Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-13T16:59:09.967Z Has data issue: false hasContentIssue false

Preface

Published online by Cambridge University Press:  19 January 2010

Kalyan B. Sinha
Affiliation:
Indian Statistical Institute, New Delhi
Debashish Goswami
Affiliation:
Indian Statistical Institute, Kolkata
Get access

Summary

On the one hand, in almost all the scientific areas, from physical to social sciences, biology to economics, from meteorology to pattern recognition in remote sensing, the theory of classical probability plays a major role and on the other much of our knowledge about the physical world at least is based on the quantum theory [12]. In a way, quantum theory itself is a new kind of theory of probability (in the language of von Neumann and Birkhoff) (see for example [106]) which contains the classical model, and therefore it is natural to extend the other areas of classical probability theory, in particular the theory of Markov processes and stochastic calculus to this quantum model.

There are more than one possible ways (see for example [127]) to construct the above-mentioned extension and in this book we have chosen the one closest to the classical model in spirit, namely that which contains the classical theory as a submodel. This requirement has ruled out any discussion of areas such as free and monotone-probability models. Once we accept this quantum probabilistic model, the ‘grand design’ that engages us is the ‘canonical construction of a *-homomorphic flow (satisfying a suitable differential equation) on a given algebra of observables such that the expectation semigroup is precisely the given contractive semigroup of completely positive maps on the said algebra’.

This problem of ‘dilation’ is here solved completely for the case when the semigroup has a bounded generator, and also for the more general case (of an unbounded generator) with certain additional conditions such as symmetry and/or covariance with respect to a Lie group action.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Preface
  • Kalyan B. Sinha, Indian Statistical Institute, New Delhi, Debashish Goswami
  • Book: Quantum Stochastic Processes and Noncommutative Geometry
  • Online publication: 19 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511618529.001
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Preface
  • Kalyan B. Sinha, Indian Statistical Institute, New Delhi, Debashish Goswami
  • Book: Quantum Stochastic Processes and Noncommutative Geometry
  • Online publication: 19 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511618529.001
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Preface
  • Kalyan B. Sinha, Indian Statistical Institute, New Delhi, Debashish Goswami
  • Book: Quantum Stochastic Processes and Noncommutative Geometry
  • Online publication: 19 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511618529.001
Available formats
×