Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-23T14:45:34.601Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 December 2024

Markus Aschwanden
Affiliation:
Lockheed-Martin
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Power Laws in Astrophysics
Self-Organized Criticality Systems
, pp. 218 - 251
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramenko, V. I., Yurchyshyn, V. B., Wang, H., Spirock, T. J., and Goode, P. R. 2003, Signature of avalanche in solar flares as measured by photospheric magnetic fields, ApJ 597, 1135–1144.Google Scholar
Abramenko, V. I. 2005, Multifractal analysis of solar magnetograms, SoPh 228, 29–42.Google Scholar
Abramenko, V. I., Yurchyshyn, V., Goode, P., and Kilcik, A. 2010a, Statistical distribution of size and lifetime of bright points observed with the new solar telescope, ApJ 725, L101L105.CrossRefGoogle Scholar
Abramenko, V. I. and Yurchyshyn, V. 2010b, Magnetic energy spectra in solar active regions, ApJ 720, 717–722.Google Scholar
Abramenko, V. I. and Yurchyshyn, V. 2010c, Intermittency and multifractality spectra of the magnetic field in solar active regions, ApJ 722, 122–130.Google Scholar
Abramenko, V. I., Yurchyshyn, V. B., Goode, P. R., Kitiashvili, I. N., and Kosovichev, A. G. 2012, Detection of small-scale granular structures in the quiet sun with the new solar telescope, ApJ 756, L27.CrossRefGoogle Scholar
Abramenko, V. I., Zank, G. P., Dosch, A., Yurchyshyn, V. B., Goode, P. R., Ahn, K., and Cao, W. 2013, Characteristic length of energy-containing structures at the base of a coronal hole, ApJ 773, 167.Google Scholar
Abramenko, V. I. 2014, The multifractal nature of solar magnetism and the solar dynamo problem, Geomagnetism and Aeronomy 54, 892.CrossRefGoogle Scholar
Abramenko, V. I. 2015, Possibilities of predicting flare productivity based on magnetic field power spectra in active regions, Geomagnetism and Aeronomy 55, 860.CrossRefGoogle Scholar
Abramenko, V. I. and Yurchyshyn, V. B. 2020, Analysis of quiet-sun turbulence on the bases of SDO/HMI and Goode solar telescope data, MNRAS 497, 54.CrossRefGoogle Scholar
Akabane, K. 1956, Some features of solar radio bursts at around 3000 Mc/s, PASJ 8(3–4), 173–181.Google Scholar
Akopian, A. A. 2012a, Frequency distribution of X-ray flares for low-mass young stellar objects in the Orion nebula, Astrophysics 55(4), 505–514.Google Scholar
Akopian, A. A. 2012b, Frequency distribution of X-ray flares for young stellar objects in the region of ρ Oph, Astrophysics 55(1), 81–91.Google Scholar
Akopian, A. A. 2013, Frequencies of superflares in solar-type stars detected by the Kepler Orbital Observatory, Astrophysics 56(4), 488–500.CrossRefGoogle Scholar
Aletti, V., Velli, M., Bocchialini, K., Einaudi, G., Georgoulis, M., and Vial, J. C. 2000, Microscale structures on the quiet sun and coronal heating, ApJ 544, 550–557.Google Scholar
Alipour, N. and Safari, H. 2015, Statistical properties of solar coronal bright points, ApJ 807, 197 (9p). 218Google Scholar
Alipour, N., et al. 2022, Automatic detection of small-scale EUV brightenings observed by the Solar Orbiter/EUI, AA 663, id. A128, 12pp.CrossRefGoogle Scholar
Althukair, A. K. and Tsiklauri, D. 2023, Main sequence star super-flare frequency based on Enire KEPLER data, Research in Astronomy and Astrophysics 23(8), id. 085017, 21pp.CrossRefGoogle Scholar
Anastasiadis, A., Gontikakis, C., Vilmer, N., and Vlahos, L. 2004, Electron acceleration and radiation in evolving complex active regions, AA 422, 323–330.CrossRefGoogle Scholar
Andrews, M. D. 2003, A search for CMEs associated with big flares, SoPh 218, 261–279.Google Scholar
Angelopoulos, V., et al. 1996, Multipoint analysis of a bursty bulk flow event on April 11, 1985, GRL 101(A3), 4966–4990.Google Scholar
Angelopoulos, V., Mukai, T., and Kokubun, S. 1999, Evidence for intermittency in Earth’s plasma sheet and implications for self-organized criticality, Physics of Plasmas 6, 4161–4168.CrossRefGoogle Scholar
Ansari, M. H. and Smolin, L. 2008, Self-organized criticality in quantum gravity, Classical and Quantum Gravity 25(9), 09016.CrossRefGoogle Scholar
Antolin, P., et al. 2021, Reconnection nanojets in the solar corona, NatAs 5, 54.Google Scholar
Antonov, N. V., Gulitskiy, N. M., Kakin, P. I. and Kochnev, G. E. 2020, Effects of turbulent environment of self-organized critical behavior: Isotropy vs. Anisotropy, Universe 6(9), 145.CrossRefGoogle Scholar
Antonov, N. V., Gulitskij, N. M., Kakin, P. I., and Serov, V. D. 2021, Effects of turbulent environment and random noise on self-organized critical behavior: Universality versus nonuniversality, Physical Review E 103(4), article ID 042106.CrossRefGoogle ScholarPubMed
Antonova, E. E. 2004, Magnetostatic equilibrium and current systems in the Earth’s magnetosphere, Advances in Space Research 33, 752.CrossRefGoogle Scholar
Argyle, E. and Gower, J. R. R. 1972, The pulse-height distribution for NP 0532, ApJ 175, L89–L91.Google Scholar
Arzner, K. and Güdel, M. 2004, Are coronae of magnetically active stars heated by flares? III. Analytical distribution of superposed flares, ApJ 602, 363–376.Google Scholar
Arzner, K., Güdel, M., Briggs, K., Telleschi, A., and Audard, M. 2007, Statistics of superimposed flares in the Taurus molecular cloud, AA 468, 477–484.CrossRefGoogle Scholar
Aschwanden, M. J., Dennis, B. R., and Benz, A. O. 1998, Logistic avalanche processes, elementary time structures, and frequency distributions in solar flares, ApJ 497, 972–993.Google Scholar
Aschwanden, M. J. and Nitta, N. 2000, The effect of hydrostatic weighting on the vertical temperature structure of the solar corona, ApJ 535, L59L62.Google ScholarPubMed
Aschwanden, M. J., Nightingale, R., Tarbell, T., and Wolfson, J. 2000a, Time variability of the quiet Sun observed with TRACE. I. Instrumental effects, event detection, and discrimination of EUV nanoflares, ApJ 535, 1027–1046.Google Scholar
Aschwanden, M. J., Tarbell, T., Nightingale, R., Schrijver, C. J., Title, A., Kankelborg, C. C., Martens, P. C. H., and Warren, H. P. 2000b, Time variability of the quiet Sun observed with TRACE, II. Physical parameters, temperature evolution, and energetics of EUV nanoflares, ApJ 535, 1047–1065.Google Scholar
Aschwanden, M. J. and Charbonneau, P. 2002a, Effects of temperature bias on nanoflare statistics, ApJ 566, L59L62.Google Scholar
Aschwanden, M. J. and Parnell, C. E. 2002, Nanoflare statistics from first principles: Fractal geometry and temperature synthesis, ApJ 572, 1048–1071.Google Scholar
Aschwanden, M. J. and Güdel, M. 2008, Scaling laws of solar and stellar flares, ApJ 672, 659–673.Google Scholar
Aschwanden, M. J. and Aschwanden, P. D. 2008a, Solar flare geometries: I. The area fractal dimension, ApJ 574, 530–543.Google Scholar
Aschwanden, M. J. and Aschwanden, P. D. 2008b, Solar flare geometries: II. The volume fractal dimension, ApJ 574, 544–553.Google Scholar
Aschwanden, M. J. and McTiernan, J. M. 2010, Reconciliation of waiting time statistics of solar flares observed in hard X-rays, ApJ 717, 683–692.Google Scholar
Aschwanden, M. J. 2011a, Self-Organized Criticality in Astrophysics: The Statistics of Nonlinear Processes in the Universe, Springer-Praxis, New York, 416p.CrossRefGoogle Scholar
Aschwanden, M. J. 2011b, The state of self-organized criticality of the Sun during the last 3 solar cycles. I. Observations, SoPh 274, 99–117.Google Scholar
Aschwanden, M. J. 2011c, The state of self-organized criticality of the Sun during the last 3 solar cycles. II. Theoretical model, SoPh 274, 119–129.Google Scholar
Aschwanden, M. J. 2012a, A statistical fractal-diffusive avalanche model of a slowlydriven self-organized criticality system, AA 539, A2 (15p).CrossRefGoogle Scholar
Aschwanden, M. J. 2012b, The spatio-temporal evolution of solar flares observed with AIA/SDO: Fractal diffusion, sub-diffusion, or logistic growth? ApJ 757, 94.Google Scholar
Aschwanden, M. J. and Freeland, S. L. 2012, Automated solar flare statistics in soft X-rays over 37 years of GOES observations: The invariance of self-organized criticality during three solar cycles, ApJ 754, 112.Google Scholar
Aschwanden, M. J. 2013a, A nonlinear force-free magnetic field approximation suitable for fast forward-fitting to coronal loops. I. Theory, SoPh 287, 323–344.Google Scholar
Aschwanden, M. J. 2013b, in Theoretical models of SOC systems (Chapter 2), in Self-Organized Criticality Systems (ed. Aschwanden, M. J.), Open Academic Press: Berlin, Warsaw, pp. 21–67.Google Scholar
Aschwanden, M. J. 2013c, Self-organized criticality systems in astrophysics (Chapter 13), in Self-Organized Criticality Systems (ed. Aschwanden, M. J.), Open Academic Press, Berlin, Warsaw, pp. 439–483.Google Scholar
Aschwanden, M. J. 2019a, New Millennium Solar Physics, Springer Nature, Switzerland AG, Science Library 458.CrossRefGoogle Scholar
Aschwanden, M. J. 2019b, Self-organized criticality in solar and stellar flares: Are extreme events scale-free?, ApJ 880, 105 (16pp).Google Scholar
