Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-15T02:45:56.508Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  04 August 2022

Juan José García Ripoll
Affiliation:
Instituto de Física Fundamental (IFF), CSIC, Spain
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdo, B., Suchoi, O., Segev, E., et al. 2009. Intermodulation and parametric amplification in a superconducting stripline resonator integrated with a dc-SQUID. EPL (Europhysics Letters), 85(6), 68001.Google Scholar
Adesso, Gerardo, Ragy, Sammy, and Lee, Antony R. 2014. Continuous variable quantum information: Gaussian states and beyond. Open Systems & Information Dynamics, 21(01–02), 1440001.Google Scholar
Aharonov, Dorit, van Dam, Wim, Kempe, Julia, Landau, Zeph, Lloyd, Seth, and Regev, Oded. 2004. Adiabatic quantum computation is equivalent to standard quantum computation. SIAM Review, 50(4), 755787.Google Scholar
Albash, Tameem, and Lidar, Daniel A. 2018. Demonstration of a scaling advantage for a quantum annealer over simulated annealing. Physical Review X 8, 031016 (2018).Google Scholar
Albash, Tameem, Vinci, Walter, Mishra, Anurag, Warburton, Paul A., and Lidar, Daniel A. 2015. Consistency tests of classical and quantum models for a quantum annealer. Physical Review A 91, 042314 (2015).Google Scholar
Anderson, P. W., and Rowell, J. M. 1963. Probable observation of the Josephson superconducting tunneling effect. Physical Review Letters, 10(6), 230232.Google Scholar
Arute, Frank, Arya, Kunal, Babbush, Ryan, et al. 2019. Quantum supremacy using a programmable superconducting processor. Nature, 574(7779), 505510.Google Scholar
Arute, Frank, Arya, Kunal, Babbush, Ryan, et al. 2020. Hartree–Fock on a superconducting qubit quantum computer. Science, 369(6507), 10841089.Google Scholar
Astafiev, O., Zagoskin, A. M., Abdumalikov, A. A., et al. 2010. Resonance fluorescence of a single artificial atom. Science (New York, N.Y.), 327(5967), 840843.Google Scholar
Ballentine, L. E. 1970. The statistical interpretation of quantum mechanics. Reviews of Modern Physics, 42(4), 358381.Google Scholar
Ballentine, Leslie E. 1998. Quantum Mechanics. World Scientific.Google Scholar
Bapst, V., Foini, L., Krzakala, F., Semerjian, G., and Zamponi, F. 2013. The quantum adiabatic algorithm applied to random optimization problems: the quantum spin glass perspective. Physics Reports, 523(3), 127205.Google Scholar
Barahona, F. 1982. On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General, 15(10), 32413253.Google Scholar
Bardeen, J., Cooper, L. N., and Schrieffer, J. R. 1957a. Microscopic theory of superconductivity. Physical Review, 106(1), 162164.Google Scholar
Bardeen, J., Cooper, L. N., and Schrieffer, J. R. 1957b. Theory of superconductivity. Physical Review, 108(5), 11751204.Google Scholar
Barends, R., Kelly, J., Megrant, A., et al. 2014. Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature, 508(7497), 500503.Google Scholar
Baumgratz, T., Cramer, M., and Plenio, M. B. 2014. Quantifying coherence. Physical Review Letters, 113(14), 140401.CrossRefGoogle ScholarPubMed
Benioff, Paul. 1980. The computer as a physical system: a microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. Journal of Statistical Physics, 22(5), 563591.Google Scholar
Bennett, Douglas A., Longobardi, Luigi, Patel, Vijay, Chen, Wei, and Lukens, James E. 2007. rf-SQUID qubit readout using a fast flux pulse. Superconductor Science and Technology, 20(11), S445S449.Google Scholar
Berkley, A. J., Johnson, M. W., Bunyk, P., et al. 2010. A scalable readout system for a superconducting adiabatic quantum optimization system. Superconductor Science and Technology, 23(10), 105014.Google Scholar
Berkley, A. J., Przybysz, A. J., Lanting, T., et al. 2013. Tunneling spectroscopy using a probe qubit. Physical Review B, 87(2), 020502.Google Scholar
Bialczak, R. C., Ansmann, M., Hofheinz, M., et al. 2010. Quantum process tomography of a universal entangling gate implemented with Josephson phase qubits. Nature Physics, 6(6), 409413.Google Scholar
Biamonte, Jacob D., and Love, Peter J. 2008. Realizable Hamiltonians for universal adiabatic quantum computers. Physical Review A, 78(1), 012352.CrossRefGoogle Scholar
Bishop, Lev S., Bravyi, Sergey, Gambetta, Jay M., and Smolin, John. 2017. Quantum Volume. Technical Report.Google Scholar
Blais, Alexandre, Huang, Ren-Shou, Wallraff, Andreas, Girvin, S., and Schoelkopf, R. 2004. Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Physical Review A, 69(6), 062320.Google Scholar
Boixo, Sergio, Albash, Tameem, Spedalieri, Federico M., Chancellor, Nicholas, and Lidar, Daniel A. 2013. Experimental signature of programmable quantum annealing. Nature Communications, 4(1), 2067.Google Scholar
Boixo, Sergio, Rønnow, Troels F., Isa kov, Sergei V., et al. 2014. Evidence for quantum annealing with more than one hundred qubits. Nature Physics, 10(3), 218224.Google Scholar
Boixo, Sergio, Smelyanskiy, Vadim N., Shabani, Alireza, et al. 2016. Computational multiqubit tunnelling in programmable quantum annealers. Nature Communications, 7(Jan), 10327.Google Scholar
