Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T22:19:56.042Z Has data issue: false hasContentIssue false

3 - Inference for Quantile Regression

Published online by Cambridge University Press:  06 July 2010

Roger Koenker
Affiliation:
University of Illinois, Urbana-Champaign
Get access

Summary

This chapter provides a practical guide to statistical inference for quantile regression applications. In the earlier chapters, we have described a number of applications of quantile regression and provided various representations of the precision of these estimates; in this chapter and the one to follow, we will describe a variety of inference methods more explicitly. There are several competing approaches to inference in the literature and some guidance will be offered on their advantages and disadvantages. Ideally, of course, we would aspire to provide a finite-sample apparatus for statistical inference about quantile regression like the elegant classical theory of least-squares inference under independently and identically distributed (iid) Gaussian errors. But we must recognize that even in the least-squares theory it is necessary to resort to asymptotic approximations as soon as we depart significantly from idealized Gaussian conditions.

Nevertheless, we will begin by briefly describing what is known about the finite-sample theory of the quantile regression estimator and its connection to the classical theory of inference for the univariate quantiles. The asymptotic theory of inference is introduced with a heuristic discussion of the asymptotic behavior of the ordinary sample quantile; then a brief overview of quantile regression asymptotics is given. A more detailed treatment of the asymptotic theory of quantile regression is deferred to Chapter 4. Several approaches to inference are considered: Wald tests and related problems of direct estimation of the asymptotic covariance matrix, rank tests based on the dual quantile regression process, likelihood-ratio-type tests based on the value of the objective function under null and alternative models, and, finally, several resampling methods are introduced.

Type
Chapter
Information
Quantile Regression , pp. 68 - 115
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×