Aschwanden, M. J. 2021, Finite system-size effects in self-organizing criticality systems, ApJ 909, 69.Google Scholar
Aschwanden, M. J. 2022a, Reconciling power law slopes in solar flare and nanoflare size distributions, ApJL 934, L3.CrossRefGoogle Scholar
Aschwanden, M. J. 2022b, The fractality and size distributions of astrophysical Self-Organized criticality systems, ApJ 934, 33 (27pp).Google Scholar
Aschwanden, M. J. and Shimizu, T. 2013, Multi-wavelength observations of the spatiotemporal evolution of solar flares with AIA/SDO: II. Hydrodynamic scaling laws and thermal energies, ApJ 776, 132.Google Scholar
Aschwanden, M. J. 2014, A macroscopic description of a generalized self-organized criticality systems: Astrophysical applications, ApJ 782, 54.Google Scholar
Aschwanden, M. J., Wuelser, J. P., Nitta, N. V., Lemen, J. R., Freeland, S., and Thompson, W. T. 2014, STEREO/Extreme Ultraviolet Imager (EUVI) event catalog 2006–2012, SoPh 289(3), 919–938.Google Scholar
Aschwanden, M. J. 2015, Thresholded power law size distributions of instabilities in astrophysics, ApJ 814, 19 (25pp).Google Scholar
Aschwanden, M. J. 2016, Global energetics of solar flares. IV. Coronal mass ejection energetics, ApJ 2016, 831, 105 (34pp).Google Scholar
Aschwanden, M. J., Crosby, N., Dimitropoulou, M., Georgoulis, M. K., Hergarten, S., McAteer, J., Milovanov, A., Mineshige, S., Morales, L., Nishizuka, N., Pruessner, G., Sanchez, R., Sharma, S., Strugarek, A., and Uritsky, V. 2016, 25 years of self-organized criticality: Solar and astrophysics, Space Science Reviews 198, 47–166.CrossRefGoogle Scholar
Aschwanden, M. J., Caspi, A., Cohen, C. M. S., Holman, G. D., Jing, J., Kretzschmar, M., Kontar, E. P., McTiernan, J. M., O’Flannagain, A., Richardson, I. G., Ryan, D., Warren, H. P., and Xu, Y. 2017, Global energetics of solar flares: V. Energy closure, ApJ 836, 17 (17pp).Google Scholar
Aschwanden, M. J. and Peter, H. 2017, The width distribution of solar coronal loops and strands – Are we hitting rock bottom? ApJ 840, 4 (24pp).Google Scholar
Aschwanden, M. J. and Scholkmann, F. 2017, Exoplanet predictions based on harmonic orbit resonances, Galaxies 5(4), 56.CrossRefGoogle Scholar
Aschwanden, M. J., et al. 2018, Order out of randomness: Self-organization processes in astrophysics, SSRv 214, 55.Google Scholar
Aschwanden, M. J. and Güdel, M. 2021, Self-organized critically in stellar flares, ApJ 910, 41 (16pp).Google Scholar
Aschwanden, M. J. and Johnson, J. R. 2021, The solar memory from hours to decades, ApJ 921, 82.Google Scholar
Aschwanden, M. J., Johnson, J. R., and Nurhan, Y. 2021, The Poissonian origin of power laws in solar flare waiting time distributions, ApJ 921, 166 (14pp).Google Scholar
Aschwanden, M. J. and Dudok de Wit, T. 2021, Correlation of the sunspot number and the waiting-time distribution of solar flares, coronal mass ejections, and solar wind switchback events observed with the Parker Solar Probe, ApJ 912, 94 (11pp).Google Scholar
Aschwanden, M. J. and Nhalil, N. V. 2022, Interface region imaging spectrograph (IRIS) observations of the fractal dimension in the solar atmosphere, Frontiers in Astronomy and Space Sciences 9, id. 999319.CrossRefGoogle Scholar
Aschwanden, M. J. and Nhalil, N. V. 2023, The universality of power law slopes in the photosphere and transition region observed with HMI and IRIS, Frontiers in Astronomy and Space Sciences 10, id. 1099346, doi 10.3389/fspas.2023.1099346.CrossRefGoogle Scholar
Atteia, J. L., et al. 1987, A second catalog of gamma-ray-bursts: 1978–1980 localizations from the interplanetary Network, ApJSS 64, 305.CrossRefGoogle Scholar
Audard, M., Güdel, M., and Guinan, E. F. 1999, Implications from extreme-ultraviolet observations for coronal heating of active stars, ApJ 513, L53L56.Google Scholar
Audard, M., Güdel, M., Drake, J. J., and Kashyap, V. L. 2000, Extreme-ultraviolet flare activity in late-type stars, Astrophysical Journal 541, 396–409.CrossRefGoogle Scholar
Bai, T. 1993, Variability of the occurrence frequency of solar flares as a function of peak hard X-ray rate, ApJ 404, 805–809.Google Scholar
Baiesi, M., Paczuski, M., and Stella, A. L. 2006, Intensity thresholds and the statistics of the temporal occurrence of solar flares, Physical Review Letters 96, 051103.CrossRefGoogle ScholarPubMed
Bak, P., Tang, C., and Wiesenfeld, K. 1987, Self-organized criticality – An explanation of 1/f noise, Physical Review Letters 59(27), 381–384.CrossRefGoogle ScholarPubMed
Bak, P., Tang, C., and Wiesenfeld, K. 1988, Self-organized criticality, Physical Review A, Atomic, Molecular, and Optical Physics 38(1), 364–374.CrossRefGoogle ScholarPubMed
Bak, P. and Chen, K. 1989, The physics of fractals, Physica D: Nonlinear Phenomena 38, 5–12.CrossRefGoogle Scholar
Bak, P. and Chen, K. 1991, Self-organized criticality, Scientific American 264(1), 46–53 pp.CrossRefGoogle Scholar
Bak, P. and Sneppen, K. 1993, Punctuated equilibrium and criticality in a simple model of evolution, Physical Review Letters 71(24), 4083–4086.CrossRefGoogle Scholar
Bak, P. and Paczuski, M. 1995, Complexity, contingency, and criticality, Proceedings of the National Academy of Sciences of the United States of America 92, 6689–6696.Google ScholarPubMed
Bak, P. 1996, How Nature Works, Copernicus, Springer Verlag, New York.CrossRefGoogle Scholar
Bak, P. and Weissman, M. 1997, How nature works: The science of self-organized criticality, American Journal of Physics 65, 579–580.CrossRefGoogle Scholar
Baker, D. N., Pulkkinen, T. I., Angelopoulos, V., Baumjohann, W., McPherron, R. L., 1996, Neutral line model of substorms: Past results and present view, JGR 101(A6), 12975, S13010.CrossRefGoogle Scholar
Balasis, G., Daglis, I. A., Anasasiadis, A., Papadimitriou, C., Mandea, M., and Eftaxias, K. 2011, Universality in solar flare, magnetic storm and earthquake dynamics using Tsallis statistical mechanics, Physica A: Statistical Mechanics and Its Applications 390(2), 341–346.CrossRefGoogle Scholar
Balke, A. C., Schrijver, C. J., Zwaan, C., and Tarbell, T. D. 1993, Percolation theory and the geometry of photospheric magnetic flux concentrations, SoPh 143, 215–227.Google Scholar
Balona, L. A., Baran, A. S., Daszynska-Daszkiewicz, J., and De Cat, P. 2015, Analysis of Kepler B stars: Rotational modulation and Maia variables, MNRAS 451(2), 1445–1459.CrossRefGoogle Scholar
Balona, L. A., Svanda, M., and Karlicky, M. 2016, Differential rotation, flares and coronae in A to M stars, MNRAS 463, 1740–1750.CrossRefGoogle Scholar
Banerjee, A., Bej, A., Chatterjee, T. N., and Majumdar, A. 2019, An SOC approach to study the solar wind-magnetosphere, Energy Coupling Earth and Space Science 6, 565–576.Google Scholar
Barat, C., et al. 1979, An intense gamma-ray burst with possible associated optical transient, ApJ 286, L5L9.Google Scholar
Barat, C., Trottet, G., Vilmer, N., Dezalay, J. P., Talon, R., Sunyaev, R., Terekhov, O., and Kuznetsov, A. 1994, Evidence for intense coronal prompt gamma-ray line emission from a solar flare, ApJ 425, L109L112.Google Scholar
Bargatze, L. F., Baker, D. N., McPherron, R. L., and Hones, E. W. 1985, Magnetospheric impulse response for many levels of geomagnetic activity, JGR 90(A7), 6387–6394.CrossRefGoogle Scholar
Baring, M. G. 1994, Gamma-ray spectral breaks and source beaming, ApJSS 90, 899–903.CrossRefGoogle Scholar
Baryshev, Y. and Teerikorpi, P. 2002, Discovery of Cosmic Fractals, World Scientific Publishing, Co. Pte. Ltd, Singapore.CrossRefGoogle Scholar
Bhattacharya, S. 1997, How nature works: The science of self-organized criticality, by Per Bak, Physics Today 50, 71–72.Google Scholar
Beckmann, V., Borkowski, J., Courvoisier, T. J. L., Goetz, D., Hudec, R., Hroch, F., Lund, N., Mereghetti, S., Shaw, S. E., von Kienlin, A., and Wigger, C. 2003, Time resolved spectroscopy of GRB 030501 using INTEGRAL, AA 411, L327.CrossRefGoogle Scholar
Beim Graben, P., Zhou, C., Thiel, M., and Kurths, J. (eds.). 2008, Lectures in Supercomputational Neuroscience: Dynamics in Complex Brain Networks, Springer, Berlin.CrossRefGoogle Scholar
Belanger, E., Vincent, A., and Charbonneau, P. 2007, Predicting solar flares by data assimilation in avalanche models. I. Model design and validation, SoPh 245, 141–165.Google Scholar
Belov, A., Kurt, V., Mavromichalaki, H., and Gerontidou, M. 2007, Peak-size distributions of proton fluxes and associated soft X-ray flares, SoPh 246, 457–470.Google Scholar
Bendjoya, Ph., Petit, J. M., and Spahn, E. 1993, Wavelet analysis of the Voyager data on planetary rings. I. Description of the method, Icarus 105, 385.CrossRefGoogle Scholar
Berger, M. A., and Asgari-Targhi, M. 2009, Self-organized braiding and the structure of coronal loops, ApJ 705, 347–355.Google Scholar
Berger, M. A., Asgari-Targhi, M., and DeLuca, E. E. 2015, Self-organized braiding in solar coronal loops, Journal of Plasma Physics 81, 395810404.CrossRefGoogle Scholar