Bombin, H., and Martin-Delgado, M. A. 2006. Topological Quantum Distillation. Physical Review Letters, 97(Oct), 180501.Google Scholar
Bouchiat, V., Vion, D., Joyez, P., Esteve, D., and Devoret, M. H. 1998. Quantum coherence with a single Cooper pair. Physica Scripta, T76(1), 165170.Google Scholar
Bourassa, J., Gambetta, J., Abdumalikov, A., Astafiev, O., Nakamura, Y., and Blais, A. 2009. Ultrastrong coupling regime of cavity QED with phase-biased flux qubits. Physical Review A, 80(3), 032109.Google Scholar
Bravyi, S. B., and Kitaev, A. Yu. 1998. Quantum codes on a lattice with boundary. e-print arXiv:quant-ph-9811052.Google Scholar
Bravyi, Sergey, DiVincenzo, David P., and Loss, Daniel. 2011. Schrieffer–Wolff transformation for quantum many-body systems. Annals of Physics, 326(10), 27932826.Google Scholar
Brecht, T., Chu, Y., Axline, C., et al. 2017. Micromachined integrated quantum circuit containing a superconducting qubit. Physics Review Applied, 7(Apr), 044018.Google Scholar
Brecht, Teresa, Pfaff, Wolfgang, Wang, , et al. 2016. Multilayer microwave integrated quantum circuits for scalable quantum computing. npj Quantum Information, 2(1), 16002.Google Scholar
Brink, Markus, Corcoles-Gonzalez, Antonio, Gambetta, Jay M., Rosenblatt, Sami, and Solgun, Firat. 2019 (May 28). Low loss architecture for superconducting qubit circuits. US Patent 10,305,015.Google Scholar
Brown, K. R., Wilson, A. C., Colombe, Y., et al. 2011. Single-qubit-gate error below 10−4 in a trapped ion. Physics Review A, 84(Sep), 030303.Google Scholar
Cai, Jun, Macready, William G., and Roy, Aidan. 2014. A practical heuristic for finding graph minors. e-print arXiv:1406.2741.Google Scholar
Calderbank, A. R., and Shor, Peter W. 1996. Good quantum error-correcting codes exist. Physical Review A, 54(Aug), 10981105.Google Scholar
Castellanos-Beltran, M. A., Irwin, K. D., Vale, L. R., Hilton, G. C., and Lehnert, K. W. 2009. Bandwidth and dynamic range of a widely tunable Josephson parametric amplifier. IEEE Transactions on Applied Superconductivity, 19(3), 944947.Google Scholar
Chancellor, N., Zohren, S., and Warburton, P. A. 2017. Circuit design for multi-body interactions in superconducting quantum annealing systems with applications to a scalable architecture. npj Quantum Information, 3(1), 21.Google Scholar
Chen, Yu, Neill, C., Roushan, P., et al. 2014. Qubit architecture with high coherence and fast tunable coupling. Physical Review Letters, 113(Nov), 220502.Google Scholar
Chen, Zijun, Satzinger, Kevin J., Atalaya, Juan, et al. 2021. Exponential suppression of bit or phase errors with cyclic error correction. Nature, 595(7867), 383387.Google Scholar
Chiorescu, I., Bertet, P., Semba, K., Nakamura, Y., Harmans, C. J. P. M., and Mooij, J. E. 2004. Coherent dynamics of a flux qubit coupled to a harmonic oscillator. Nature, 431(7005), 159162.Google Scholar
Chow, J. M., Gambetta, J. M., Tornberg, L., et al. 2009. Randomized benchmarking and process tomography for gate errors in a solid-state qubit. Physical Review Letters, 102(9), 090502.CrossRefGoogle Scholar
Chow, Jerry M., Córcoles, A. D., Gambetta, Jay M., et al. 2011. Simple all-microwave entangling gate for fixed-frequency superconducting qubits. Physical Review Letters, 107(8), 080502.Google Scholar
Chow, Jerry M., Gambetta, Jay M., Córcoles, A. D., et al. 2012. Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits. Physical Review Letters, 109(6), 060501.Google Scholar
Cirac, J. I., and Zoller, P. 1995. Quantum computations with cold trapped ions. Physical Review Letters, 74(20), 40914094.Google Scholar
Cirac, J. I., Ekert, A. K., Huelga, S. F., and Macchiavello, C. 1999. Distributed quantum computation over noisy channels. Physical Review A, 59(6), 42494254.Google Scholar
Clarke, John, and Braginski, Alex I. (eds). 2004. The SQUID Handbook: Fundamentals and Technology of SQUIDs and SQUID Systems, Volume I. Wiley-VCH.Google Scholar
Clarke, John, and Wilhelm, Frank K. 2008. Superconducting quantum bits. Nature, 453(7198), 10311042.Google Scholar
Cohen-Tannoudji, Claude, Diu, Bernard, and Laloë, Franck. 1977. Quantum Mechanics. Wiley.Google Scholar
Consani, Gioele, and Warburton, Paul A. 2020. Effective Hamiltonians for interacting super-conducting qubits: local basis reduction and the Schrieffer–Wolff transformation. New Journal of Physics, 22(5), 053040.Google Scholar
Cooper, Leon N. 1956. Bound electron pairs in a degenerate Fermi gas. Physical Review, 104(4), 11891190.Google Scholar
Cory, D. G., Fahmy, A. F., and Havel, T. F. 1997. Ensemble quantum computing by NMR spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 94(5), 16341639.Google Scholar
Cross, Andrew W., Bishop, Lev S., Sheldon, Sarah, Nation, Paul D., and Gambetta, Jay M. 2019. Validating quantum computers using randomized model circuits. Physical Review A, 100(Sep), 032328.Google Scholar
Cullen, A. L. 1960. Theory of the travelling-wave parametric amplifier. Proceedings of the IEE Part B: Electronic and Communication Engineering, 107(32), 101.Google Scholar
