Published online by Cambridge University Press: 05 June 2012
In Appendix A, Section A.2, we considered the oscillations of particles using Newton's laws of classical mechanics. The distinctive feature of Newton's mechanics, when considering interactions between particles (for example, the gravitational interaction), is the instantaneous transmission of the interaction between particles, i.e., transmission occurs with infinite speed. The interaction between charged particles is realized through an electromagnetic field, which possesses energy and momentum and is carried through space with finite speed. Electromagnetic waves can exist without any charges in a space in which there is no substance, i.e., in vacuum. This is substantiated by the fact that the equations of classical electrodynamics allow solutions in the form of electromagnetic waves for such conditions.
The main equations of classical electrodynamics are Maxwell's equations, which were formulated after analyzing numerous experimental data. In this sense they are analogous to Newton's equations of classical mechanics. Maxwell's equations are the basis for electrical and radio engineering, television and radiolocation, integrated and fiber optics, and numerous phenomena and processes that take place in materials placed in an electromagnetic field. Together with Newton's equations, Maxwell's equations are the fundamental equations of classical physics. Just like Newton's equations, Maxwell's equations have their limits of applicability. For example, they do not sufficiently well describe the state of an electromagnetic field in a medium at frequencies higher than 1014–1015 Hz.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.