Bergin, E. A. and Tafalla, M. 2007, Cold dark clouds: The initial conditions for star formation, ARAA 45, 339.CrossRefGoogle Scholar
Berrilli, F., Del Moro, D., Russo, S., Consolini, G., and Straus, Th. 2005, Spatial clustering of photospheric structures, ApJ 632, 677.Google Scholar
Bershadskii, A. and Sreenivasan, K. R. 2003, Multiscale self-organized criticality and powerful X-ray flares, European Physical Journal B 35(4), 513–515.CrossRefGoogle Scholar
Benz, A. O. and Krucker, S. 2002, Energy distribution of microevents in the quiet solar corona, ApJ 568, 413–421.Google Scholar
Berger, M. A. and Asgari-Targhi, M. 2009, Self-organized braiding and the structure of coronal loops, ApJ 705:347–355.Google Scholar
Berger, M. A., Asgari-Targhi, M., and Deluca, E. E. 2015, Self-organized braiding in solar coronal loops, Journal of Plasma Physics, 81, 395810404.CrossRefGoogle Scholar
Bergman, M. 2007, Strong bursts and diffusion in avalanching systems, Planetary and Space Science 55(15), 2228–2232.Google Scholar
Berghmans, D., Clette, F., and Moses, D. 1998, Quiet Sun EUV transient brightenings and turbulence. Spatial clustering of photospheric structures, ApJ 632, 677.Google Scholar
Berghmans, D. and Clette, F. 1999, Active region EUV transient brightenings – First results by EIT of SOHO JOP80, SoPh 186, 207–229.Google Scholar
Biesecker, D. A., Ryan, J. M., and Fishman, G. J. 1993, A search for small solar flares with BATSE, Lecture Notes in Physics 432, 225–230.Google Scholar
Biesecker, D. A. 1994, On the occurrence of solar flares observed with the Burst and Transient Source Experiment (BATSE), PhD Thesis, University of New Hampshire.Google Scholar
Biesecker, D. A., Ryan, J. M., and Fishman, G. J. 1994, Observations of small solar flares with BATSE, in High-energy solar phenomena – A new era of spacecraft measurements (eds. Ryan, J. M. and Vestrand, W. T.), American Institute Physics, New York, pp. 183–186.Google Scholar
Bingert, S. and Peter, H. 2013, Nanoflare statistics in an active region 3D MHD coronal model, AA 550, A30.CrossRefGoogle Scholar
Boffetta, G., Carbone, V., Giuliani, P., Veltri, P., and Vulpiani, A. 1999, Power laws in solar flares: Self-organized criticality or turbulence? PRL 83, 4662–4665.CrossRefGoogle Scholar
Bottke, W. F., Durda, D. D., Nesvorny, D., Jedicke, R., Morbidelli, A., Vokrouhlicky, D., and Levison, H. 2005, The fossilized size distribution of the main asteroid belt, Icarus 175, 111–140.Google Scholar
Bolzan, M. J. A. 2018, A modeling substorm dynamics of the magnetosphere using Self-Organized criticality approach, Physica A Statistical Mechanics and Its Applications 503, 1182–1188.CrossRefGoogle Scholar
Borucki, W. J., et al. 2010, Kepler planet-detection mission: Introduction and first results, Science 327(5968), 977.CrossRefGoogle ScholarPubMed
Bovelet, B. and Wiehr, E. 2001, A new algorithm for pattern recognition and its application to granulation and limb faculae, SoPh 201, 13.Google Scholar
Boynton, R. j., Balikhin, M. A., Billings, S. A., and Sharma, A. S. 2011, Amariutei, Data derived NAREMAX Dst model, Annales Geophysicae 29(6), 965–971.CrossRefGoogle Scholar
Bregman, M. 2007, Strong bursts and diffusion in avalanching systems, Planetary and Space Science 55(15), 2228–2232.CrossRefGoogle Scholar
Bristow, W. 2008, Statistics of velocity fluctuations observed by SuperDARN under steady interplanetary magnetic field conditions, JGR (Space Physics), 113(A11), CiteID A11202.Google Scholar
Bromund, K. R., McTiernan, J. M., and Kane, S. R. 1995, Statistical studies of ISEE3/ ICE observations of impulsive hard X-ray solar flares, ApJ 455, 733–745.Google Scholar
Bronstein, I. and Semendjajew, K. 1960, Taschenbuch der Mathematik, Verlag Harry Deutsch, Zurich, Switzerland.Google Scholar
Brown, J. C. 1971, The deduction of energy spectra of non-thermal electrons in flares from the observed dynamic spectra of Hard X-Ray bursts, SoPh 18, 489–502.Google Scholar
Bruno, R., D’Amicis, R., Bavassano, B., Carbone, V., and Sorriso-Valvo, L. 2007, Scaling laws and coherent structures in the solar wind, Planetary and Space Science, 55, 2233.CrossRefGoogle Scholar
Buchanan, M. 2015, SOC revisited, Nature Physics 11, 442.CrossRefGoogle Scholar
Buchlin, E., Vial, J. C., and Lemaire, P. 2006, A statistical study of SUMER spectral images: Events, turbulence, and intermittency, AA 451, 1091–1099.CrossRefGoogle Scholar
Cadavid, A. C., Lawrence, J. K., and Ruzmaikin, A. A. 1999, Anomalous diffusion of solar magnetic elements, ApJ 521, 844.Google Scholar
Cadavid, A. C., Miralles, M. P., and Romich, K. 2019, Comparison of the scaling properties of EUV intensity fluctuations in coronal hole and quiet-sun regions, ApJ 886, 143.Google Scholar
Cairns, I. H. and Robinson, P. A. 1999, Strong evidence for stochastic growth of Langmuirlike waves in Earth’s foreschock, PRL 82(15), 3066–3069.CrossRefGoogle Scholar
Cairns, I. H. 2004, Properties and interpretations of giant micropulses and giant pulses from pulsars, ApJ 610, 948–955.Google Scholar
Cairns, I. H., Johnston, S., and Das, P. 2004, Intrinsic variability and field statistics for pulsars B1641–45 and B0950+08, MNRAS 353, 270.CrossRefGoogle Scholar
Candelaresi, S., Pontin, D. I., Yeates, A. R., Bushby, P. J., and Hornig, G. 2018, Estimating the rate of field line braiding in the solar corona by photospheric flows, ApJ 864, 157.Google Scholar
Carbone, V., et al. 2002, To what extent can dynamical models describe statistical features of turbulent flows? EPL (Europhysics Letters), 58(3), 349.CrossRefGoogle Scholar
Cargill, P. J., Bradshaw, S. J., and Klimchuk, J. A. 2012, Enthalpy-based thermal evolution of loops. III. Comparison of Zero-dimensional models, ApJ 758, 5.Google Scholar
Caseres, G. A., et al. 2019a, Autoregressive planet search: Methodology, ApJ 158, 57.Google Scholar
Caseres, G. A., et al. 2019b, Autoregressive planet search: Application to the Kepler mission, ApJ 158, 58.Google Scholar
Cassak, P. A., Mullan, D. J., and Shay, M. A. 2008, From solar and stellar flares to coronal heating: theory and observations of how magnetic reconnection regulates coronal conditions, ApJ 676, L69L72.Google Scholar
Castorinoa, P. and Satz, H. 2019, High energy hadron production as self-organized criticality, International Journal of Modern Physics E, 28(4), id. 1950025.Google Scholar
Catanzarite, J. and Shao, M. 2011, The occurrence rate of Earth analog planets orbiting sun-like stars, ApJ 738, 151 (10pp).Google Scholar
Chang, H. K., Chen, K., Fenimore, E. E., and Ho, C. 1996, Spectral studies of magnetic photon splitting in the March 5 event and SGR 1806-20, AIP Conference Proceedings 384, 921–925.CrossRefGoogle Scholar
Chang, T. 1999a, Self-organized criticality, multi-fractal spectra, and intermittent merging of coherent structures in the magnetotail, Astrophysics and Space Science, 264, 303–316.Google Scholar
Chang, T. 1999b, Self-organized criticality, multi-fractal spectra, sporadic localized reconnections and intermittent turbulence in the magnetotail, Physics of Plasmas 6, 4137–4145.CrossRefGoogle Scholar
Chang, T. 2000, Forced and/or self-organized criticality in space plasma processes, Physica Scripta Volume T 84, 12–13.Google Scholar
Chang, T., Chapman, S., and Klimas, A. 2001, Forced and/or Self-Organized Criticality (FSOC) in space plasmas, JASTP 63, 1359–1359.Google Scholar
Chang, T. and Wu, C. C. 2002, Complexity and anomalous transport in space plasmas, Physics of Plasmas 9(9), 3679–3684.CrossRefGoogle Scholar
Chang, T., Tam, S. W. Y., Wu, C. C., and Consolini, G. 2003, Complexity, forced and/or self-organized criticality, and topological phase transitions in space plasmas, SSRv 107, 425–445.Google Scholar
Chang, T., Tam, S. W. Y, and Wu, C. C. 2004, Complexity induced anisotropic bimodal intermittent turbulence in space plasmas, Physics of Plasmas 11(4), 1287–1299.CrossRefGoogle Scholar
Chang, T. S. 1992, Low-dimensional behavior and symmetry breaking of stochastic systems near criticality – Can these effects be observed in space and in the laboratory, IEEE Transaction on Plasma Science 20(6), 691–694.CrossRefGoogle Scholar
Chang, T. S. 1998a, Sporadic, localized reconnections and multiscale intermittent turbulence in the magnetotail, in Geospace Mass and Energy Flow (Eds. Horwitz, J. L., Gallagher, D. L., and Peterson, W. K.), AGU Geophysical Monograph 104, American Geophysical Union, Washington DC, p. 193.Google Scholar
Chang, T. S. 1998b, Multiscale intermittent turbulence in the magnetotail, in Proceedings of 4th International Conference on Substorms (eds. Kamide, Y. et al.), Kluwer Academic Publishers, Dordrecht, and Terra Scientific Company, Tokyo, p. 431.Google Scholar
Chapman, S. C., Watkins, N. W., Dendy, R. O., Helander, P., and Rowlands, G. 1998, A simple avalanche model as an analogue for magnetospheric activity, GRL 25(13), 2397–2400.CrossRefGoogle Scholar
