, World Scientific, Singapore, 1998.
[AyS87] Ayupov, Sh. A., Sarymsakov, T. A.Markov operators on quantum probability sapce, inProbability Theory and Applications, Proc. World Congr. Bernoulli Soc., Tashkent, USSR, 1, pp. 445–454, 1987.Google Scholar
[ADR69] Azema, J., Duflo, M., Revuz, D.Proprietes relatives des processus de Markov recurrents. Z. Wahr. and Verw. Gebiete, 13, pp. 286–314, 1969.CrossRefGoogle Scholar
[Bar03] Barchielli, A.Continual Measurements in Quantum Mechanics and Quantum Stochastic Calculus. Ecole d'éte de Mathematiques Grenoble, 2003.Google Scholar
[BL86] Barnett, C., Lyons, T.Stopping noncommutative processes. Math. Proc. Camb. Phil. Soc., 99, pp. 151–161, 1986.CrossRefGoogle Scholar
[BDK10] Bassi, A., Durr, D., Kolb, M.On the long time behavior of free stochastic Schrödinger evolutions. Rev. Math. Phys., 22, pp. 55–89, 2010.CrossRefGoogle Scholar
[BN11] Baumgartner, B., Narhhofer, H.The structure of state space concerning quantum dynamical semigroups. ar Xiv: 1101. 3914. v 1, 2011.Google Scholar
[Bel89] Belavkin, V. P.A new wave equation for a continuous nondemolition measurement. Phys. Lett. A, 140, pp. 355–358, 1989.CrossRefGoogle Scholar
[Bel92a] Belavkin, V.P.Quantum continual measurements and a posteriori collapse on CCR. Comm. Math. Physics, 146, 611–635, 1992.CrossRefGoogle Scholar
[Bel92b] Belavkin, V. P.Quantum stochastic calculus and quantum nonlinear filtering. J. Multivariate Analysis, 42, 171–201, 1992.CrossRefGoogle Scholar
[BNM09] Belavkin, V., Negretti, A., Molmer, K.Dynamical programming of continuously observed quantum systems. ar Xiv: 0805.474.2 [quant-ph], Jan. 26, 2009.Google Scholar
[BO02] Belavkin, V.P., Ohya, M.Entanglement, quantum entropy, mutual information. R. Soc. Lond. Proc.Ser. A, 458, pp. 209–231, 2002.CrossRefGoogle Scholar
[BS89] Belavkin, V.P., Staszewski, P.A quantum particle undergoing continuous observation. Phys. Lett. A, 140, pp. 359–362, 1989.CrossRefGoogle Scholar
[Bel13] Belton, A.C. R.On stopping Fock-space processes. ar Xiv: 1311. 4871 v1 [math.OA], November 19, 2013.Google Scholar
[BLS12] Belton, A.C. R., Lindsay, J.M., Skalski, A.G.Quantum Feymann-Kac perturbations. ar Xiv: 1202. 6489v1, 2012.Google Scholar
[BDSW96] Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.Mixed state entanglement and quantum error correction. Phys. Rev. A, 54, pp. 3824–3851, 1996.CrossRefGoogle ScholarPubMed
[Bha93] Bhat, B.V.R. Markov Dilation of Nonconservative Quantum Dynamical Semigroups and a Quantum Boundary Theory. Doctoral dissertation, Indian Statistical Institute, 1993.Google Scholar
[BP94] Bhat, B.V.R., Parthasarathy, K.R.Kolmogorov's existence theorem for Markov processes in C*-algebras. Proc. Indian Academy of Sciences, 104, pp. 253–262, 1994.Google Scholar
[BP95] Bhat, B.V.R., Parthasarathy, K.R.Markov dilations of non-conservative dynamical semigrouops and a quantum boundary theory. Annales de l'Institut H. Poincaré, 31, pp. 601–652, 1995.Google Scholar
[BS94] Bhat, B.V.R., Sinha, K.B.Examples of unbounded generators leading to nonconservative minimal semigroups. Quantum Probability and Related Topics, IX, pp. 89–104, 1994.Google Scholar
[Bia96] Biane, P.Quelques proprietes du mouvement Brownien non-commutatif. Hommage à P.A. Meyer et J. Neveu. Asterisque, 236, pp. 73–102, 1996.Google Scholar
[Bil68] Billingsley, P.Convergence of Probability Measures. John Wiley and Sons, New York-London-Sydney-Toronto, 1968.Google Scholar
[BG68] Blumenthal, R.M., Getoor, R.K. Markov Processes and Potential Theory, Academic Press, New York, 1968.Google Scholar
[Boc33] Bochner, S.Integration von Funktionen, deren Werte die Elemente eines Vectorraumes sind. Fundamenta Mathematicae, 20, pp. 262–276, 1933.CrossRefGoogle Scholar
[Bou04] Bouten, L.M. Filtering and Control in Quantum Optics. Ph.D thesis, University of Nijmegen, 2004.Google Scholar
[BGM04] Bouten, L., Guta, M., Maassen, H.Stochastic Schrödinger equations. J. Phys. A, 37, pp. 3189–3209, 2004.CrossRefGoogle Scholar
[BMK03] Bouten, L.M., Maassen, J.D.M., Kummerer, B.Constructing the Davis process ofresonance fluorescence with quantum stochastic calculus. Optics and Spectroscopy, 94, pp. 911–919, 2003.CrossRefGoogle Scholar
[BvH06] Bouten, L.M., Van Handel, R.Quantum filtering: A reference probability approach. arxiv:math-ph/0508006v4, 2006.Google Scholar
[BvH06] Bouten, L., van Handel, R.On the separation principle of quantum control. arXiv, 2006.Google Scholar
[BvH08] Bouten, L., van Handel, R.Discrete approximation of quantum stochastic models. ar Xiv:0803.4383, 2008.Google Scholar
[BvHJ07] Bouten, L.M., van Handel, R., James, M.An introduction of quantum filtering. SIAMJ. Contr. Optim., 46, pp. 2199–2241, 2007.Google Scholar
[BvHJ06b] Bouten, L., van Handel, R.James, M. R. A discrete invitation to quantum filtering and feedback control. Preprint, 2006.