Deaver, Bascom S., and Fairbank, William M. 1961. Experimental evidence for quantized flux in superconducting cylinders. Physical Review Letters, 7(2), 4346.Google Scholar
Denchev, Vasil S., Boixo, Sergio, Isakov, Sergei V., et al. 2016. What is the computational value of finite-range tunneling? Physical Review X, 6(3), 031015.Google Scholar
Deutsch, David Elieser. 1985. Quantum theory, the Church–Turing principle and the universal quantum computer. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 400(1818), 97117.Google Scholar
Deutsch, David Elieser. 1989. Quantum computational networks. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 425(1868), 7390.Google Scholar
Devoret, M. H. 1995. Quantum fluctuations in electrical circuits. Les Houches, Session LXIII, 351386.Google Scholar
DiCarlo, L., Chow, J. M., Gambetta, J. M., et al. 2009. Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature, 460(7252), 240244.Google Scholar
DiCarlo, L., Reed, M. D., Sun, L., et al. 2010. Preparation and measurement of three-qubit entanglement in a superconducting circuit. Nature, 467(7315), 574578.Google Scholar
Dickson, N. G., Johnson, M. W., Amin, M. H., et al. 2013. Thermally assisted quantum annealing of a 16-qubit problem. Nature Communications, 4(1), 1903.Google Scholar
Dieks, D. 1982. Communication by EPR devices. Physics Letters A, 92(6), 271272.Google Scholar
DiVincenzo, D. P. 1995. Quantum computation. Science, 270(5234), 255261.Google Scholar
DiVincenzo, David P. 2000. The physical implementation of quantum computation. Fortschritte der Physik, 48(9-11), 771783.Google Scholar
Dowling, Jonathan P., and Milburn, Gerard J. 2003. Quantum technology: the second quantum revolution. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 361(1809), 16551674.CrossRefGoogle ScholarPubMed
Egger, D. J., Werninghaus, M., Ganzhorn, M., et al. 2018. Pulsed reset protocol for fixed-frequency superconducting qubits. Physical Review Applied, 10(Oct), 044030.Google Scholar
Eichler, C., Bozyigit, D., and Wallraff, A. 2012. Characterizing quantum microwave radiation and its entanglement with superconducting qubits using linear detectors. Physical Review A, 86(3), 032106.Google Scholar
Eichler, C., Bozyigit, D., Lang, C., Steffen, L., Fink, J., and Wallraff, A. 2011. Experimental state tomography of itinerant single microwave photons. Physical Review Letters, 106(22), 220503.Google Scholar
Farhi, Edward, Goldstone, Jeffrey, Gutmann, Sam, and Sipser, Michael. 2000. Quantum computation by adiabatic evolution. arXiv, quant-ph:0(jan).Google Scholar
Feynman, Richard P. 1982. Simulating physics with computers. International Journal of Theoretical Physics, 21(6-7), 467488.Google Scholar
Forn-Díaz, P., Lisenfeld, J., Marcos, D., et al. 2010. Observation of the Bloch–Siegert shift in a qubit-oscillator system in the ultrastrong coupling regime. Physical Review Letters, 105(23), 237001.Google Scholar
Forn-Díaz, P., García-Ripoll, J. J., Peropadre, B., et al. 2016. Ultrastrong coupling of a single artificial atom to an electromagnetic continuum in the nonperturbative regime. Nature Physics, 13(1), 3943.Google Scholar
Forn-Díaz, P., Warren, C. W., Chang, C. W. S., Vadiraj, A. M., and Wilson, C. M. 2017. On-demand microwave generator of shaped single photons. Physical Review Applied, 8(5), 054015.Google Scholar
Fowler, Austin G., Mariantoni, Matteo, Martinis, John M., and Cleland, Andrew N. 2012. Surface codes: towards practical large-scale quantum computation. Physical Review A, 86(Sep), 032324.Google Scholar
Fowler, Austin G., Stephens, Ashley M., and Groszkowski, Peter. 2009. High-threshold universal quantum computation on the surface code. Physical Review A, 80(Nov), 052312.Google Scholar
Gaebler, J. P., Meier, A. M., Tan, T. R., et al. 2012. Randomized benchmarking of multiqubit gates. Physical Review Letters, 108(26), 260503.Google Scholar
Galindo, Alberto, and Pascual, Pedro. 1991. Time-dependent perturbation theory. Pages 161199 of: Quantum Mechanics II. Springer Berlin Heidelberg.Google Scholar
García-Ripoll, J. J., Peropadre, B., and De Liberato, S. 2015. Light–matter decoupling and A2 term detection in superconducting circuits. Scientific Reports, 5(1), 16055.Google Scholar
García-Ripoll, J. J., Ruiz-Chamorro, A., and Torrontegui, E. 2020. Quantum control of frequency-tunable transmon superconducting qubits. Physical Review Applied, 14(4), 044035.Google Scholar
Gardiner, C. W., and Zoller, P. 2004. Quantum Noise. 3rd ed. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg.Google Scholar
Gershenfeld, Neil A., and Chuang, Isaac L. 1997. Bulk spin-resonance quantum computation. Science (New York, N.Y.), 275(5298), 350356.Google Scholar
Gilchrist, Alexei, Langford, Nathan K., and Nielsen, Michael A. 2005. Distance measures to compare real and ideal quantum processes. Physical Review A, 71(6), 062310.Google Scholar
Gor’kov, Lev P. 1959. Microscopic derivation of the Ginzburg–Landau equations in the theory of superconductivity. JETP 36(9), 1364.Google Scholar
Gottesman, Daniel. 1998. Theory of fault-tolerant quantum computation. Physical Review A, 57(Jan), 127137.Google Scholar
