Published online by Cambridge University Press: 11 May 2023
We discuss the breakdown of classical theory in relation to phenomena on the nanoscale. The historical discovery of the wave nature of electrons in the Davisson–Germer Experiment is reviewed. We present the puzzling experimental data and its explanation in terms of particle diffraction, which contradicts classical mechanics. The quantitative success of de Broglie’s formula in associating particle momenta with a wavelength is demonstrated. Analyzing the conditions in which the wave nature of particles becomes apparent, namely, the condition for correspondence between the de Broglie wavelength and the lattice from which the particles are diffracted, we draw some general conclusions. Particularly, by translating to de Broglie wavelengths the particle masses and energy values that are typical to materials and processes on the nanoscales, one immediately realizes that wave properties are expected to be dominant. Quantum mechanics is therefore essential for a proper description of nanoscale phenomena.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.