[BvHS07] Bouten, L., van Handel, R., Silberfarb, A.Approximation and limit theorems for quantum stochastic models with unbounded coefficients. arXiv: 0712.2276 [math-ph], 2007.Google Scholar
[BR87] Bratteli, O., Robinson, D.W.Operator Algebras and Quantum Statistical Mechanics I. 2nd ed., Springer, Berlin, 1987.CrossRefGoogle Scholar
[Bre68] Breiman, L.Probability. SIAM, Philadelphia, 1968.Google Scholar
[BP06] Breuer, H. P., Petruccione, F.The Theory of Open Quantum Systems. Oxford University Press, Oxford, 2006.Google Scholar
[Car00] Carbone, R.Exponential Ergodicity of a Class of Quantum Markov Semigroups. Tesi di Dottorato. University di Milano, 2000.Google Scholar
[Cha08] Chang, M.-H.Stochastic Control of Hereditary Systems and Applications. Series on Stochastic Modelling and Applied Probability 59, Springer, New York, 2008.CrossRefGoogle Scholar
[Cha12] Chang, M.-H.Discrete approximations of controlled stochastic systems with memory: A survey. Stochastic Analysis and Applications, 30, pp. 675–724, 2012.CrossRefGoogle Scholar
[Cha14a] Chang, M.-H.A survey on invariance and ergodicity of quantum Markov semigroups. Stochastic Analysis and Applications, 32, pp. 380–454, 2014.CrossRefGoogle Scholar
[Cha14b] Chang, M.-H. Recurrence and transience of quantum Markov semigroups. To appear in Probability Surveys.
[CPP08] Chang, M.-H., Pang, T., Pemy, M.Optimal control of stochastic functional differential equations with bounded memory. Stochastics, 80, pp. 69–96, 2008.CrossRefGoogle Scholar
[CPY09] Chang, M.-H., Pang, T., Yong, J.Optimal stopping problems for stochastic differential equations with random coefficients. SIAM J. Control & Optimization, 48, pp. 941–971, 2009.CrossRefGoogle Scholar
[Che90a] Chebotarev, A. M.The Theory of Conservative Dynamical Semigroups and Application. MIEM preprint no. 1, Moscow, March 1990.Google Scholar
[Che90b] Chebotarev, A. M.Necessary and Sufficient Conditions of the conservativeness of dynamical semigroups. In Contemporay Problems of Mathematics, Newest Achievements, 36, pp. 149–184, VINITI, Moscow, 1990.Google Scholar
[Che91] Chebotarev, A. M.Necessary and sufficient conditions of the conservativeness of dynamical semigroups. J. Sov. Math., 56, pp. 2697–2719, 1991.Google Scholar
[Che93] Chebotarev, A. M.Sufficient conditions of the conservativism of a minimal dynamical semigroup, Math. Notes 52, pp. 1067–1077, 1993.Google Scholar
[CF98] Chebotarev, A. M., Fagnola, F.Sufficient conditions for conservativity of minimal quantum dynamical semigroups. J. Funct. Anal., 153, pp. 382–404, 1998.CrossRefGoogle Scholar
[CF95] Chebotarev, A. M., Fagnola, F.On quantum extensions of the Azema martingale semigroup. Sem. Prob., XXIX, pp. 1–16, Lecture Notes in Mathematics, 1613, Springer, Berlin, 1995.Google Scholar
[Chi06] Chigansky, P.Stability of nonlinear filters. A survey. Mini-course lecture notes, Petropolis, Brazil. Available at http://www.wisdom.weizmann.ac.il/pavel/, 2006.
[CvH07] Chigansky, P., von Handel, R.Model robustness of finite state nonlinear filtering over the infinite time horizon. Ann. Appl. Prob., 17, pp. 688–715, 2007.CrossRefGoogle Scholar
[Cho04] Choi, VQuantum dynamic semigroup and its asymptotic behaviors. Bull. Korean Math. Soc., 41, pp. 189–198, 2004.CrossRefGoogle Scholar
[CE79] Christensen, E. and Evans, D. E.Cohomology of operator algebras and quantum dynamical semigroups. J. London Math. Society, 20, pp. 358–368, 1979.Google Scholar
[Chu60] Chung, K.L.Markov Chains with Stationary Transition Probability. Springer, Berlin, 1960.
