Published online by Cambridge University Press: 11 May 2023
Formulas are derived for the rates of elementary processes in nanoscale systems. Particularly we derive thermal rate constants for charge transfer in a condensed phase environment (Marcus formula), electronic energy transfer between chromophores (Forester resonant energy transfer), and radiation emission/absorption by electronic and vibronic transitions in molecules. All these processes are characterized by changes in the electronic state, strongly coupled to nuclear motions in the nano-system or in its surroundings. The relevant systems are mapped on a generic spin-boson model Hamiltonian, where different meanings are assigned to the model parameters in the different scenarios. In each case, rate constants are derived under appropriate approximations and are identified as different realizations of Fermi’s golden rule. A semiclassical (low-frequency) approximation applied for the nuclear degrees of freedom yields transparent, well-known formulas for the thermal transition rates. The underlying physics as well as practical consequence of the results are analyzed.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.