Haroche, Serge. 2013. Nobel lecture: controlling photons in a box and exploring the quantum to classical boundary. Reviews of Modern Physics, 85(3), 10831102.Google Scholar
Harris, R., Berkley, A. J., Johnson, M. W., et al. 2007. Sign- and magnitude-tunable coupler for superconducting flux qubits. Physical Review Letters, 98(17), 177001.Google Scholar
Harris, R., Johansson, J., Berkley, A. J., et al. 2010a. Experimental demonstration of a robust and scalable flux qubit. Physical Review B, 81(13), 134510.Google Scholar
Harris, R., Johnson, M. W., Lanting, T., et al. 2010b. Experimental investigation of an eight-qubit unit cell in a superconducting optimization processor. Physical Review B, 82(2), 024511.Google Scholar
Harris, R., Lanting, T., Berkley, A. J., et al. 2009. Compound Josephson-junction coupler for flux qubits with minimal crosstalk. Physical Review B, 80(5), 052506.Google Scholar
Harris, R., Sato, Y., Berkley, A. J., et al. 2018. Phase transitions in a programmable quantum spin glass simulator. Science, 361(6398), 162165.Google Scholar
Hauke, Philipp, Katzgraber, Helmut G, Lechner, Wolfgang, Nishimori, Hidetoshi, and Oliver, William D. 2020. Perspectives of quantum annealing: methods and implementations. Reports on Progress in Physics, 83(5), 054401.Google Scholar
Heisenberg, W. 1925. Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Zeitschrift für Physik, 33(1), 879893.Google Scholar
Hime, T., Reichardt, P. A., Plourde, B. L. T., et al. 2006. Solid-state qubits with current– controlled coupling. Science (New York, N.Y.), 314(5804), 14271429.Google Scholar
Hita-Pérez, María, Jaumá, Gabriel, Pino, Manuel, and García-Ripoll, Juan José. 2022. Ultrastrong capacitive coupling of flux qubits. Physical Review Applied 17, 014028.Google Scholar
Hofheinz, Max, Wang, H., Ansmann, M., et al. 2009. Synthesizing arbitrary quantum states in a superconducting resonator. Nature, 459(7246), 546549.Google Scholar
Hoi, Io-Chun, Kockum, Anton F., Palomaki, Tauno, et al. 2013. Giant Cross–Kerr effect for propagating microwaves induced by an artificial atom. Physical Review Letters, 111(5), 053601.Google Scholar
Hoi, Io-Chun, Palomaki, Tauno, Lindkvist, Joel, Johansson, Göran, Delsing, Per, and Wilson, C. M. 2012. Generation of nonclassical microwave states using an artificial atom in 1d open space. Physical Review Letters, 108(26), 263601.Google Scholar
Hoi, Io-Chun, Wilson, C. M., Johansson, Göran, Palomaki, Tauno, Peropadre, Borja, and Delsing, Per. 2011. Demonstration of a single-photon router in the microwave regime. Physical Review Letters, 107(7), 073601.Google Scholar
Jansen, Sabine, Ruskai, Mary-Beth, and Seiler, Ruedi. 2007. Bounds for the adiabatic approximation with applications to quantum computation. Journal of Mathematical Physics, 48(10), 102111.Google Scholar
Jaynes, E. T., and Cummings, F. W. 1963. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proceedings of the IEEE, 51(1), 89109.Google Scholar
Jeffrey, Evan, Sank, Daniel, Mutus, J. Y., et al. 2014. Fast accurate state measurement with superconducting qubits. Physical Review Letters, 112(19), 190504.Google Scholar
Johnson, M. W., Amin, M. H. S., Gildert, S., et al. 2011. Quantum annealing with manufactured spins. Nature, 473(7346), 194198.Google Scholar
Johnson, M. W., Bunyk, P., Maibaum, F., et al. 2010. A scalable control system for a superconducting adiabatic quantum optimization processor. Superconductor Science and Technology, 23(6), 065004.Google Scholar
Josephson, B. D. 1962. Possible new effects in superconductive tunnelling. Physics Letters, 1(7), 251253.Google Scholar
Kadowaki, Tadashi, and Nishimori, Hidetoshi. 1998. Quantum annealing in the transverse Ising model. Physical Review E, 58(5), 53555363.Google Scholar
Kandala, Abhinav, Temme, Kristan, Córcoles, Antonio D., Mezzacapo, Antonio, Chow, Jerry M., and Gambetta, Jay M. 2019. Error mitigation extends the computational reach of a noisy quantum processor. Nature, 567(7749), 491495.Google Scholar
Kato, Tosio. 1950. On the adiabatic theorem of quantum mechanics. Journal of the Physical Society of Japan, 5(6), 435439.Google Scholar
Kelly, J., Barends, R., Fowler, A. G., et al. 2015. State preservation by repetitive error detection in a superconducting quantum circuit. Nature, 519(7541), 6669.Google Scholar
Kempe, Julia, Kitaev, Alexei, and Regev, Oded. 2006. The complexity of the local Hamiltonian problem. SIAM Journal on Computing, 35(5), 10701097.Google Scholar
King, Andrew D., Carrasquilla, Juan, Raymond, Jack, et al. 2018. Observation of topological phenomena in a programmable lattice of 1,800 qubits. Nature, 560(7719), 456460.Google Scholar
Kitaev, A., Shen, A., and Vyalyi, M. 2002. Classical and Quantum Computation. Graduate Studies in Mathematics. American Mathematical Society.Google Scholar
Knill, E., Leibfried, D., Reichle, R., et al. 2008. Randomized benchmarking of quantum gates. Physical Review A, 77(1), 012307.Google Scholar