[Com00] Comman, H.A Non-Commutative Topological Theory of Capacities and Applications. Ph.D thesis, Pontificia Universidad Catolica de Chile, Facultad de Mathematicas, 2000.Google Scholar
[Com03] Comman, H.Criteria for large deviations, Trans. Amer. Math. Soc., 355, pp. 2905–2923, 2003.CrossRefGoogle Scholar
[Com05] Comman, H.Functional approach of large deviations in general spaces, J. Theoretical Prob., 18, pp. 187–207, 2005.CrossRefGoogle Scholar
[Com06] Comman, H.Upper regularization for extended self-adjoint operators. J. Operator Theory, 55, pp. 91–116, 2006.Google Scholar
[Con94] Conway, J.B.A Course in Functional Analysis. 2nd ed. Springer, Berlin, 1994.Google Scholar
[Coq00] Coquio, A.Why are there only three quantum noises., Probab. Theory Relat. Fields, 118, pp. 349–364, 2000.CrossRefGoogle Scholar
[Coq06] Coquio, A.The optional stopping theorem for quantum martingales. J. Funct. Anal., 238, pp. 149–180, 2006.CrossRefGoogle Scholar
[DPZ92] Da Prato, G., Zabczyk, J.Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge, 1992.CrossRefGoogle Scholar
[DL92] Dantray, R., Lions, J.L.Mathematical Analysis and Numerical Methods for Science and Technology. 5, Evolution Problems I. Springer, Berlin, 1992.Google Scholar
[Dav69] Davies, E.B.Quantum stochastic processes, Comm. Math. Physics, 15, pp. 277–304, 1969.CrossRefGoogle Scholar
[Dav74] Davies, E.B.Markovian master equation. Commun. Math. Phys., 39, pp. 91–110, 1974.CrossRefGoogle Scholar
[Dav76] Davies, E.B.Quantum Theory of Open Systems. Academic Press, London, New York, San Francisco, 1976.
[Dav77] Davies, E.B.Quantum dynamical semigroups and the neutron diffusion equation. Rep. Math. Phys., 11, pp. 169–188, 1977.CrossRefGoogle Scholar
[Dav79] Davies, E. B.Generators of dynamical semigroups, J. Funct. Analysis, 34, pp. 421–432, 1979.CrossRefGoogle Scholar
[Dav80] Davies, E. B.One-Parameter Semigroups. Academic Press, New York, 1980.Google Scholar
[DL70] Davies, E. B.Lewis, J. T.An operational approach to quantum probability theory. Comm. Math. Physics, 17, pp. 239–260, 1970.CrossRefGoogle Scholar
[DM87] Dellacherie, C., Meyer, P. A.Probabilites et potentiel. 2nd ed. Hermann, Paris, 1987.Google Scholar
[Dir39] Dirac, P.A new notation for quantum mechanics. Math. Proceedings of the Cambridge Phil. Society, 35, pp. 416–418, 1939.CrossRefGoogle Scholar
[Dix69] Dixmier, J.Les C*-algebres et leurs representations. Gauthier Villars, Paris, 1969.Google Scholar
[Dix81] Dixmier, J.Von Neumann Algebras. North Holland, Amsterdam, 1981.Google Scholar
[DU77] Diestel, J., Uhl, J.Vector Measures. American Mathematical Society, Providence, RI, 1977.CrossRefGoogle Scholar
[Dio88] Diosi, L.Continuous quantum measurement and Ito formalism. Phs. Lett. A, 129, pp. 419–423, 1988.Google Scholar
[DS63] Dunford, N., Schwartz, J.T.Linear Operator: Parts I, II, & III. Interscience, John Wiley, New York, 1963.Google Scholar
[Dyn65] Dynkin, E.B.Markov Processes, vols. 1 and 2. Mathematischen wissenschaften, Springer, Berlin-New York, 1965.CrossRefGoogle Scholar
[EW03] Emel'yomor, E. Y., Wolff, M.P.Aymptotic behavior of Markov semigroup on noncommutative L1-spaces. In Quantum Probability and Infinite Dimensional Analysis, Burg, 2001, QP-PQ: Quantum Probab. White Noise Anal., 15, pp. 78–83, World Scientific, Singapore, 2003.Google Scholar
[EW06] Emel'yomor, E. Y., Wolff, M. P. H.Aymptotic behavior of Markov semigroup on preduals of von Neumann algebras. J. Math. Analy. Appl., 314, pp. 749–763, 2006.Google Scholar
[Enc88] Enchev, B.Hilbert space valued quasimartingales. Bull. Unione Mat. Ital., 2, pp. 19–39, 1988.
[EK85] Ethier, S. N. and Kurtz, T.G.Markov Processes, Characterization and Convergence. Wiley Series in Probability and Statistics. John Wiley and Sons, New York, 1985.