Chapman, S. C., Dendy, R. O., and Rowlands, G. 1999, A sandpile model with dual scaling regimes for laboratory, space and astrophysical plasmas, PhPl 6(11), 4169–4177.CrossRefGoogle Scholar
Chapman, S. C. and Watkins, N. 2001, Avalanching and self-organised criticality, a paradigm for geomagnetic activity? SSRv 95, 293–307.Google Scholar
Chapman, S. C., Rowlands, G., and Watkins, N. W. 2009, Macroscopic control parameter for avalanche models for bursty transport, Physics of Plasmas 16, 012303.CrossRefGoogle Scholar
Chapman, S. C. and Nicol, R. M. 2009, Generalized similarity in finite range solar wind magnetohydrodynamic turbulence, Physical Review Letters, 103, 241101.CrossRefGoogle ScholarPubMed
Chapman, S. C. and Watkins, N. W. 2009, Avalanching systems under intermediate driving rate, Plasma Physics and Controlled Fusion 51(12), id. 124006, 9pp.CrossRefGoogle Scholar
Charbonneau, P., McIntosh, S. W., Liu, H. L., and Bogdan, T. J. 2001, Avalanche models for solar flares, SoPh 203, 321–353.Google Scholar
Charbonneau, P. 2013, Self-organized criticality and solar flares (Chapter 12), in “Self-Organized Criticality Systems” (ed. Aschwanden, M. J.), Open Academic Press GmbH Co, Berlin; Warsaw, 167–210.Google Scholar
Charbonneau, P. 2017, Natural Complexity: A Modeling Handbook, Princeton University Press, Princeton.Google Scholar
Chatterjee, S., Law, C. J., Wharton, R. S., Burke-Spolaor, S., Hessels, J. W. T., et al. 2017, A direct localization of a fast radio bursts and its host, Nature 541(7636), 58–61.CrossRefGoogle ScholarPubMed
Chen, J. and Sharma, A. S. 2006, Modeling and prediction of the magnetospheric dynamics during intense geospace storms, JGR 111(A4), A94209.CrossRefGoogle Scholar
Chen, J., Sharma, A. S., Edwards, J., Shao, X., and Kamide, Y. 2008, Spatio-temporal dynamics of the magnetosphere during geospace storms: Mutual information analysis, JGR 113, A05217.Google Scholar
Chen, Y. and Hu, Q. 2022, Small-scale magnetic flux ropes and their properties based on in situ measurements from the Parker Solar Probe, ApJ 924, 43 (12pp).Google Scholar
Cheng, J. X., Qiu, J., Ding, M. D., and Wang, H. 2012, Solar flare hard X-ray spikes observed by RHESSI: A statistical study, AA 547, A73 (8pp).CrossRefGoogle Scholar
Cheng, Y., Zhang, G. Q., and Wang, F. Y. 2020, Statistical properties of magnetar bursts and FRB 121102, MNRAS 491, 1498–1505.CrossRefGoogle Scholar
Chesny, D. L., Oluseyi, H. M., and Orange, N. B. 2016, Dynamic flaring non-potential fields on quiet sun network scales, ApJ 822, 72.Google Scholar
Choe, W., Kim, H. J., Rostoker, G., and Kamide, Y. 2002, Nonlinear time series analysis of interpeak intervals of AL data, JGR 107(A11), CiteID 1392.CrossRefGoogle Scholar
Chou, Y. P. 1999, What affects the power-law distribution of the X-ray solar flares? A theoretical study based on a model of uniform normal field, ApJ 527, 958–966.Google Scholar
Chou, Y. P. 2001, The effect of helicity dissipation on the critical state of an avalanche model for solar flares, SoPh 199, 345.Google Scholar
Ciprini, S., Fiorucci, M., Tosti, G., and Marchili, N. 2003, The optical variability of the blazar GV 0109+224. Hints of self-organized criticality, in High energy blazar astronomy, ASP Conference Proceedings 229 (eds. Takalo, L. O. and Valtaoja, E.), ASP, San Francisco, p. 265.Google Scholar
Christe, S., Hannah, I. G., Krucker, S., McTiernan, J., and Lin, R. P. 2008, RHESSI microflare statistics. I. Flare-finding and frequency distributions, ApJ 677, 1385–1394.Google Scholar
Christensen, K. and Olami, Z. 1993, Sandpile models with and without an underlying spatial structure, Physics Review E 48(5), 3361–3372.CrossRefGoogle ScholarPubMed
Cirtain, J. W., et al. 2013, Energy release in the solar corona from spatially resolved magnetic braids. Nature 493, 7433, 501.CrossRefGoogle ScholarPubMed
Clar, S., Drossel, B., and Schwabl, F. 1996, Review article: Forest fires and other examples of self-organized criticality, Journal of Physics: Condensed Matter 8(37), 6803–6824.Google Scholar
Clauset, A., Young, M., and Gleditsch, S. 2007, Power-law distributions in empirical data, Journal of Conflict Resolution 51, 58.Google Scholar
Clauset, A., Shalizi, C. R., and Newman, M. E. J. 2009, Power-law distributions in empirical data, SIAM Review 51(4), 661–703.CrossRefGoogle Scholar
Cliver, E., Reames, D., Kahler, S., and Cane, H. 1991, Size distribution of solar energetic particle events, International Cosmic Ray Conference 22nd, Dublin, LEAC A92-36806 15–93, NASA, Greenbelt, p. 2:1–4.Google Scholar
Cliver, E. W., Ling, A. G., Belov, A., and Yashiro, S. 2012, Size distributions of solar flares and solar energetic particle events, ApJL 756, L29 (4pp).CrossRefGoogle Scholar
Cliver, E. and D’Huys, E. 2018, Size distributions of solar proton events and their associated soft X-ray flares, ApJ 864, 48(1), 11.Google Scholar
Cognard, I., Shrauner, J. A., Taylor, J. H., and Thorsett, S. E. 1996, Giant radio pulses from a millisecond pulsar, ApJ 457, L81L84.Google Scholar
Colless, M., et al. 2001, The 2dF galaxy redshift survey: Spectra and redshifts, MNRAS 328(4), 1039–1063.CrossRefGoogle Scholar
Collura, A., Pasquini, L., and Schmitt, J. H. M. M. 1988, Time variability in the X-ray emission of DM stars observed by EXOSAT, AA 205, 197–206.Google Scholar
Consolini, G. 1997, Sandpile cellular automata and magnetospheric dynamics, in (Proc, Cosmic Physics in the year 2000 (Eds. Aiello, S., Iucci, N., Sironi, G., Treves, A., and Villante, U.), SIF, Bologna, Italy, Vol. 58, pp. 123–126.Google Scholar
Consolini, G. and Lui, A. T. Y. 1999, Sign-singularity analysis of current disruption, GRL 26(12), 1673–1676.CrossRefGoogle Scholar
Consolini, G. 2001, Complexity and criticality of the magnetospheric dynamics Memorie della Societa Astronomica Italiana, 72, 605.Google Scholar
Consolini, G. and Chang, T. S. 2001, Magnetic field topology and criticality in geotail dynamics: Relevance to substorm phenomena, SSRv 95, 309.Google Scholar
Consolini, G. and DeMichelis, P. 2001, A revised forest-fire cellular automaton for the nonlinear dynamics of the Earth’s magnetotail, JASTR 63(13), 1371–1377.Google Scholar
Consolini, G. 2002, Self-organized criticality: A new paradigm for the magnetotail dynamics, Fractals 10, 275–283.CrossRefGoogle Scholar
Consolini, G. and Kretzschmar, M. 2007, Thermodynamics of rare events and impulsive relaxation events in the magnetospheric substorm dynamics, Planetary and Space Science 55, 2244.CrossRefGoogle Scholar
Corral, A. and Font-Clos, F. 2013, Criticality and self-organization in branching processes (Chapter 5), in Self-Organized Criticality Systems (ed. Aschwanden, M. J.), Open Academic Press GmbH Co, Berlin; Warsaw, 167–210.Google Scholar
Greenhough, J., Chapman, S. C., Dendy, R. O., Nakariakov, V. M. and Rowlands, G. 2003, Statistical characterisation of full-disk EUV/XUV solar irradiance and correlation with solar activity, AA 409, L17L20.CrossRefGoogle Scholar
Crosby, N. B., Aschwanden, M. J., and Dennis, B. R. 1993, Frequency distributions and correlations of solar X-ray flare parameters, SoPh 143, 275–299.Google Scholar
Crosby, N. B. 1996, Contribution à l’Etude des Phénomènes Eruptifs du Soleil en Rayons à partir des Observations de l’Expérience WATCH sur le Satellite GRANAT, PhD Thesis, Université Paris VII, Meudon, Paris.Google Scholar
Crosby, N., Vilmer, N., Lund, N., and Sunyaev, R. 1998, Deka-keV X-ray observations of solar bursts with WATCH/GRANAT: frequency distributions of burst parameters, AA 334, 299–313.Google Scholar
Crosby, N. B., Meredith, N. P., Coates, A. J., and Iles, R. H. A. 2005, Modelling the outer radiation belt as a complex system in a self-organised critical state, Nonlinear Processes in Geophysics 12, 993–1001.CrossRefGoogle Scholar
Crosby, N. B. 2011, Frequency distributions: From the Sun to the Earth, Nonlinear Processes in Geophysics 18(6), 791–805.CrossRefGoogle Scholar
Crosby, N. B. 2009, Solar extreme events 2005–2006: Effects on near-Earth space systems and interplanetary systems, Adv. Spac. Res. 43/4, 559–564.Google Scholar
Crosby, N. B. 2013, Introduction (Chapter 1), in Self-Organized Criticality Systems (ed. Aschwanden, M. J.), Open Academic Press GmbH Co, Berlin; Warsaw, 1–20.Google Scholar
Cross, C. A. 1966, The size distribution of lunar craters, MNRAS 134, 245–252.CrossRefGoogle Scholar
Daei, F., Safari, H., and Dadashi, N. 2017, Complex network for solar active region, ApJ 845, 36 (8pp).Google Scholar
Da Rocha, D. and Nottale, L. 2003, Gravitational structure in scale relativity, Chaos, Solitons, and Fractals 16(4), 565–595.CrossRefGoogle Scholar
Das, T. K., Tarafdar, G., and Sen, A. K. 1997, Validity of power law for the distribution of intensity of radio bursts, SoPh 176, 181–184.Google Scholar
Datlowe, D. W., Elcan, M. J., and Hudson, H. S. 1974, OSO-7 observations of solar X-rays in the energy range 10–100 keV, SoPh 39, 155–174.Google Scholar
Davenport, J. R. A. 2016, The Kepler catalog of stellar flares, ApJ 829(1), article ID 23, 12pp.Google Scholar