Koch, Jens, Yu, Terri, Gambetta, Jay, et al. 2007. Charge-insensitive qubit design derived from the Cooper pair box. Physical Review A, 76(4), 042319.Google Scholar
Krinner, S., Lazar, S., Remm, A., et al. 2020. Benchmarking coherent errors in controlled-phase gates due to spectator qubits. Physical Review Applied, 14(2), 024042.Google Scholar
Kurcz, Andreas, Bermudez, Alejandro, and García-Ripoll, Juan José. 2014. Hybrid quantum magnetism in circuit QED: from spin-photon waves to many-body spectroscopy. Physical Review Letters, 112(18), 180405.Google Scholar
Landau, L. 1932. Zur theorie der energieubertragung II. Physik. Z. Sowjet, 2, 4650.Google Scholar
Lanting, T., Przybysz, A. J., Smirnov, A. Yu., et al. 2014. Entanglement in a quantum annealing processor. Physical Review X, 4(2), 021041.Google Scholar
Laurat, Julien, Keller, Gaëlle, Oliveira-Huguenin, José Augusto, et al. 2005. Entanglement of two-mode Gaussian states: characterization and experimental production and manipulation. Journal of Optics B: Quantum and Semiclassical Optics, 7(12), S577S587.Google Scholar
Law, C. K., and Eberly, J. H. 1996. Arbitrary control of a quantum electromagnetic field. Physical Review Letters, 76(7), 10551058.Google Scholar
Leggett, A., Chakravarty, S., Dorsey, A., Fisher, Matthew, Garg, Anupam, and Zwerger, W. 1987. Dynamics of the dissipative two-state system. Reviews of Modern Physics, 59(1), 185.Google Scholar
Leibfried, D., Blatt, R., Monroe, C., and Wineland, D. 2003. Quantum dynamics of single trapped ions. Reviews of Modern Physics, 75(1), 281324.Google Scholar
Lidar, Daniel A., Rezakhani, Ali T., and Hamma, Alioscia. 2009. Adiabatic approximation with exponential accuracy for many-body systems and quantum computation. Journal of Mathematical Physics, 50(10), 102106.Google Scholar
Lindblad, G. 1976. On the generators of quantum dynamical semigroups. Communications in Mathematical Physics, 48(2), 119130.Google Scholar
London, F., London, H., and Lindemann, Frederick Alexander. 1935. The electromagnetic equations of the supraconductor. Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences, 149(866), 7188.Google Scholar
Loss, Daniel, and DiVincenzo, David P. 1998. Quantum computation with quantum dots. Physical Review A, 57(1), 120126.Google Scholar
Macklin, C., O’Brien, K., Hover, D., et al. 2015. A near-quantum-limited Josephson traveling-wave parametric amplifier. Science (New York, N.Y.), 350(6258), 307310.Google Scholar
Magesan, Easwar, Gambetta, J. M., and Emerson, Joseph. 2011. Scalable and robust randomized benchmarking of quantum processes. Physical Review Letters, 106(18), 180504.Google Scholar
Magesan, Easwar, Gambetta, Jay M., Johnson, B. R., et al. 2012. Efficient measurement of quantum gate error by interleaved randomized benchmarking. Physical Review Letters, 109(8), 080505.Google Scholar
Magnard, P., Kurpiers, P., Royer, B., et al. 2018. Fast and unconditional all-microwave reset of a superconducting qubit. Physical Review Letters, 121(Aug), 060502.Google Scholar
Magnard, P., Storz, S., Kurpiers, P., et al. 2020. Microwave quantum link between super-conducting circuits housed in spatially separated cryogenic systems. Physical Review Letters, 125(26), 260502.Google Scholar
Majer, J., Chow, J. M., Gambetta, J. M., et al. 2007. Coupling superconducting qubits via a cavity bus. Nature, 449(7161), 443447.Google Scholar
Makhlin, Yuriy, Schön, Gerd, and Shnirman, Alexander. 2001. Quantum-state engineering with Josephson-junction devices. Reviews of Modern Physics, 73(2), 357400.Google Scholar
Mallet, F., Castellanos-Beltran, M. A., Ku, H. S., et al. 2011. Quantum state tomography of an itinerant squeezed microwave field. Physical Review Letters, 106(22), 220502.Google Scholar
Mandrá, Salvatore, and Katzgraber, Helmut G. 2018. A deceptive step towards quantum speedup detection. Quantum Science and Technology, 3(4), 04LT01.Google Scholar
Mandrá, Salvatore, Zhu, Zheng, Wang, Wenlong, Perdomo-Ortiz, Alejandro, and Katzgraber, Helmut G. 2016. Strengths and weaknesses of weak-strong cluster problems: a detailed overview of state-of-the-art classical heuristics versus quantum approaches. Physical Review A, 94(2), 022337.Google Scholar
McEwen, M., Kafri, D., Chen, Z., et al. 2021. Removing leakage-induced correlated errors in superconducting quantum error correction. Nature Communications, 12(1), 1761.Google Scholar
Menzel, E. P., Deppe, F., Mariantoni, M., et al. 2010. Dual-path state reconstruction scheme for propagating quantum microwaves and detector noise tomography. Physical Review Letters, 105(10), 100401.Google Scholar
Menzel, E. P., Di Candia, R., Deppe, F., et al. 2012. Path entanglement of continuous-variable quantum microwaves. Physical Review Letters, 109(25), 250502.Google Scholar
Merkel, Seth T., Gambetta, Jay M., Smolin, John A., et al. 2013. Self-consistent quantum process tomography. Physical Review A, 87(Jun), 062119.Google Scholar
Mi, Xiao, Ippoliti, Matteo, Quintana, Chris, Greene, , et al. 2022. Observation of time-crystalline eigenstate order on a quantum processor. Nature 601, 531.Google Scholar