[Eva77] Evans, D.E.Irreducible quantum dynamical semigroups. Comm. Math. Phy., 54, pp. 293–297, 1977.CrossRefGoogle Scholar
[EHO79] Evans, D.E., Hanche-Olsen, H.The generators of positive semigroups, J. Functional Analysis, 32, pp. 207–212, 1979.CrossRefGoogle Scholar
[EHK78] Evans, D.E.Hoegh-Krohn, R.Spectral properties of positive maps on C*-algebras. J. London Math. Soc., 17, pp. 345–355, 1978.Google Scholar
[EL77] Evans, D.E., Lewis, J.T.Dilations of irreducible evolutions in algebraic quantum theory. Commun. Dublin Inst. Adv. Studies, Ser A, 24, 1977.Google Scholar
[Fag90] Fagnola, F.On quantum stochastic differential equations with unbounded coefficients. Probab. Th. Rel. Fields, 86, pp. 501–516, 1990.CrossRefGoogle Scholar
[Fag91] Fagnola, F.Pure birth and pure death processes as quantum flows in Fock space. Sankhya, 53, pp. 288–297, 1991.Google Scholar
[Fag92] Fagnola, F.Unitarity of solutions of quantum stochastic stochastic differential equations and conservativity of the associated semigroups. Quantum Probability and Related Topics, VII, pp. 139–148, 1992.Google Scholar
[Fag93] Fagnola, F.Characterization of isometric and unitary weakly differentiable cocycles in Fock space. Quantum Probability and Related Topics, VIII, pp. 143–164, 1993.Google Scholar
[Fag99] Fagnola, F.Quantum Markov semigroups and quantum flows. Proyecciones, 18, pp. 1–144, 1999.Google Scholar
[Fag04] Fagnola, F.Quantum Markov semigroups: Structure and asymptotics. Rend. Circ. Palermo serie II Suppl., 2004.Google Scholar
[Fag06] Fagnola, F.Quantum stochastic differential equations and diltation of completely positive semigroups. Open Quantum Systems II, Lecture Notes in Mathematics, 1881, pp. 183–220, 2006.Google Scholar
[FM13] Fagnola, F., Mora, C.M.Stochastic Schrödinger equations and applications to Ehrenfest-type theorems. arXiv: 1207.2939v2 [quant-ph], March 19, 2013.Google Scholar
[FR96] Fagnola, F., Rebolledo, R.An ergodic theorem in quantum optics, pp. 73–86 in Proceedings of the Univ. of Udine Conference in Honour of A. Frigerio, Editrice Universitaria Udinese, 1996.Google Scholar
[FR98] Fagnola, R., Rebolledo, R.The approach to equilibrium of a class of quantum dynamical semigroups. Infinite Dimensional Analysis and Quantum Probability, 1, pp. 561–572, 1998.Google Scholar
[FR00] Fagnola, F., Rebolledo, R.On the existence of invariant states for quantum dynamical semigroups. Preprint, 2000.
[FR02a] Fagnola, F., Rebolledo, R.Subharmonic projections for a quantum semigroup. J. Math. Phys., 43, pp. 1074–1082, 2002.CrossRefGoogle Scholar
[FR02b] Fagnola, F., Rebolledo, R.Lectures on the qualitative analysis of quantum Markov semigroups. In Quantum Probability and White Noise Analysis, 14, World Scientific, Singapore, pp. 197–240, 2002.Google Scholar
[FR03] Fagnola, F., Rebolledo, R.Transience andrecurrence of Quantum Markov semigroups. Probab.Theory Relat. Fields, 126, pp. 289–306, 2003.CrossRefGoogle Scholar
[FR03] Fagnola, F., Rebolledo, R.Quantum Markov semigroups and their stationary states. Stochastic Analysis and Mathematical Physics II, Birkhauser, Berlin, 2003.Google Scholar
[FRS94] Fagnola, F., Rebolledo, R., Saavedra, C.Quantum flows associated to master equations in quantum optics. J. Math. Phys., 35, pp. 1–12, 1994.CrossRefGoogle Scholar
[FW00] Fagnola, F.Wills, S.Mild solutions of quantum stochastic differential equations. Electronic Communications in Probability, 5, pp. 158–171, 2000.CrossRefGoogle Scholar
[FW03] Fagnola, F., Wills, S.J.Solving quantum stochastic differential equations with unbounded coefficients. J. Funtional Analy., 198, pp. 279–310, 2003.Google Scholar
[Fel40] Feller, W.On the integro-differential equations for purely discontinuous Markov processes, Trans. AMS, 48, pp. 488–575, 1940.CrossRefGoogle Scholar
[Fel50] Feller, W.An Introduction to Probability Theory and Its Applications. Vol. I. John Wiley & Sons, New York, 1950.Google Scholar
[Fri77] Frigerio, A.Quantum dynamical semigroups and approach to equilibrium. Lett. Math. Phys., 2, pp. 79–87, 1977.CrossRefGoogle Scholar
[Fri78] Frigerio, A.Stationary states of quantum dynamical semigroups. Comm. Math. Phys., 63, pp. 269–276, 1978.CrossRefGoogle Scholar
[FV82] Frigerio, A., Verri, M.Long time asymptotic properties of dynamical semigroups on w*-algebras. Math. Zeitschrift, 80, pp. 275–286, 1982.Google Scholar
[GZ04] Gardiner, C., Zoller, P.Quantum Noise. 3rd edn., Springer, Berlin, 2004.Google Scholar
[GK12] Gartner, A., Kummerer, B.A coherent approach to recurrence and transience for quantum Markov operators. arXiv: 1211.6876v1 [math.OA], November 29, 2012.Google Scholar
[Get80] Getoor, R.K.Transience and recurrence of Markov processes. Seminaire de probabilites, XIV(Paris, 1978/1979), Lecture Notes in Mathematics. 784, Springer, Berlin, 1980, pp. 397–409.Google Scholar
[GP92] Gisin, N., Percival, I.The quantum-state diffusion model applied to open systems. J. Phys. A, 25, 5677, 1992.CrossRefGoogle Scholar
[Gou08] Gough, J.Optimal quantum feedback control for canonical observables. Preprint, 2008.