DeArcangelis, L., Godano, C., Lippiello, E., and Nicodemi, M. 2006, Universality in solar flare and earthquake occurrence, Physical Review Letters, 96, 051102.Google Scholar
DeFreitas, D. B., et al. 2017, New Suns in the cosmos. IV. The multifractal nature of stellar magnetic activity in Kepler cool stars, ApJ 843, 103.Google Scholar
DeFreitas, D. B., et al. 2019a, Multifractal detrended moving average analysis of Kepler stars with surface differential rotation traces, MNRAS 488, 32.CrossRefGoogle Scholar
DeFreitas, D. B., et al. 2019b, New suns in the cosmos. V. Stellar rotation and multifractality in active Kepler stars, ApJ 880, 151.Google Scholar
DeMenech, M. and Stella, A. L. 2002, Turbulent self-organized criticality, Physica A Statistical Mechanics and Its Applications 309, 289–296.Google Scholar
Dendy, R. O., Chapman, S. C., and Paczuski, M. 2007, Fusion, space and solar plasmas as complex systems, Plasma Physics and Control Fusion 49, A95A108.CrossRefGoogle Scholar
Dennis, B. R. 1985, Solar hard X-ray bursts, SoPh 100, 465–490.Google Scholar
Dennis, B. R. and Zarro, D. M. 1993, The Neupert effect: What can it tell us about the impulsive and gradual phases of solar flares, SoPh 146, 177–190.Google Scholar
Dennis, B. R., Veronig, Z., Schwartz, R. A., Sui, L., Tolbert, A. K. Zarro, D. M. and the RHESSI Team 2003, The Neupert effect and new RHESSI measures of the total energy accelerated in solar flares, AdSpR 32, 2459.Google Scholar
Dhar, D. and Ramaswamy, R. 1989, Exactly solved model of self-organized critical phenomena, Physical Review Letters 63(16), 1659–1662.CrossRefGoogle ScholarPubMed
Dhar, D. and Majumdar, S. N. 1990, Abelian sandpile model of the Bethe lattice, Journal of Physics A 23(19), 4333–4350.CrossRefGoogle Scholar
Dhar, D. 1999, The Abelian sandpile and related models, Physica A 263, 4–25.CrossRefGoogle Scholar
D’Huys, E., Berghmans, D., Seaton, D. B., and Poedts, S. 2016, The effect of limited sample sizes on the accuracy of the estimated scaling parameter for power-law-distributed solar data, SoPh 291, 1561.Google Scholar
Dimitropoulou, M., Isliker, H., Vlahos, L., and Georgoulis, M. K. 2011, Simulating flaring events in complex active regions driven by observed magnetograms, AA 529, A101.CrossRefGoogle Scholar
Dimitropoulou, M., Isliker, H., Vlahos, L., and Georgoulis, M. K. 2013, Dynamic datadriven integrated flare model based on self-organized criticality, AA 553, A65.CrossRefGoogle Scholar
Dinkelaker, A. N. and MacKinnon, A. L. 2013a, Wavelets, intermittency and solar flare hard X-rays. I. Local intermittency measure in cascade and avalanche scenarios, SoPh 282, 471–481.Google Scholar
Dinkelaker, A. N. and MacKinnon, A. L. 2013b, Wavelets, intermittency and solar flare hard X-rays. II. LIM Analysis of high time resolution BATSE data, SoPh 282, 483–501.Google Scholar
Dobrotka, A., Mineshige, S., and Casares, J. 2012, A flickering study of nova-like systems KR Aur and UU Aqr, MNRAS 420(3), 2467–2474.CrossRefGoogle Scholar
Drake, J. F. 1971, Characteristics of soft solar X-ray bursts, SoPh 16, 152–185.Google Scholar
Du, Z. and Du, S. 2006, The relationship between the amplitude and descending time of a solar cycle, SoPh 238(2), 431–437.Google Scholar
Dudok de Wit, T., Kopp, G., Shapiro, A., Witzke, V., and Kretzschmar, M. 2018, Response of solar irradiance to sunspot-area variations, ApJ 853, 197.Google Scholar
Dudok de Wit, T., et al. 2020, Switchbacks in the near-Sun magnetic field: Long memory and impact on the turbulence cascade, ApJS 246, 39.CrossRefGoogle Scholar
Dwyer, J. R. and Smith, D. M. 2005, A comparison between Monte Carlo simulations of runaway breakdown and terrestrial gamma-ray flare observations, GRL 32(22), L22804.CrossRefGoogle Scholar
Eastwood, J. P., Wheatland, M. S., Hudson, H. S., Krucker, S., Bale, S. D., Maksimovic, M., Goertz, K., and Bougeret, J. L. 2010, On the brightness and waiting time distributions of a type III radio storm observed by STEREO/Waves, ApJL 706(2), L95L99.Google Scholar
Eggen, O. J., Lynden-Bell, D., and Sandage, A. R. 1962, Evidence from the motions of old stars that the galaxy collapsed, ApJ 136, 748.Google Scholar
Elmegreen, B. G. and Scalo, J. 2004, Interstellar turbulence I. Observations and processes, ARAA 42, 211.CrossRefGoogle Scholar
Elmegreen, B. G. and Falgarone, E. 1996, A fractal origin for the mass spectrum of interstellar clouds, ApJ 471, 816.Google Scholar
Enoto, T., et al. 2017, Magnetar broadband X-ray spectra correlated with magnetic fields: Suzaku Archive of SGRs and AXP combined with NuSTAR, Swift, and RXTE, ApJSS 231(1), id. 8, 21pp.CrossRefGoogle Scholar
Eroencel, C., Hubisz, J., and Rigo, G. 2019, Self-organized Higgs criticality, Journal of High Energy Physics, 2019(3), article ID. 46, 33pp.Google Scholar
Farhang, N., Wheatland, M. S., and Safari, H. 2018, Principle of minimum energy in magnetic reconnection in a self-organized critical model for solar flares, ApJ 859, 41.Google Scholar
Farhang, N., Wheatland, M. S., and Safari, H. 2019, Energy balance in avalanche models for solar flares, ApJ 883, L20.CrossRefGoogle Scholar
Feder, J. 1988, Fractals, Plenum Press, New York, 283p.CrossRefGoogle Scholar
Feldman, U., Doschek, G. A., and Klimchuk, J. A. 1997, The occurrence rate of soft X-ray flares as a function of solar activity, ApJ 474, 511–517.Google Scholar
Fermi, E. 1954, Galactic magnetic fields and the origin of cosmic radiation, ApJ 119, 1.Google Scholar
Finnigan, J. 2001, How nature works; The science of self-organized criticality, Agricultural and Forest Meteorology 108 241–243.CrossRefGoogle Scholar
Fisher, G. H., Canfield, R. C., and McClymont, A. N. 1985, Flare loop radiative dydrodynamics V. Response to thick-target heating. IV. Chromospheric evaporation due to heating by nonthermal electrons. VII. Dynamics of the thick-target heated model, ApJ 289(1), 1985, 414–441.Google Scholar
Fishman, G. D. et al. 1994, Discovery of intense gamma-ray flashes of atmospheric origin, Science 264, 1313–1316.CrossRefGoogle ScholarPubMed
Fitzenreiter, R. J., Fainberg, J., and Bundy, R. B. 1976, Directivity of low frequency solar type III radio bursts, SoPh 46, 465–473.Google Scholar
Fraser, W. C., Kavelaars, J. J., Holman, M. J., Pritchet, C. J., Gladman, B. J., Grav, T., Jones, R. L., Macwilliams, J., and Petit, J. M. 2008, The Kuiper belt luminosity function from mR = 21 to 26, Icarus 195, 827–843.CrossRefGoogle Scholar
Fraser, W. C. and Kavelaars, J. J. 2008, A derivation of the luminosity function of the Kuiper belt from a broken power-law size distribution, Icarus 198(2), 452–458.CrossRefGoogle Scholar
Freeman, M. P., Watkins, N. W., and Riley, D. J. 2000, Power law distributions of burst duration and interburst interval in the solar wind: Turbulence or dissipative self-organized criticality? Physical Review E, 62, 8794.CrossRefGoogle ScholarPubMed
French, R. G. and Nicholson, P. D. 2000, Saturn’s rings. II. Particle sizes inferred from stellar occultation data, Icarus 145, 502–523.CrossRefGoogle Scholar
Fuentes, C. I. and Holman, M. J. 2008, A Subaru archival search for faint trans-Neptunian objects, AJ 136, 83–97.CrossRefGoogle Scholar
Gabriel, S. B. and Feynman, J. 1996, Power-law distribution for solar energetic proton events, SoPh 165, 337–346.Google Scholar
Gabriel, S. B. and Patrick, G. J. 2003, Solar energetic particle events: Phenomenology and prediction, SSRv 107(1), 55–62.Google Scholar
Galam, S. 2012, Sociophysics. A physicist’s modeling of psycho-political phenomena, Springer, New York, 439p.CrossRefGoogle Scholar
Garcia-Marin, A. P., Estevez, J., Jimenez-Hornero, F. J., and Ayuso-Munoz, J. L. 2013, Multifractal analysis of validated wind speed time speed series, Chaos: An Interdisciplinary Journal of Nonlinear Science 23(1), id. 013133.CrossRefGoogle ScholarPubMed
Gaskell, C. M. 2004, Lognormal X-ray flux variations in an extreme narrow-line Seyfert 1 galaxy, ApJ 612, L21–L24.Google Scholar
Georgoulis, M. K. and Vlahos, L. 1996, Coronal heating by nanoflares and the variability of the occurrence frequency distribution in solar flares, ApJ 469, L135L138.Google Scholar
Georgoulis, M. K. and Vlahos, L. 1998, Variability of the occurrence frequency of solar flares and the statistical flare, AA 336, 721–734.Google Scholar
Georgoulis, M. K., Vilmer, N., and Croby, N. B. 2001, A comparison between statistical properties of solar X-ray flares and avalanche predictions in cellular automata statistical flare models, AA 367, 326–338.CrossRefGoogle Scholar
Georgoulis, M. K., Rust, D. M., Bernasconi, P. N., and Schmieder, B. 2002, Statistics, morphology, and energetics of Ellerman bombs, ApJ 575, 506–528.Google Scholar
Georgoulis, M. K. 2005, Turbulence in the solar atmosphere: Manifestations and diagnostics via solar image processing, SoPh 228, 5–28.Google Scholar
Georgoulis, M. K. 2011, Are solar active regions with major flares more fractal, multifractal, or turbulent than others?, SoPh 276, 161–182.Google Scholar
