Book contents
- Frontmatter
- Contents
- List of illustrations
- Preface
- 1 The discovery of pulsars
- 2 Neutron stars
- 3 Telescopes and techniques
- 4 The distances of the pulsars
- 5 Pulsar timing
- 6 Timing and astrometry of binary pulsars
- 7 Timing irregularities
- 8 The Galactic population of pulsars
- 9 The Crab and Vela Pulsars
- 10 Other young pulsars
- 11 Millisecond and binary pulsars
- 12 Accretion-powered X-ray pulsars
- 13 Magnetars
- 14 Supernovae and their remnants
- 15 Integrated pulse profiles
- 16 Individual pulses
- 17 Location of emitting regions
- 18 Radiation processes
- 19 The emission mechanisms
- 20 Interstellar scintillation and scattering
- 21 The interstellar magnetic field
- 22 Achievements and prospects
- References
- Index
1 The discovery of pulsars
Published online by Cambridge University Press: 05 March 2012
- Frontmatter
- Contents
- List of illustrations
- Preface
- 1 The discovery of pulsars
- 2 Neutron stars
- 3 Telescopes and techniques
- 4 The distances of the pulsars
- 5 Pulsar timing
- 6 Timing and astrometry of binary pulsars
- 7 Timing irregularities
- 8 The Galactic population of pulsars
- 9 The Crab and Vela Pulsars
- 10 Other young pulsars
- 11 Millisecond and binary pulsars
- 12 Accretion-powered X-ray pulsars
- 13 Magnetars
- 14 Supernovae and their remnants
- 15 Integrated pulse profiles
- 16 Individual pulses
- 17 Location of emitting regions
- 18 Radiation processes
- 19 The emission mechanisms
- 20 Interstellar scintillation and scattering
- 21 The interstellar magnetic field
- 22 Achievements and prospects
- References
- Index
Summary
In 1934, two astronomers, Walter Baade and Fritz Zwicky, proposed the existence of a new form of star, the neutron star, which would be the end point of stellar evolution. They wrote:
… with all reserve we advance the view that a supernova represents the transition of an ordinary star into a neutron star, consisting mainly of neutrons. Such a star may possess a very small radius and an extremely high density.
These prophetic remarks seemed at the time to be beyond any possibility of actual observation, since a neutron star would be small, cold and inert, and would emit very little light. More than 30 years later the discovery of the pulsars, and the realisation a few months later that they were neutron stars, provided a totally unexpected verification of the proposal.
The physical conditions inside a neutron star are very different from laboratory experience. Densities up to 1014 g cm−3, and magnetic fields up to 1015 gauss (1011 tesla), are found in a star of solar mass but only about 20 kilometres in diameter. Again, predictions of these astonishing conditions were made before the discovery of pulsars. Oppenheimer & Volkoff in 1939 used a simple equation of state to predict the total mass, the density and the diameter; Hoyle, Narlikar & Wheeler in 1964 argued that a magnetic field of 1010 gauss might exist on a neutron star at the centre of the Crab Nebula; Pacini in 1967, just before the pulsar discovery, proposed that the rapid rotation of a highly magnetised neutron star might be the source of energy in the Crab Nebula.
- Type
- Chapter
- Information
- Pulsar Astronomy , pp. 1 - 15Publisher: Cambridge University PressPrint publication year: 2012
- 2
- Cited by