[GS04] Gough, J., Sobolev, A.Stochastic Schrödinger equations as limit of discrete filtering, Open Systems & Information Dynamics, 11, pp. 235–255, 2004.CrossRefGoogle Scholar
[Gle57] Gleason, A.M.Measures on the closed subspaces of Hilbert spaces. J. Math. Mechanics, 6, pp. 885–893, 1957.Google Scholar
[GKS76] Gorini, V., Kossakowski, A., Sudarshan, E. C. G.Completely positive dynamical semigroups of N-level systems. J. Math. Physics, 17, pp. 821–825, 1976.CrossRefGoogle Scholar
[Gri05] Grivopoulos, S.Optimal Control of Quantum Systems. Ph.D. thesis, University of California, Santa Barbara, 2005.Google Scholar
[Gro86] Groh, U.Asympototics of positive semigroups on C*- and W*-algebras. In One-Parameter Semigroups of Positive Operators, edited by Rainer, Nagel. Lecture Notes in Mathematics 1184, Springer, Berlin, 1986.Google Scholar
[Gron19] Gronwall, T.H.Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Ann. of Math., 20, pp. 292–296, 1919.CrossRefGoogle Scholar
[GVWW12] Grunbaum, F.A., Velazquez, L., Werner, A.H., Werner, R.F.Recurrence for discrete time unitary evolutions. arXiv: 1202.3903 [quant-ph], 2012.Google Scholar
[Gud79] Gudder, S.Radon-Nikodym theorem for *-algebras. Pacific J. Math., 80, pp. 141–149, 1979.CrossRefGoogle Scholar
[GS91] Gudder, S., Schindler, C.Regular quantum Markov processes. Math. Phys., 32, pp. 656–668, 1991.CrossRefGoogle Scholar
[Gui70] Guichardet, A.Symmetric Hilbert Spaces and Related Topics. Lecture Notes in Mathematics 261, Springer, Berlin, 1970.Google Scholar
[Gui74] Guichardet, A.Systémes dynamiques non commutatifs. Astérisque, 13–14, pp. 1–203, 1974.Google Scholar
[HS80] Haagerup, U., Skau, C.Geometric aspects of the Tomika-Takesaki theory I & II, preprint No. 3, Mathematics Department, Odense University, 1980.
[Has80] Has'minski, R. Z.Stochastic Stability of Differential Equations. Sijthoff Noordhoff, Amsterdam, 1980.CrossRefGoogle Scholar
[HG08] Heinosaari, T., Ziman, M.Guide to mathematical concepts of quantum theory. ACTA Physica Slovaca, 58, 487–674, August 2008.Google Scholar
[HP57] Hille, E., Phillips, P.S.Functional Analysis and Semigroups, 2nd ed., American Mathematical Society, Providence, RI, 1957.Google Scholar
[Hol95] Holevo, A.S.On the structure of covariant dynamical semigroups. J. Functional Analysis, 131, pp. 255–278, 1995.CrossRefGoogle Scholar
[Hol01] Holevo, A.S.Statistical Structure of Quantum Theory. Sprinter, Berlin, 2001.CrossRefGoogle Scholar
[HS05] Holevo, A.S., Shirokov, M.E.Continuous ensembles and the χ-capacity of infinite dimensional channels. Probab. Theory and Its Appl., 50, pp. 98–114, 2005.Google Scholar
[HSW05] Holevo, A.S., Shirokov, M.E., Werner, R.F.On the notion of entanglement in Hilbert space. Russian Math. Surveys, 60, pp. 153–154, 2005.Google Scholar
[Hud06] Hudson, R.L.Stop times in Fock space quantum probability. Preprint, 2006.
[HP84] Hudson, R.L., Parthasarathy, K.R.Quantum Itô's formula and stochastic evoluation. Comm. Math. Physics, 93, pp. 301–323, 1984.CrossRefGoogle Scholar
[IW81] Ikeda, N., Watanabe, S.Stochastic Differential Equations and Diffusion Processes. North-Holland Mathematical Library 24, North-Holland, Amsterdam-New York, 1981.Google Scholar
[Kat95] Kato, T.Perturbation theory for linear operators. Corr. printing of the 2nd ed. Springer, New York, 1995.CrossRefGoogle Scholar
[Kol50] Kolmogorov, A.N.Foundations of Probability Theory, Chelsea, New York, 1950.Google Scholar
[Kolo00] Kolokoltsov, V.N.Semiclassical Analysis for Diffusion and Stochastic Processes. Lecture Notes in Mathematics 1724, Springer, Berlin, 2000.CrossRefGoogle Scholar
[Kra70] Kraus, K.General state charges in quantum theory. Ann. Phys., 64, pp. 311–335, 1970.Google Scholar
[Kra83] Kraus, K.State, Effects, and Operations Fundamental Notions of Quantum Theory. Lecture Notes in Physics, 190, Springer, Berlin, 1987.Google Scholar
[Kre89] Kreyszig, E.Introductory Functional Analysis with Applications. Wiley Classics Library Edition, John Wiley & Sons, New York, 1989.Google Scholar
[Kum02] Kummerer, B.Quantum Markov processes. In Coherent Evolution in Noisy Environments, Lecture Notes in Physics 611, Springer, Berlin, 2002.Google Scholar
[Kus67] Kushner, H.J.Stochastic Stability and Control. Academic Press, Singapore, 1967.Google Scholar
[Lin76] Lindblad, G.On the generators of quantum dynamical semigroups. Comm. Math. Phys., 48, pp. 119–130, 1976.CrossRefGoogle Scholar
[LSin10] Lindsay, J.M., Sinha, K.B.A quantum stochastic Lie-Trotter product formula. Indian J. Pure Appl. Math., 40, pp. 313–325, 2010.Google Scholar
[LS10] Lindsay, M., Skalski, A.G. On quantum stochastic differential equations. Preprint. 2010.
