from Part I - Discoveries and Techniques
Published online by Cambridge University Press: 21 July 2022
Describes the diverse techniques used in telescopes for the very wide range of the electromagnetic spectrum covered by pulsar observations. Conventional telescopes for the visible range can be used with suitable high time resolution, while only the lowest energy x-rays can be focussed to form images. Higher x-ray and gamma-ray energies require individual photons to be detected and tracked. The highest energy gamma-rays are detected in Cerenkov air-shower arrays. In contrast to the photon detection of all high-energy radiation, radio telescopes and receivers treat radiation as waves with measurable amplitude and phase, allowing multiple beams to be formed in large phased arrays of radio telescopes.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.