Georgoulis, M. K. 2012, Are solar active regions with major flares more fractal, multifractal, or turbulent than others? SoPh 276, 161–182.Google Scholar
Georgoulis, M. K., Nindos, A., and Zhang, H. 2019, The source and engine of coronal mass ejections, Philosophical Transactions of the Royal Society A 377, 20180094.Google ScholarPubMed
Gerontidou, M., Vassilaki, A., Mavromichalaki, H., and Kurt, V. 2002, Frequency distributions of solar proton events, Journal of Atmospheric and Solar-Terrestrial Physics 64(5/6), 489–496.CrossRefGoogle Scholar
Gheibi, A., Hossein, S., and Javaherian, M. 2017, The solar flare complex network, ApJ 847, 115 (12pp).Google Scholar
Giannattasio, F., et al. 2013, Diffusion of solar magnetic elements up to supergranular spatial and temporal scales, ApJ 770, 36.CrossRefGoogle Scholar
Giannattasio, F., Stangalini, M., Berrilli, F., Del Moro, D., and Bellot Rubio, L. 2014a, Diffusion of magnetic elements in a supergranular cell, ApJ 788, 137.Google Scholar
Giannattasio, F., et al. 2014b, Pair separation of magnetic elements in the quiet Sun, AA 569, A121.CrossRefGoogle Scholar
Giannattasio, F., Consolini, G., Berrilli, F., and Del Moro, D. 2019, The complex nature of magnetic element transport in the quiet Sun: The Levy-walk character, ApJ 878, 33.Google Scholar
Giannattasio, F., Consolini, G., and Berrilli, F. 2020, Magnetic energy balance in the quiet Sun on supergranular spatial and temporal scales, ApJ 904, 7.Google Scholar
Giannattasio, F., and Consolini, G. 2021, The complex nature of magnetic element transport in the quiet Sun: The multiscaling character, ApJ 908, 142.Google Scholar
Giles, D. E., Feng, H., and Godwin, R. T. 2011, On the bias of the maximum likelihood estimator for the two-parameter Lomax distribution, Econometrics Workshop Paper EWP1104, ISSN 1485–6441.Google Scholar
Giorgi, F., Ermolli, I., Romano, P., Stangalini, M., Zuccarello, F., and Criscuoli, S. 2015, The signature of flare activity in multifractal measurements of active regions observed by SDO/HMI, SoPh 290, 507.Google Scholar
Giuliani, P., Carbone, V., Veltri, P., Boffetta, G. and Vilpiani, A. 2000, Waiting time statistics in solar flares, Physica A: Statistical Mechanics and Its Applications, 280, 75–80.CrossRefGoogle Scholar
Gizis, J. E., et al. 2017a, K2 Ultracool dwarfs survey. II. The white light flare rate of young brown dwarfs, ApJ 845, 33.Google Scholar
Gizis, J. E., Paudel, R. R., Schmidt, S. J., Willians, K. G. and Burgasser, A. J. 2017b, K2 Ultracool dwarfs survey. I. Photometry of an L Dwarf superflare, ApJ 838, 22 (6pp).Google Scholar
Gogus, E., Woods, P. M., Kouveliotou, C., van Paradijs, J., Briggs, M. S., Duncan, R. C., and Thompson, C. 1999, Statistical properties of SGR 1900+14 bursts, ApJ 526, L93–L96.Google Scholar
Gogus, E., Woods, P. M., Kouveliotou, C., and van Paradijs, J. 2000, Statistical properties of SGR 1806-20 bursts, ApJ 532, L121–L124.Google Scholar
Gogus, E., et al. 2017, Burst and outburst characteristics of magnetar 4U 0142+61, ApJ 835, 68 (8pp).Google Scholar
Goldstein, M. L., Morris, S. A., and Yen, G. G. 2004, Problems with fitting to the powerlaw distribution, European Physical Journal B 41, 255.CrossRefGoogle Scholar
Golovko, A. A. and Salakhutdinova, I. I. 2015, Evolution of solar active regions: Detecting the emergence of new magnetic field through multifractal segmentation, Astronomy Reports 59, 776.CrossRefGoogle Scholar
Golovko, A. A. and Salakhutdinova, I. I. 2018, Detecting the solar new magnetic flux regions on the base of vector magnetograms, Journal of Atmospheric and Solar-Terrestrial Physics 179, 120–127.CrossRefGoogle Scholar
Gourdji, K., Michilli, D., Spitler, L. G., Hessels, J. W. T., Seymour, A., Cordes, J. M., and Chatterjee, S. 2019, A sample of low-energy bursts from FRB 12102, ApJL 877(2), L19, 12pp.CrossRefGoogle Scholar
Collaboration, Gravity, et al. 2020, The flux distribution of Sgr A, AA 638, id. A2, 12pp.Google Scholar
Greco, A., Matthaeus, W. H., Servidio, S., and Dmitruk, P. 2009 Waiting-time distributions of magnetic discontinuities: Clustering or Poisson process? Physical Review E, 80, 046401.CrossRefGoogle ScholarPubMed
Greco, A., Perri, S., Servidio, S., Yordanova, E., and Veltri, P. 2016, The complex structure of magnetic field discontinuities in the turbulent solar wind, ApJ 823, L39.CrossRefGoogle Scholar
Greco, A., et al. 2018, Partial variance of increments method in solar wind observations and plasma simulations, SSRv 214, 1.Google Scholar
Grigolini, P., Leddon, D., and Scaffetta, N. 2002, Diffusion entropy and waiting time statistics of hard X-ray solar flares, PhRvL E, 65(4), id. 046203.Google ScholarPubMed
Güdel, M., Benz, A. O., Schmitt, J. H. M. M., and Skinner, S. L. 1996, The Neupert effect in active stellar coronae: Chromospheric evaporation and coronal heating in the dMe flare star binary UV Ceti, ApJ 471, 1002–1014.Google Scholar
Güdel, M., Audard, M., Kashyap, V. L., and Guinan, E. F. 2003, Are coronae of magnetically active stars heated by flares? II. Extreme Ultraviolet and X-ray flare statistics and the differential emission measure distribution, ApJ 582, 423–442.Google Scholar
Guerreiro, N., Haberreiter, M., Hansteen, V., and Schmutz, W. 2015, Small-scale heating events in the solar atmosphere. I. Identification, selection, and implications for coronal heating, ApJ 813, 61 (11pp).Google Scholar
Guerreiro, N., Haberreiter, M., Hansteen, V., and Schmutz, W. 2017, Small-scale heating events in the solar atmosphere. II. Lifetime, total energy, and magnetic properties, AA 603, A103.CrossRefGoogle Scholar
Guidorzi, C., Dichiara, S., Frontera, F., Marguitti, R., Baldeschi, A., Amati, L. 2015, A common stochastic process rules gamma-ray burst prompt emission and X-ray flares, ApJ 801, id. 57, 11pp.Google Scholar
Haisch, B. M., Johnson, H. M., and Davidson, G. T. 1983, Creation of photometric star catalogs using UBV data and model stellar atmospheres, Journal of the Astronautical Sciences 31, 473–506.Google Scholar
Harko, T., Mocanu, G., and Stroia, N. 2015, Self-organized criticality in an one dimensional magnetized grid. Application to GRB X-ray afterglows, Astrophysics and Space Science 357(1), id. 84, 9pp.CrossRefGoogle Scholar
Hathaway, D. H., Beck, J. G., Bogart, R. S., Bachmann, K. T., Khatri, G., Pelitto, J. M., Han, S., and Raymond, J. 2000, The photospheric convection spectrum, SoPh 193, 299–312.Google Scholar
Hergarten, S. 2002, Self-organized criticality in Earth systems, Springer, New York, 272p.CrossRefGoogle Scholar
Hergarten, S. 2013a, Self-organized criticality in landslides (Chapter 11), in Self-Organized Criticality Systems (ed. Aschwanden, M. J.), Open Academic Press GmbH Co, Berlin, Warsaw, 329–348.Google Scholar
Hergarten, S. 2013b, Wildfires and the forest-fire model (Chapter 10), in Self-Organized Criticality Systems (ed. Aschwanden, M. J.), Open Academic Press GmbH Co.Google Scholar
Hermsen, W., et al. 2018, Discovery of synchronous X-ray and radio modeling of PSR B0823+26, MNRAS 480, 3655–3670.CrossRefGoogle Scholar
Hirzberger, J., Vazquez, M., Bonet, J. A., Hanslmeier, A., and Sobotka, M. 1997, Time series of solar granulation images: I. Differences between small and large granules in quiet regions, ApJ 480, 406–419.Google Scholar
Hnat, B., Chapman, S. C., Kiyani, K., Rowlands, G., and Watkins, N. W. 2007, On the fractal nature of the magnetic field energy density in the solar wind, GRL 34, 15108.CrossRefGoogle Scholar
Holman, G. D. 1985, Acceleration of runaway electrons and Joule heating in solar flares, ApJ 293, 584–594.Google Scholar
Hood, A. W., Cargill, P. J., Browning, P, K., and Tam, K. V. 2016, An MHD avalanche in a multi-threaded coronal loop, ApJ 817, 5 (7pp).Google Scholar
Horbury, T. S., Balogh, A., Forsyth, R. J., and Smith, E. J. 1997, Ulysses observations of intermittent heliospheric turbulence, Advances in Space Research 19(6), 847–850.CrossRefGoogle Scholar
Horton, W. and Doxas, I. 1996, A low-dimensional energy-conserving state space model for substorm dynamics, JGR 101(A2), 27, 223–27, 238.CrossRefGoogle Scholar
Hoshino, M., Nishida, A., Yamamoto, T., and Kokubun, S. 1994, Turbulent magnetic field in the distant magnetotail: Bottom-up process of plasmoid formation? GRL 21(25), 2935–2938.CrossRefGoogle Scholar
Hosking, J. R. M. and Wallis, J. R. 1987, Parameter and quantile estimation for the generalized Pareto distribution, Technometrics 29(3), 339–349.CrossRefGoogle Scholar
Howes, G. G., Cowley, S. C., Dorland, W., Hammett, G. W., Quataert, E., and Schekochihin, A. A. 2008, A model of turbulence in magnetized plasmas: Implications for the dissipation range in the solar wind, JGR (Space Physics) 113(A4), CiteID A05103.Google Scholar
Huberman, B. A. and Adamic, L. A. 1999, Internet: Growth dynamics of the World-Wide Web, Nature, 401(6749), 131.CrossRefGoogle Scholar
Hudson, H. S., Peterson, L. E., and Schwartz, D. A. 1969, The hard X-Ray spectrum observed from the third orbiting solar observatory, ApJ 157, 389–415.Google Scholar