[LW00] Lindsay, J.M., Wills, S.J.Existence, positivity and contractivity for quantum stochastic flows with infinite dimensional noise. Probab. Theory Related Fields, 116, pp. 505–543, 2000.CrossRefGoogle Scholar
[LW10] Lindsay, J.M., Wills, S.J.Quantum stochastic cocycles and completely bounded semigroups on operator spaces. arXiv:1101.0177v1, 2010.Google Scholar
[Liu12] Liu, F.Derivation of quantum walk equalities using quantum Feymann-Kac formula. arXiv: 1201.1557v3, 2012.Google Scholar
[Luc95] Luczak, A.Ergodic projection for quantum dynamical semigroups. International J. Theor. Phys., 34, 1995.CrossRefGoogle Scholar
[LP61] Lumer, G., Phillips, R.S.Dissipative operators in a Banach space. Pacific J. Math, 11, pp. 679–698, 1961.CrossRefGoogle Scholar
[Maa03] Maassen, H.Quantum Probability Theory. Lecture Notes, Radboud University, Nijmegen, 2003.Google Scholar
[Mao97] Mao, X.Stochastic Differential Equations and Applications. Horwood Publishing, Chichester, 1997.Google Scholar
[Mer98] Merzbacher, E.Quantum Mechanics. 3rd edition. Wiley, New York, 1998.Google Scholar
[Mey95] Meyer, P.-A.Quantum Probability for Probabilists, 2nd ed., Lecture Notes in Mathematics 1538, Springer, Berlin, Heidelberg, New York, 1995.CrossRefGoogle Scholar
[MvH07] Mirrahimi, M., van Handel, R.Stabilizing feedback controls for quantum systems. SIAM J. Control & Optimization, 46, pp. 445–467, 2007.CrossRefGoogle Scholar
[Moh91] Mohari, A.Quantum stochastic differential equations with unbounded coefficients and dilations of Feller's minimal solution. Sankhya Ser. A, 53, pp. 255–287, 1991.Google Scholar
[Moh05] Mohari, A.A resolution of quantum dynamical semigroups. arXiv:math/0505384, 2005.Google Scholar
[Mor04] Mora, C. M.Numerical simulation of stochastic evoluation equations associated to quantum Markov semigroups. Math. Comp., 247, pp. 1393–1415, 2004.Google Scholar
[Mor05] Mora, C. M.Numerical solution of conservative finite-dimensional stochastic Schrödinger equations. Ann. Appl. Probab., 15, pp. 2144–2171, 2005.CrossRefGoogle Scholar
[Mor08] Mora, C. M.Heisenberg evolution of quantum observables represented by unbounded operators. J. Funct. Anal., 255, pp. 3249–3273, 2008.CrossRefGoogle Scholar
[Mor13] Mora, C. M.Regularity of solutions to quantum master equations: A stochastic approach. To appear in Ann. Probab., 41, pp. 1978–2012, 2013.CrossRefGoogle Scholar
[MR07] Mora, C.M., Rebolledo, R. Nonlinear Schrodinger equations. Preprint. 2007.
[MR06] Mora, C.M., Rebolledo, R.Basic properties of nonlinear Schrödinger equations driven by Brownian motions. Annals Appl. Prob., 18, pp. 591–619, 2008.CrossRefGoogle Scholar
[Nag90] Nagy, G.Real Analysis. Lecture notes, Kansas State University, Manhattan, KS, 1990.Google Scholar
[Ngo74] Ngoc, D.Classification des systémes dynamiques noncommutatifs. J. Functional Analysis, 15, pp. 188–201, 1974.Google Scholar
[NC00] Nielsen, M.A., Chuang, I.L.Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, 2000.Google Scholar
[Nie83] Niestegge, G.Absolute continuity for linear forms on B*-algebras and a Radon-Nikodym type theorem (quadratic version). Rend. Circ. Mat. Palermo (2), 32, pp. 358–376, 1983.CrossRefGoogle Scholar
[NKI08] Nishio, K., Kashima, K., Imura, J.Effects of time delay in feedback control of linear quantum systems. arXiv:0811.460.1 [quant-ph], November 27, 2008.Google Scholar
[Oba97] Obata, N.Quantum stochastic differential equations in terms of quantum white noise. Nonlinear Analysis, Theory, Methods & Applications, 30, pp. 279–290, 1997.CrossRefGoogle Scholar
[Oks98] Oksendal, B.Stochastic Differential Equations. 5th ed. Springer, Berlin, 1998.CrossRefGoogle Scholar
[Ond04] Ondrejat, M.Uniqueness for stochastic evolution equations in Banach spaces. Dissertationes Mathematicae, 426, 2004.CrossRefGoogle Scholar