Mirrahimi, Mazyar, Leghtas, Zaki, Albert, , et al. 2014. Dynamically protected cat-qubits: a new paradigm for universal quantum computation. New Journal of Physics, 16(4), 045014.Google Scholar
Mlynek, J. A., Abdumalikov, A. A., Eichler, C., and Wallraff, A. 2014. Observation of Dicke superradiance for two artificial atoms in a cavity with high decay rate. Nature Communications, 5(1), 5186.Google Scholar
Mooij, J. E., Orlando, T. P., Levitov, L., Tian, L., van der Wal, C. H., and Lloyd, S. 1999. Josephson persistent-current qubit. Science, 285(5430), 10361039.Google Scholar
Nakamura, Y., Chen, C. D., and Tsai, J. S. 1997. Spectroscopy of energy-level splitting between two macroscopic quantum states of charge coherently superposed by Josephson coupling. Physical Review Letters, 79(12), 23282331.Google Scholar
Nakamura, Y., Pashkin, Yu. A., and Tsai, J. S. 1999. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature, 398(6730), 786788.CrossRefGoogle Scholar
Nataf, Pierre, and Ciuti, Cristiano. 2010. No-go theorem for superradiant quantum phase transitions in cavity QED and counter-example in circuit QED. Nature Communications, 1(6), 16.Google Scholar
Neeley, Matthew, Ansmann, M., Bialczak, Radoslaw C., et al. 2008. Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state. Nature Physics, 4(7), 523526.Google Scholar
Neill, C., McCourt, T., Mi, X., et al. 2021. Accurately computing the electronic properties of a quantum ring. Nature, 594(7864), 508512.Google Scholar
Nielsen, M. A, and Chuang, I. L. 2011. Quantum Computation and Quantum Information. Cambridge University Press.Google Scholar
Nielsen, Michael A. 2002. A simple formula for the average gate fidelity of a quantum dynamical operation. Physics Letters A, 303(4), 249252.Google Scholar
Niemczyk, T., Deppe, F., Huebl, H., et al. 2010. Circuit quantum electrodynamics in the ultrastrong-coupling regime. Nature Physics, 6(10), 772776.Google Scholar
Nigg, Simon E., Paik, Hanhee, Vlastakis, , et al. 2012. Black-box superconducting circuit quantization. Physical Review Letters, 108(24), 240502.Google Scholar
Niskanen, A O, Harrabi, K, Yoshihara, F, Nakamura, Y, Lloyd, S, and Tsai, J S. 2007. Quantum coherent tunable coupling of superconducting qubits. Science (New York, N.Y.), 316(5825), 723726.Google Scholar
O’Brien, J. L., Pryde, G. J., Gilchrist, A., et al. 2004. Quantum process tomography of a controlled-NOT gate. Physical Review Letters, 93(Aug), 080502.Google Scholar
O’Brien, William, Vahidpour, Mehrnoosh, Whyland, Jon Tyler, et al. 2017. Superconducting caps for quantum integrated circuits. e-print arXiv:1708.02219.Google Scholar
Ofek, Nissim, Petrenko, Andrei, Heeres, Reinier, et al. 2016. Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature, 536(7617), 441445.Google Scholar
Olivares, S. 2012. Quantum optics in the phase space. European Physical Journal Special Topics, 203(1), 324.Google Scholar
Olver, F. W. J., Lozier, D. W., Boisvert, R. F., and Clark, C. W. (eds). 2010. NIST Handbook of Mathematical Functions. Cambridge University Press.Google Scholar
O’Malley, P. J. J., Kelly, J., Barends, R., et al. 2015. Qubit metrology of ultralow phase noise using randomized benchmarking. Physical Review Applied, 3(Apr), 044009.Google Scholar
Orlando, Terry P. 1991. Foundations of Applied Superconductivity. Addison-Wesley Publishing Company.Google Scholar
Ortuño, M., Somoza, A. M., Vinokur, V. M., and Baturina, T. I. 2015. Electronic transport in two-dimensional high dielectric constant nanosystems. Scientific Reports, 5(1), 9667.Google Scholar
Otterbach, J. S., Manenti, R., Alidoust, N., et al. 2017. Unsupervised machine learning on a hybrid quantum computer. e-print arXiv:1712.05771.Google Scholar
Ozfidan, I., Deng, C., Smirnov, A.Y., et al. 2020. Demonstration of a nonstoquastic Hamiltonian in coupled superconducting flux qubits. Physical Review Applied, 13(3), 034037.Google Scholar
Paauw, F., Fedorov, A., Harmans, C., and Mooij, J. 2009. Tuning the gap of a superconducting flux qubit. Physical Review Letters, 102(9), 090501.Google Scholar
Paik, Hanhee, Schuster, D. I., Bishop, Lev S., et al. 2011. Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. Physical Review Letters, 107(24), 240501.Google Scholar
Pashkin, Yu. A., Yamamoto, T., Astafiev, O., Nakamura, Y., Averin, D. V., and Tsai, J. S. 2003. Quantum oscillations in two coupled charge qubits. Nature, 421(6925), 823826.Google Scholar
Pechal, M., Huthmacher, L., Eichler, C., et al. 2014. Microwave-controlled generation of shaped single photons in circuit quantum electrodynamics. Physical Review X, 4(4), 041010.Google Scholar
Pegg, D., and Barnett, S. 1989. Phase properties of the quantized single-mode electromagnetic field. Physical Review A, 39(4), 16651675.Google Scholar
Peropadre, B., Forn-Díaz, P., Solano, E., and García-Ripoll, J. 2010. Switchable ultrastrong coupling in circuit QED. Physical Review Letters, 105(2), 023601.Google Scholar
Peropadre, B., Zueco, D., Porras, D., and García-Ripoll, J. 2013. Nonequilibrium and nonperturbative dynamics of ultrastrong coupling in open lines. Physical Review Letters, 111(24), 243602.Google Scholar