Hudson, H. S. 1978 Threshold effect in second-stage acceleration, SoPh 57, 237–240.Google Scholar
Hudson, H. S. 1991, Solar flares, microflares, nanoflares, and coronal heating, SoPh 133, 357–369.Google Scholar
Hudson, H. S. 2020, Solar flare build-up and release, SoPh 295, 132.Google Scholar
Hufnagel, B. R. and Bregman, J. N. 1992, Optical and radio variability in blazars, ApJ 386, 473–484.Google Scholar
Hughes, D., Paczuski, M., Dendy, R. O., Helander, P., and McClements, K. G. 2003, Solar flares as cascades of reconnecting magnetic loops, Physical Review Letters 90, 131101.CrossRefGoogle ScholarPubMed
Huppenkothen, D., et al. 2015, Dissecting magnetar variability with Bayesian hierarchical models, ApJ 10(1), id. 66, 21pp.Google Scholar
Ilachinski, A. 2001, Cellular Automata, World Scientific, New Jersey, 840p.CrossRefGoogle Scholar
Ioshpa, B. A., Obridko, V. N., and Rudenchik, E. A. 2008, Fractal properties of solar magnetic fields, Astronomy Letters 34, 210.CrossRefGoogle Scholar
Isliker, H., Vlahos, L., Benz, A. O., and Raoult, A. 1998, A stochastic model for solar type III bursts, AA 336, 371–380.Google Scholar
Isliker, H. and Benz, A. O. 2001, On the reliability of peak-flux distributions, with an application to solar flares, AA 375, 1040–1048.CrossRefGoogle Scholar
Ivezic, Z., et al. (SDSS Collaboration) 2001, Solar system objects observed in the Sloan Digital Sky Survey commissioning data, The Astronomical Journal 122, 2749–2784.CrossRefGoogle Scholar
Iwai, K., Masuda, S., Miyoshi, Y., Tsuchiya, F., Morioka, A., and Misawa, H. 2013, Peak flux distributions of solar radio type I bursts from highly resolved spectral observations, ApJ 768, L2 (4pp).CrossRefGoogle Scholar
Janssen, K., Voegler, A., and Kneer, F. 2003, On the fractal dimension of small-scale magnetic structures in the Sun, AA 409, 1127–1134.CrossRefGoogle Scholar
Javaherian, M., Safari, H., Dadashi, N., and Aschwanden, M. J. 2017, Statistical properties of photospheric magnetic elements observed by the helioseismic and magnetic imager onboard the solar dynamics observatory, SoPh 292, 164.Google Scholar
Jedicke, T. S. and Metcalfe, T. S. 1998, The orbital and absolute magnitude distributions of main belt asteroids, Ikarus 131(2), 245–260.Google Scholar
Jedicke, R., Larsen, J., and Spahr, T. 2002, Observational selection effects in asteroid surveys, in Asteroids III (eds. Bottke, W., et al.), University Arizona Press Tuscon, AZ, 71–87.Google Scholar
Jensen, H. J. 1998, Self-organized criticality: Emergent Complex Behavior in Physical and Biological Systems, Cambridge University Press, Cambridge UK, 153p.CrossRefGoogle Scholar
Jensen, H. J. 2023, Complexity science: A Study of Emergence, Cambridge University Press, Cambridge.Google Scholar
Jewitt, D. C., Trujillo, C., and Lu, J. X. 2000, Population and size distribution of small Jovian Trojan asteroids, ApJ 120(2), 1140–1147.CrossRefGoogle Scholar
Johnston, S. and Romani, R. W. 2002, A search for giant pulses in Vela-like pulsars, MNRAS 332, 109–115.CrossRefGoogle Scholar
Joulin, V., Buchlin, E., Solomon, J., and Guennou, C. 2016, Energetic characterisation and statistics of solar coronal brightenings, AA 591, A148.CrossRefGoogle Scholar
Kadanoff, L. P. 1991, Complex structures from simple systems, Physics Today 44, 9–11.CrossRefGoogle Scholar
Kadanoff, L. P., Nagel, S. R., Wu, L., and Zhou, S. M. 1991, Scaling and universality in avalanches, Physical Review A 39(12), 6524–6537.Google Scholar
Kahler, S. W. 2013, Does a scaling law exist between solar energetic particle events and solar flares? ApJ 769, 35.Google Scholar
Kakinuma, T., Yamashita, T., and Enome, S. 1969, A statistical study of solar radio bursts a microwave frequencies, Proceedings of the Research Institute of Atmospherics, Nagoya University Japan, Vol. 16, 127–141.Google Scholar
Kalapotharakos, C., Voglis, N., and Contopoulos, G. 2004, Chaos and secular evolution of triaxial N-body galactic models due to an imposed central mass, AA 428, 905–923.CrossRefGoogle Scholar
Kanazir, M. and Wheatland, M. S. 2010, Time-dependent stochastic modeling of solar active region energy, SoPh 266, 301–321.Google Scholar
Kanella, C. and Gudiksen, B. V. 2017, Identification of coronal heating events in 3D simulations, AA 603, A83.CrossRefGoogle Scholar
Kashyap, V. L., Drake, J. J., Güdel, M., and Audard, M. 2002, Flare heating in stellar coronae, ApJ 580, 1118–1132.Google Scholar
Kato, T., Ishioka, R., and Uemura, M. 2002, Photometric study of KR Aurigae during the high state in 2001, PASJ 54, 1033–1036.CrossRefGoogle Scholar
Katz, J. 1986, A model of propagating brittle failure in heterogeneous media, JGR 91, 10412.CrossRefGoogle Scholar
Kaw, P. K., Milikh, G. M., Sharma, A. S., Guzdar, P. N., and Papadopoulos., K. 2001, Gamma ray flashes produced by plasma effects in the middle atmosphere, Physics of Plasmas 8, 4954.CrossRefGoogle Scholar
Kawai, T. and Imada, S. 2022, Factors that determine the power-law index of an energy distribution of solar flares, ApJ 931, 113.Google Scholar
Kelty-Stephen, D. G., Palatinus, K., Saltzman, E., and Dixon, J. A. 2013, A tutorial on multifractality, cascades, and interactivity for empirical time series in ecological science, Ecological Psychology 25, 1–62.CrossRefGoogle Scholar
Kennedy, M. R., Clark, C. J., Voisin, G., and Breton, R. P. 2018, Kepler K2 observations of the transitional millisecond pulsar PSR J1023+0038, MNRAS 477, 1120–1132.CrossRefGoogle Scholar
Klebesadel, R. W., Strong, I. B., and Olson, R. A. 1973, Observations of gamma-ray bursts of cosmic origin, ApJ 182, p. L85.Google Scholar
Klimas, A. J., Vassiliadis, D., Baker, D. N., and Roberts, D. A. 1996, The organized nonlinear dynamics of the magnetosphere, JGR 101(A6), 13089–13114.CrossRefGoogle Scholar
Klimas, A. J., Valdivia, J. A., Vassiliadis, D., Baker, D. N., Hesse, M., and Takalo, J. 2000, Self-organized criticality in the substorm phenomenon and its relation to localized reconnection in the magnetosphere plasma sheet, JGR 105(A8), 18,765–18,780.CrossRefGoogle Scholar
Klimas, A. J., Uritsky, V. M., Vassiliadis, D., and Baker, D. N. 2004, Reconnection and scale-free avalanching in a driven current-sheet model, Journal of Geophysical Research (Space Physics) 104(A2), 2218.Google Scholar
Klimas, A. J., Uritsky, V., and Donovan, E. 2010, Multiscale auroral emission statistics as evidence of turbulent reconnection in Earth’s midtail plasma sheet, JGR 115(A6), CiteID A06202.CrossRefGoogle Scholar
Klimas, A. J. and Uritsky, V. M. 2017, Criticality and turbulence in a resistive magnetohydrodynamic current sheet, PhRvE 95, 3209.Google Scholar
Knizhnik, K. J., Uritsky, V. M., Klimchuk, J. A., and DeVore, C. R. 2018, Power-law statistics of driven reconnection in the magnetically closed corona, ApJ 853, 82, 14pp.Google Scholar
Kokubo, E. and Ida, S. 1998, Oligarchic growth of protoplanets, Icarus 131, 171–178.CrossRefGoogle Scholar
Kolmogorov, A. N. 1941, The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, Doklady Akademia NAUK SSR, 30, 301–305.Google Scholar
Kou, Y. K., Jing, Z. C., Cheng, X., Fan, W. Q., Liu, Y., Li, C., and Ding, M. D. 2020, What determines solar flares producing interplanetary type III radio bursts? ApJ 898, L24 (6pp).CrossRefGoogle Scholar
Kouveliotou, C., Dieters, S., Strohmayer, T., van Paradijs, J., Fishman, G. J., Meegan, C. A., Hurley, K., Kommers, J., Smith, I., Frail, D., and Muakami, T. 1998, An X-ray pulsar with a superstrong magnetic field in the soft γ-ray repeater SGR 1806-20, Nature 393, 235–237.CrossRefGoogle Scholar
Kouveliotou, C., Strohmayer, T., Hurley, K., van Paradijs, J., Finger, M. H., Dieters, S., Woods, P., Thomson, C., and Duncan, R. C. 1999, Discovery of a magnetar associated with the soft gamma ray repeater SGR 1900+14, ApJ 510, L115–L118.Google Scholar
Kovacs, P, Carbone, V., and Voeroes, Z. 2001, Wavelet-based filtering of intermittent events from geomagnetic time-series, Planetary and Space Science, 49, 1219.CrossRefGoogle Scholar
Kozelov, B. V., Uritsky, V. M., and Klimas, A. J. 2004, Power law probability distributions of multiscale auroral dynamics from ground-based TV observations, GRL 31, 20804.CrossRefGoogle Scholar
Kraichnan, R. H. 1974, On Kolmogorov’s inertial-range theories, Journal of Fluid Mechanics 62, 305–330.CrossRefGoogle Scholar
Krucker, S. and Benz, A. O. 1998, Energy distribution of heating processes in the quiet solar corona, ApJ 501, L213.Google Scholar
Kundu, M. R. 1965, Solar Radio Astronomy, Interscience Publication, New York, 660p.Google Scholar
Kunjaya, C., Mahasena, P., Vierdayanti, K., and Herlie, S. 2011, Can self-organized critical accretion disks generate a log-normal emission variability in AGN? Astrophysics and Space Science 336(2), 455–460.CrossRefGoogle Scholar
Kurt, V. G. 1990, Electrons and X-ray emission of solar flares, in Basic Plasma Processes in the Sun, Proceedings of 142 Symposium IAU (ed. Priest, E. R. and Krishan, V.), Kluwer, Dordrecht.Google Scholar