[Oza85] Ozawa, M.Concepts of conditional expectations in quantum theory. J. Math. Physics, 26, pp. 1948–1955, 1985.CrossRefGoogle Scholar
[Par67] Parthasarathy, K.Probability Measures on Metric Spaces. Academic Press, New York and London, 1967.CrossRefGoogle Scholar
[Par92] Parthasarathy, K.R.An Introduction to Quantum Stochastic Calculus. Monographs in Mathematics 85, Birkhauser, Basel-Boston-Berlin, 1992.Google Scholar
[PS87] Parthasarathy, K.R., Sinha, K.B.Stop times in Fock space stochastic calculus. Probab. Th. Rel. Fields, 75, pp. 317–349, 1987.CrossRefGoogle Scholar
[Paz83] Pazy, A.Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York, 1983.CrossRefGoogle Scholar
[Pel08] Pellegrini, C.Existence, uniqueness and approximation of a stochastic Schrodinger equation: The diffusion case. Ann. Probab., 36, pp. 2332–2353, 2008.CrossRefGoogle Scholar
[Pel09] Pellegrini, C.Existence, uniqueness and approximation of a stochastic Schrödinger equation: The Poisson case. arXiv:0709.3713v2[math.PR], March, 6, 2009.Google Scholar
[Per98] Percival, I.Quantum State Diffusion. Cambridge University Press, Cambridge, 1998.Google Scholar
[Per83] Perry, P.A.Scattering Theory by the Enss Method. Harwood Academic, Reading, UK, 1983.Google Scholar
[Pro04] Protter, P.Stochastic Integration and Differential Equations. 2nd ed. Springer, Berlin 2004.Google Scholar
[Reb92] Rebolledo, R.Entropy functionals in quantum probability. In Second Symposium on Probability Theory and Stochastic Processes, First Mexican-Chilean Meeting on Stochastic Analysis (Guanajuato, 1992), Soc. Mat. Mexicana, Mexico City.Google Scholar
[Reb97] Rebolledo, R.On the recurrence of Quantum Dynamical Semigroups. Proc. ANESTOC'96, World Scientific, pp. 130–141, 1997.Google Scholar
[RS70] Reed, M., Simon, B.Methods of Modern Mathematical Physics I. Academic Press, San Diego, 1970.Google Scholar
[RS75] Reed, M., Simon, B.Methods of Modern Mathematical Physics II. Academic Press, San Diego, 1975.Google Scholar
[Rev75] Revuz, D.Markov Chains. North-Holland Publishing Co., Amsterdam, 1975.Google Scholar
[RY99] Revuz, D., Yor, M.Continuous Martingales and Brownian Motion. 3rd ed. Springer, Berlin, 1999.CrossRefGoogle Scholar
[RH11] Rivas, A., Huelga, S.F.Introduction to the time evoluation of open quantum systems. arXiv:1104.5242v1 [quant-ph], April 27, 2011.Google Scholar
[Rud87] Rudin, W.Real and Complex Analysis. McGraw Hill, New York, 1987.Google Scholar
[Rud91] Rudin, W.Functional Analysis. 2nd ed. McGraw-Hill Science/Engineering/Mathematics, New York, 1991.Google Scholar
[Sak98] Sakai, S.C*-algebras and W*-algebras. Classics in Mathematics, Springer, Berlin, 1998.
[SSF04] Salgado, D., Sanchez-Gomez, J. L., Ferrero, M.Another dual formulation of the separability problem. Phys.Rev. A, 70, 054102, 2004.CrossRefGoogle Scholar
[SG87] Sarymsakov, T. A., Grabarnik, T. Yu. The regularity of monotone continuous compressions on von Neumann algebras. Dokl. AN Uz. SSR, 6, pp. 9–11, 1987.Google Scholar
[SL09] Shabani, A.Lidar, L.Vanishing quantum discord is necessary and sufficient for completely positive maps. Phys. Rev. Lett. 102, 100402, 2009.CrossRefGoogle ScholarPubMed
[Sch05] Schilling, R.L.Measures, Integrals and Martingales. Cambridge University Press, Cambridge, 2005.CrossRefGoogle Scholar
[SM01] Scott, A.J., Milburn, G.J.Quantum nonlinear dynamics of continuously measured systems. Phys. Rev. A, 63, 42101, 2001.CrossRefGoogle Scholar
[SJ08] Shabani, A., Jacobs, K.Locally optimal control of quantum systems with strong feedback. arXiv:0803.270.2 [quant-ph], December 7, 2008.CrossRefGoogle ScholarPubMed
[SM10] Sharifi, J., Momeni, H. Quantum stochastic stability. Preprint, 2010.