Pino, Manuel, and García-Ripoll, Juan José. 2018. Quantum annealing in spin-boson model: from a perturbative to an ultrastrong mediated coupling. New Journal of Physics, 20(11), 113027.Google Scholar
Pitaevskii, Lev, and Stringari, Sandro. 2016. Bose-Einstein Condensation and Superfluidity. Oxford University Press.Google Scholar
Place, Alexander P. M., Rodgers, Lila V. H., Mundada, Pranav, et al. 2021. New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds. Nature Communications, 12(1), 1779.Google Scholar
Preskill, John. 2018. Quantum computing in the NISQ era and beyond. Quantum, 2(Aug.), 79.Google Scholar
Raimond, J. M., Brune, M., and Haroche, S. 2001. Manipulating quantum entanglement with atoms and photons in a cavity. Reviews of Modern Physics, 73(3), 565582.Google Scholar
Ramos, Tomás, and García-Ripoll, Juan José. 2018. Correlated dephasing noise in single-photon scattering. New Journal of Physics, 20(10), 105007.Google Scholar
Reed, M. D., DiCarlo, L., Johnson, B. R., et al. 2010. High-fidelity readout in circuit quantum electrodynamics using the Jaynes–cummings nonlinearity, 173601. Physical Review Letters, 105(17).Google Scholar
Rigetti, Chad, and Devoret, Michel. 2010. Fully microwave-tunable universal gates in super-conducting qubits with linear couplings and fixed transition frequencies. Physical Review B, 81(13), 134507.Google Scholar
Rigetti, Chad, Gambetta, Jay M., Poletto, Stefano, et al. 2012. Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms. Physical Review B, 86(10), 100506.Google Scholar
Rol, M. A., Battistel, F., Malinowski, F. K., et al. 2019. Fast, high-fidelity conditional-phase gate exploiting leakage interference in weakly anharmonic superconducting qubits. Physical Review Letters, 123(Sep), 120502.Google Scholar
Romero, G., García-Ripoll, J. J., and Solano, E. 2009a. Microwave photon detector in circuit QED. Physical Review Letters, 102(17), 173602.Google Scholar
Romero, Guillermo, García-Ripoll, Juan José, and Solano, Enrique. 2009b. Photodetection of propagating quantum microwaves in circuit QED. Physica Scripta, T137(T137), 014004.Google Scholar
Rosenblum, S., Reinhold, P., Mirrahimi, M., Jiang, Liang, Frunzio, L., and Schoelkopf, R. J. 2018. Fault-tolerant detection of a quantum error. Science, 361(6399), 266270.Google Scholar
Roy, Ananda, and Devoret, Michel. 2016. Introduction to parametric amplification of quantum signals with Josephson circuits. Comptes Rendus Physique, 17(7), 740755.Google Scholar
Sánchez-Burillo, E., Martín-Moreno, L., García-Ripoll, J. J., and Zueco, D. 2016. Full two-photon down-conversion of a single photon. Physical Review A, 94(5), 053814.Google Scholar
Sandberg, M., Wilson, C. M., Persson, F., et al. 2008. Tuning the field in a microwave resonator faster than the photon lifetime. Applied Physics Letters, 92(20), 203501.Google Scholar
Schneider, Christian Markus Florian. 2014. On-Chip Superconducting Microwave Beam Splitter. Ph.D. thesis, TU Munich.Google Scholar
Schrödinger, E. 1926. Quantisierung als Eigenwertproblem. Annalen der Physik, 384(4), 361376.Google Scholar
Schuster, D. I., Houck, A. A., Schreier, J. A., et al. 2007. Resolving photon number states in a superconducting circuit. Nature, 445(7127), 515518.Google Scholar
Schuster, D. I., Wallraff, A., Blais, A., et al. 2005. ac stark shift and dephasing of a superconducting qubit strongly coupled to a cavity field. Physical Review Letters, 94(12), 123602.Google Scholar
Selby, Alex. 2014. Efficient subgraph-based sampling of Ising-type models with frustration. e-print, sep, arXiv:1409.3934.Google Scholar
Sharafiev, Aleksei, Juan, Mathieu L., Gargiulo, Oscar, et al. 2021. Visualizing the emission of a single photon with frequency and time resolved spectroscopy. Quantum, 5(Jun), 474.Google Scholar
Shi, Tao, Chang, Yue, and García-Ripoll, Juan José. 2018. Ultrastrong coupling few-photon scattering theory. Physical Review Letters, 120(15), 153602.Google Scholar
Shin, Seung Woo, Smith, Graeme, Smolin, John A., and Vazirani, Umesh. 2014. How “quantum” is the D-Wave machine? e-print arXiv:1712.05771.Google Scholar
Shnirman, Alexander, Schön, Gerd, and Hermon, Ziv. 1997. Quantum manipulations of small Josephson junctions. Physical Review Letters, 79(12), 23712374.Google Scholar
Shor, Peter W. 1995. Scheme for reducing decoherence in quantum computer memory. Physical Review A, 52(Oct), R2493R2496.Google Scholar
Silver, A., and Zimmerman, J. 1967. Quantum states and transitions in weakly connected superconducting rings. Physical Review, 157(2), 317341.Google Scholar
Steane, Andrew. 1996. Multiple-particle interference and quantum error correction. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 452(1954), 25512577.Google Scholar
Steffen, Matthias, Ansmann, M., Bialczak, Radoslaw C., et al. 2006. Measurement of the entanglement of two superconducting qubits via state tomography. Science, 313(5792), 14231425.Google Scholar
Steffen, Matthias, Kumar, Shwetank, DiVincenzo, David P., et al. 2010. High-coherence hybrid superconducting qubit. Physical Review Letters, 105(Sep), 100502.Google Scholar
