from Part IV - Other topics
Published online by Cambridge University Press: 05 May 2016
The presence of dynamical information is a feature distinguishing a finite-temperature quantum Monte Carlo simulation from a classical one. We now discuss numerical methods for extracting this information that use techniques and concepts borrowed from an area of probability theory called Bayesian statistical inference. The use of these techniques and concepts provided a solution to the very difficult problem of analytically continuing imaginary-time Green's functions, estimated by a quantum Monte Carlo simulation, to the real-time axis. Baym and Mermin (1961) proved that a unique mapping between these functions exists. However, executing this mapping numerically, with a simulation's incomplete and noisy data, transforms the problem into one without a unique solution and thus into a problem of finding a “best” solution according to some reasonable criterion. Instead of executing the analytic continuation between imaginary- and real-time Green's functions, thereby obtaining real-time dynamics, we instead estimate the experimentally relevant spectral density function these Green's functions share. We present three “best” solutions and emphasize that making the simulation data consistent with the assumptions of the numerical approach is a key step toward finding any of these best solutions.
Preliminary comments
The title of this chapter, “Analytic Continuation,” is unusual in the sense that it describes the task we wish to accomplish instead of the method we use to accomplish it. If we used the name of the method, the title would be something like “Bayesian Statistical Inference Using an Entropic Prior.” A shorter title would be “The Maximum Entropy Method.”We hope by the end of the chapter the reader will agree that using the short title is perhaps too glib and the longer one has meaningful content.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.