from Part I Modules
Published online by Cambridge University Press: 05 March 2013
This chapter is devoted to reporting on what is known about Ziegler spectra of various types of ring. In some cases results have merely been collected together and stated; in other cases outline or sample proofs are given.
Over some rings, for example, tame hereditary artin algebras and some string algebras, a complete description of the spectrum has been obtained; over others, for example, generalised Weyl algebras, there are not even any isolated points and little is said about the overall structure of the space. In this, and other, “wild” cases, for example, over the Lie algebra sl2(k) and over general pullback rings, it is possible to say something about parts of the space. Over certain rings, the topology on the spectrum is trivial despite there being many points.
Spectra of artin algebras
We begin, in Section 8.1.1, with some observations and open questions. Section 8.1.2 is devoted to describing the Ziegler spectra of tame hereditary finite-dimensional algebras; Section 8.1.3 the spectra of some domestic string algebras. Pure-injectives over the canonical algebras are discussed briefly in Section 8.1.4.
Points of the spectrum
Representations of finite-dimensional algebras have been a rich source of examples, conjectures and results in the application of model theory to modules. After abelian groups, and modules over commutative Dedekind domains, already quite well explored by the early 1970s (for example, [669], [172], also [330], [198]), this was the context where the potential of the interaction was recognised.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.