Sundaresan, Neereja M., Liu, Yanbing, Sadri, Darius, et al. 2015. Beyond strong coupling in a multimode cavity. Physical Review X, 5(2), 021035.Google Scholar
Susskind, L., and Glogower, J. 1964. Quantum mechanical phase and time operator. Physics, 1, 4961.Google Scholar
Teufel, Stefan. 2003. Adiabatic Perturbation Theory in Quantum Dynamics. Lecture Notes in Mathematics, vol. 1821. Springer Berlin Heidelberg.Google Scholar
Townsend, Christopher, Ketterle, Wolfgang, and Stringari, Sandro. 1997. Bose–Einstein condensation. Physics World, 10(3), 2936.Google Scholar
van den Brink, Alec Maassen, Berkley, A. J., and Yalowsky, M. 2005. Mediated tunable coupling of flux qubits. New Journal of Physics, 7(1), 230230.Google Scholar
van der Ploeg, S. H. W., Izmalkov, A., van den Brink, Alec Maassen, et al. 2007. Controllable Coupling of Superconducting Flux Qubits. Physical Review Letters, 98(5), 057004.Google Scholar
van der Wal, C. H., ter Haar, A. C., Wilhelm, F. K., et al. 2000. Quantum superposition of macroscopic persistent-current states. Science, 290(5492), 773777.Google Scholar
Venturelli, Davide, Mandrá, Salvatore, Knysh, Sergey, O’Gorman, Bryan, Biswas, Rupak, and Smelyanskiy, Vadim. 2015. Quantum optimization of fully connected spin glasses. Physical Review X, 5(3), 031040.Google Scholar
Vlastakis, Brian, Kirchmair, Gerhard, Leghtas, Zaki, et al. 2013. Deterministically encoding quantum information using 100-photon Schrödinger cat states. Science (New York, N.Y.), 342(6158), 607610.Google Scholar
Wallraff, A., Schuster, D. I., Blais, A., et al. 2004. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature, 431(7005), 162167.Google Scholar
Wallraff, A., Schuster, D. I., Blais, A., et al. 2005. Approaching unit visibility for control of a superconducting qubit with dispersive readout. Physical Review Letters, 95(6), 0650501.Google Scholar
Walls, D. F., and Milburn, G. J. 1994. Quantum Optics. Springer Berlin Heidelberg.Google Scholar
Walter, T., Kurpiers, P., Gasparinetti, S., et al. 2017. Rapid high-fidelity single-shot dispersive readout of superconducting qubits. Physical Review Applied, 7(5), 054020.Google Scholar
Wang, C., Gao, Y. Y., Reinhold, P., et al. 2016. A Schrodinger cat living in two boxes. Science, 352(6289), 10871091.Google Scholar
Williams, Colin P. 2011. Quantum Gates. Springer London. Pages 51122.Google Scholar
Wilson, C. M., Johansson, G., Pourkabirian, A., et al. 2011. Observation of the dynamical Casimir effect in a superconducting circuit. Nature, 479(7373), 376379.Google Scholar
Wootters, W. K., and Zurek, W. H. 1982. A single quantum cannot be cloned. Nature, 299(5886), 802803.Google Scholar
Wu, Yulin, Bao, Wan-Su, Cao, Sirui, Chen, , et al. 2021. Strong quantum computational advantage using a superconducting quantum processor. Physical Review Letters 127, 180501.Google Scholar
Yamamoto, T., Neeley, M., Lucero, E., et al. 2010. Quantum process tomography of two-qubit controlled-Z and controlled-NOT gates using superconducting phase qubits. Physical Review B, 82(18), 184515.Google Scholar
Yamamoto, T., Pashkin, Yu. A., Astafiev, O., Nakamura, Y., and Tsai, J. S. 2003. Demonstration of conditional gate operation using superconducting charge qubits. Nature, 425(6961), 941944.Google Scholar
Yan, F., Gustavsson, S., Kamal, A., et al. 2015. The flux qubit revisited to enhance coherence and reproducibility. e-print, arXiv:1508.06299.Google Scholar
Yan, Fei, Gustavsson, Simon, Kamal, Archana, Birenbaum, , et al. 2016. The flux qubit revisited to enhance coherence and reproducibility. Nature Communications, 7(1), 12964.Google Scholar
Yoshihara, Fumiki, Fuse, Tomoko, Ashhab, Sahel, Kakuyanagi, Kosuke, Saito, Shiro, and Semba, Kouichi. 2016. Superconducting qubit–oscillator circuit beyond the ultrastrong-coupling regime. Nature Physics, 13(1), 4447.Google Scholar
Yurke, Bernard, and Denker, John. 1984. Quantum network theory. Physical Review A, 29(3), 14191437.Google Scholar
Zener, C. 1932. Non-adiabatic crossing of energy levels. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 137(833), 696702.Google Scholar
Zueco, David, and García-Ripoll, Juanjo. 2019. Ultrastrongly dissipative quantum Rabi model. Physical Review A, 99(Jan), 013807.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Juan José García Ripoll
  • Book: Quantum Information and Quantum Optics with Superconducting Circuits
  • Online publication: 04 August 2022
  • Chapter DOI: https://doi.org/10.1017/9781316779460.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Juan José García Ripoll
  • Book: Quantum Information and Quantum Optics with Superconducting Circuits
  • Online publication: 04 August 2022
  • Chapter DOI: https://doi.org/10.1017/9781316779460.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Juan José García Ripoll
  • Book: Quantum Information and Quantum Optics with Superconducting Circuits
  • Online publication: 04 August 2022
  • Chapter DOI: https://doi.org/10.1017/9781316779460.012
Available formats
×