[Shi10a] Shirokov, M.E.Continuity of the von Neumann entropy. Commun. Math. Phys., 296, pp. 625–654, 2010.CrossRefGoogle Scholar
[Shi10b] Shirokov, M.E.On properties of the space of quantum states and their application to construction of entanglement monotones. Izvestiya: Mathematics, 74, pp. 849–882, 2010.Google Scholar
[Shi11] Shirokov, M.E.Properties of probability measures on the set of quantum states and their applications. arXiv:math-ph/0607019v3, March 24, 2011.Google Scholar
[Sho97] Showalter, R. E.Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. Mathematical Surveys and Monographs 49, American Mathematical Society, Providence, RI, 1997.Google Scholar
[SG07] Sinha, K. B., Goswami, D.Quantum Stochastic Processes and Noncommutative Geometry. Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 2007.CrossRefGoogle Scholar
[SP09] Somaraju, R., Petersen, I. R.Lyapunov stability for quantum Markov processes. 2009 American Control Conference, Hyatt Regency Riverfront, June 10–12, St. Louis, MO, pp. 719–724, 2009.Google Scholar
[Spi94] Spivak, M.Calculus. Cambridge University Press, Cambridge, 1994.Google Scholar
[SB01] Stelmachovic, P., Buzek, V.Dynamics of open quantum systems initially entangled with environments beyond the Kraus representation. Phys. Rev. A 64, 062106, 2001.CrossRefGoogle Scholar
[Sti55] Stinespring, W. F.Positive functions on C*-algebras. Proc. Am. Math. Soc., 6, pp. 211–216, 1955.Google Scholar
[Sto32] Stone, M. H.On one-parameter unitary groups in Hilbert space. Annals of Math., 33, pp. 643–648, 1932.CrossRefGoogle Scholar
[SV79] Stroock, D. W., Varadhan, S. R. S. Multidimensional Diffusion Processes, Springer, Berlin, 1979.Google Scholar
[Tak71] Takesaki, M.Conditional expectations in von Neumann algebras. J. Funct. Anal., pp. 306321, 1971.Google Scholar
[Tak79] Takesaki, M.Theory of Operator Algebras I. Encyclopaedia of Mathematical Sciences, 124, Springer, Berlin, 1979.CrossRefGoogle Scholar
[Tho90] Thomsen, K.The Hahn-Banach Separation Theorem. Aarhus University, Advanced Analysis Lecture Notes, 1990.Google Scholar
[Tom57] Tomiyama, J.On the projections of norm one in W*-algebra. Proc. Japan Acad., 33, pp. 608–612, 1957.CrossRefGoogle Scholar
[TKOCM04] Tong, D. M., Kwek, L. C., Oh, C. H., Chen, J.-L., Ma, L.Operator-sum representation of time-dependent density operators and its applications. Phys. Rev. A, 69, 054102, 2004.CrossRefGoogle Scholar
[Tro58] Trotter, H.F. Approximation of semi-groups of operators. Pacific J. Math., 8, pp. 887–919, 1958.CrossRefGoogle Scholar
[UMa05] Umanita, V.Classification and Decomposition of Quantum Markov Semigroups. Doctoral Dissertation, Universita di Genova, 2005.Google Scholar
[UMa06] Umanita, V.Classification and decomposition of quantum Markov semigroups. Probab. Theory Relat. Fields, 134, pp. 603–623, 2006.CrossRefGoogle Scholar
[Ume54] Umegaki, H.Conditional expectation in an operator algebra. Thoku Math. J., 6, pp. 177–181, 1954.Google Scholar
[Ume56] Umegaki, H.Conditional expectation in an operator algebra, II. Thoku Math. J., 8, pp. 86–100, 1956.Google Scholar
[Ume59] Umegaki, H.Conditional expectation in an operator algebra, III.Kdai Math.Sem.Rep., 11, pp. 51–64, 1959.Google Scholar
[vHan07] van Handel, R.Filtering, Stability, and Robustness. Ph.D. thesis, California Institute of Technology, 2007.Google Scholar
[vHan07] van Handel, R.Observability and nonlinear filtering. Preprint, arXiv:0708.3412, 2007.Google Scholar
[vHan09a] van Handel, R. Randonmization in C* -algebras and the stability of quantum filters. Preprint, 2009.
[vHan09b] van Handel, R.The stability of quantum Markov filters. In Infinite Dimensional Analysis, Quantum Probability and Related Topics, 14, pp. 153–172, World Scientific, Singapore, 2008.Google Scholar
[vNeu55] von Neumann, J.Mathematical Foundations of Quantum Mechanics, translated by R. T., Beyer. Princeton University Press, Princeton, 1955.Google Scholar
[WS09] Wang, X., Schirmer, S.G. Analysis of Lyapunov method for control of quantum states: Non-generic case. arXiv:0901.4522v. [quant-ph], January 28, 2009.Google Scholar
[Wat79] Watanabe, S.Ergodic theorems for W*-dynamical semigroups. Hokkaido Math. J., 8, pp. 176–190, 1979.CrossRefGoogle Scholar
[Wis96] Wiseman, H.M. Quantum trajectories and quantum measurement theory. Quantum Semiclass. Opt., 8, pp. 205–222, 1996.CrossRefGoogle Scholar
[Yea83] Yeadon, F.J. Measures on projections in W*-algebras of type II. Bull. London Math. Soc., 15, pp. 139–145, 1983.CrossRefGoogle Scholar
[Yos80] Yosida, K.Functional Analysis. Springer, Berlin, 1980.Google Scholar
[Zie90] Zeidler, E.Nonlinear Functional Analysis and Its Applications II. Linear Monotone Operators. Springer, New York, 1990.Google Scholar
[Zor35] Zorn, M.A remark on method in transfinite algebra. Bulletin of the Amer. Math. Society, 41, pp. 667–670, 1935.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Mou-Hsiung Chang
  • Book: Quantum Stochastics
  • Online publication: 05 February 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781107706545.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Mou-Hsiung Chang
  • Book: Quantum Stochastics
  • Online publication: 05 February 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781107706545.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Mou-Hsiung Chang
  • Book: Quantum Stochastics
  • Online publication: 05 February 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781107706545.014
Available formats
×