Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T15:37:49.610Z Has data issue: false hasContentIssue false

5 - Canonical quantization in reduced phase space

Published online by Cambridge University Press:  15 December 2009

Steven Carlip
Affiliation:
University of California, Davis
Get access

Summary

Having examined the classical dynamics of (2+1)-dimensional gravity, we are now ready to turn to the problem of quantization. As we shall see in the next few chapters, there are a number of inequivalent approaches to quantum gravity in 2+1 dimensions. In particular, each of the the classical formalisms of the preceding chapters – the ADM representation, the Chern–Simons formulation, the method of geometric structures – suggests a corresponding quantum theory.

The world is not (2+1)-dimensional, of course, and the quantum theories developed here cannot be taken too literally. Our goal is rather to learn what we can about general features of quantum gravity, in the hope that these lessons may carry over to 3+1 dimensions. Fortunately, many of the basic conceptual issues of quantum gravity do not depend on the number of dimensions, so we might reasonably hope that even a relatively simple model could provide useful insights.

After a brief introduction to some of the conceptual issues we will face, I will devote this chapter to a quantum theory based on the ADM representation of chapter 2. As we saw in that chapter, the ADM decomposition and the York time-slicing make it possible to reduce (2+1)-dimensional gravity to a system of finitely many degrees of freedom. Quantum gravity thus becomes quantum mechanics, a subject we believe we understand fairly well. This approach has important limitations, which are discussed at the end of this chapter, but it is a good starting place.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×