Kuznetsov, S. N. and Kurt, V. G. 1991, Flare-generated protons of different energies, in Dynamics of Solar Flares Proceedings (eds. Schmieder, B. and Priest, E.), Observatoire de Paris, DASOP, Paris, France, pp. 63–64.Google Scholar
Kuznetsov, A. A. and Kolkotkov, D. Y. 2021, Stellar superflares observed simultaneously with Kepler and XMM-Newton, ApJ 912/1, id.81, 16pp.Google Scholar
Lacy, C. H., Moffett, T. J., and Evans, D. S. 1976, UV Ceti stars: Statistical analysis of observational data, ApJSS 30, 85–96.CrossRefGoogle Scholar
Lamy, P. L., FLoyd, O., Boclet, B., Wojak, J., Gilardy, H., and Barlyaeva, T. 2019, Coronal mass ejections over solar cycles 23 and 24, SSRv 215, 39.Google Scholar
Lawrence, J. K. 1991, Diffusion of magnetic flux elements on a fractal geometry, SoPh 135, 249–259.Google Scholar
Lawrence, J. K. and Schrijver, C. J. 1993, Anomalous diffusion of magnetic elements across the solar surface, ApJ 411, 402–405.Google Scholar
Lee, T. T., Petrosian, V., and McTiernan, J. M. 1993, The distribution of flare parameters and implications for coronal heating, ApJ 412, 401–409.Google Scholar
Lee, T. T., Petrosian, V., and McTiernan, J. M. 1995, The Neupert effect and the chromospheric evaporation model for solar flares, ApJ 418, 915–924.Google Scholar
Lei, W. H., et al. 2020, Do the solar flares originating from individual active region follow a random process or a memory-dependent correlation? MNRAS 494, 975.CrossRefGoogle Scholar
Leighly, K. M. and O’Brien, P. T. 1997, Evidence for nonlinear X-Ray variability from the broad-line radio galaxy 3C 390.3, The Astrophysical Journal 481, L15.CrossRefGoogle Scholar
Leighton, R. B. 1964, Transport of magnetic fields on the Sun, ApJ 140, 1574.Google Scholar
Lepreti, F., Carbone, V. and Veltri, P. 2001, Solar flare waiting time distribution: Varyingrate Poisson or Levy function? ApJ 555, L133–L136.Google Scholar
Lepreti, F., Carbone, V., Giuliani, P., Sorriso-Valvo, L., and Veltri, P. 2004, Statistical properties of dissipation bursts within turbulence: Solar flares and geomagnetic activity, Planetary and Space Science 52, 957–962.CrossRefGoogle Scholar
Li, C., Zhong, S. J., Xu, Z. G., He, H., Yan, Y., Chen, P. F., and Fang, C. 2018, Waiting time distributions of solar and stellar flares: Poisson process or with memory? MNRAS 479, L139–L142.CrossRefGoogle Scholar
Li, C. Z., Yang, J. H., Li, C., Tian, Y., Yang, Y., and Wei, H. Q. 2016a, Self-organized criticality of the solar eruptions during solar cycle 23, Sciencia Sinica Physics, 46(2), 029501.Google Scholar
Li, Y. P., Gan, W. Q., and Su, Y. 2009, Double hard X-ray peaks in RHESSI flares as evidence of chromospheric evaporation and implications for modifying the Neupert effect, RAA 9(19), 1155–1164.Google Scholar
Li, Y. P., Gan, W. Q., and Feng, L. 2012, Statistical analyses on thermal aspects of solar flares, ApJ 747, 133.Google Scholar
Li, Y. P., Gan, W. Q., Feng, L., Liu, S. M., and Struminsky, A. 2013, The breakdown of the power-law frequency distributions for the hard X-ray peak count rates of solar flares, Research in Astronomy and Astrophysics 13, 1482.CrossRefGoogle Scholar
Li, Y. P., Feng, L., Zhang, P., Liu, S. M., and Gan, W. Q. 2016b, On the power-law distributions of X-ray fluxes from solar flares observed with GOES, Research in Astronomy and Astrophysics 16, 161.CrossRefGoogle Scholar
Lin, H. N. and Sang, Y. 2020, Scale-invariance in the repeating fast radio burst 121102, MNRAS 491, 2156–2161.Google Scholar
Lin, R. P., Schwartz, R. A., Kane, S. R., Pelling, R. M., and Hurley, K. C. 1984, Solar hard X-ray microflares, ApJ 283, 421–425.Google Scholar
Lin, R. P., Feffer, P. T., and Schwartz, R. A. 2001, Solar hard X-Ray bursts and electron acceleration down to 8 keV, ApJ 557, L125–L128.Google Scholar
Lion, S., Alexandrova, O., and Zaslavsky, A. 2015, Coherent events and spectral shape at ion kinetic scales in the fast solar wind turbulence, ApJ 824, 47 (13pp).Google Scholar
Lipari, P. 2021, The origin of the power-law form of the extragalactic gamma-ray flux, Astroparticle Physics 125, id. 102507.CrossRefGoogle Scholar
Lippiello, E., de Arcangelis, L., and Godano, C. 2008, Different triggering mechanisms for solar flares and coronal mass ejections, AA 488, L29L32.CrossRefGoogle Scholar
Litvinenko, Y. 1996, Particle acceleration in reconnecting current sheets with a non-zero magnetic field, ApJ 462, 997.Google Scholar
Longbottom, A. W., Rickard, G. J., Craig, I. J. D. and Sneyd, A. D. 1998. Magnetic flux braiding: Force-free equilibria and current sheets, ApJ 500, 471–482.Google Scholar
Longcope, D. W. and Noonan, E. J. 2000, Self-organized criticality from separator reconnection in solar flares, ApJ 542, 1088–1099.Google Scholar
Longcope, D. W., Ravindra, B., and Barnes, G. 2007, Determining the source of coronal helicity through measurements of braiding and spin helicity fluxes in active regions, ApJ 668, 571–585.Google Scholar
Lopez Fuentes, M. C., and Klimchuk, J. A. 2006, Coronal loops as self-organized critical systems, Boletin de la Asociacion Argentina de Astronomia La Plata Argentina 49, 108.Google Scholar
Lopez Fuentes, M. C., and Klimchuk, J. A. 2010, A simple model for the evolution of multi-stranded coronal loops, ApJ 719, 591–601.Google Scholar
Lopez Fuentes, M. C., and Klimchuk, J. A. 2015, Two-dimensional cellular automaton model for the evolution of active region coronal plasmas, ApJ 799, 128.Google Scholar
Lopez Fuentes, M. C., and Klimchuk, J. A. 2016, A nanoflare-based cellular automaton model and the observed properties of the coronal plasma, ApJ 828, 86.Google Scholar
Loreto, V., Pietronero, L., Vespignani, A., and Zapperi, S. 1995, Renormalization group approach to the critical behavior of the forest-fire model, Physical Review Letters 75(3), 465–468.CrossRefGoogle Scholar
Lorimer, D. R., Bailes, M., McLaughlin, M. A. 2007, A bright millisecond radio burst of extragalactic origin, Science 318, 777.CrossRefGoogle ScholarPubMed
Love, J. J. 2020, Some experiments in extreme-value statistical modeling of magnetic superstorm intensities, Space Weather 18(1), id. e02255.CrossRefGoogle Scholar
Love, J. J. 2021, Extreme event magnetic storm probabilities derived from rank statistics of historical Dst intensities for solar cycles 14–24, Space Weather 1901579.CrossRefGoogle Scholar
Lu, E. T. and Hamilton, R. J. 1991, Avalanches and the distribution of solar flares, Astrophysical Journal 380, L89L92.CrossRefGoogle Scholar
Lu, E. T., Hamilton, R. J., McTiernan, J. M., and Bromund, K. R. 1993, Solar flares and avalanches in driven dissipative systems, ApJ 412, 841–852.Google Scholar
Lu, E. T. 1995, Avalanches in continuum driven dissipative systems, PhRvL 74, 2511–2514.Google ScholarPubMed
Lu, E. T. 1995a, Constraints on energy storage and release models for astrophysical transients and solar flares, ApJ 447, 416.Google Scholar
Lu, E. T. 1995b, The statistical physics of solar active regions and the fundamental nature of solar flares, ApJ 446, L109L112.Google Scholar
Lu, W. and Piro, A. L. 2019, Implications from ASKAP fast radio burst statistics, ApJ 883(1), id. 40, 8pp.Google Scholar
Lui, A. T. Y., Lopez, R. W., Krimigis, S. M., McEntire, R. W., Zanetti, L. J., and Potemra, T. A. 1988, A case study of magnetotail current sheet disruption and diversion, GRL 15(7), 721–724.CrossRefGoogle Scholar
Lui, A. T. Y., Chapman, S. C., Liou, K., Newell, P. T., Meng, C. I., Brittnacher, M., and Parks, G. K. 2000, Is the dynamic magnetosphere an avalanching system? GRL 27(7), 911–914.CrossRefGoogle Scholar
Lundgren, S. C., Cordes, J. M., Ulmer, M., Matz, S. M., Lomatch, S., Foster, R. S., and Hankins, T. 1995, Giant pulses from the Crab pulsar: A joint radio and gamma-ray study, ApJ 453, 433–445.Google Scholar
Lurie, J. C., Davenport, J. R. A., Hawley, S. H., Wilkinson, T. D., Wisniewski, J. P., Kowalski, A. F., and Hebb, L. 2015, Kepler flares III: Stellar activity on GJ 1245A and B, ApJ 800, 95, 14pp.Google Scholar
Lyon, G. J. 2000, The solar wind-magnetosphere-ionosphere system, Science 288, 1987–1991.CrossRefGoogle ScholarPubMed
Lyu, F., Li, Y. P., Hou, S. J., Wei, J. J., Geng, J. J., and Wu, X. F. 2020, Self-organized criticality in multi-pulse gamma-ray bursts, Frontiers of Physics 16(1), id. 14501.Google Scholar
Macek, W. M. and Szczepaniak, A. 2008, Generalized two-scale weighted Cantor set model for solar wind turbulence, GRL 35, 2108.CrossRefGoogle Scholar
Macek, W. M. and Wawrzaszek, A. 2009, Evolution of asymmetric multifractal scaling of solar wind turbulence in the outer heliosphere, JGR (Space Physics), 114, 3108.Google Scholar
Macek, W. M. 2010, Chaos and multifractals in the solar wind, Advances in Space Research, 46, 526.CrossRefGoogle Scholar
Maehara, H., Shibayama, T., Notsu, S., Notsu, Y., Nagao, T., Kusaga, S., Honda, S., Nogami, D., and Shibata, K. 2012, Superflares on solar-type stars, Nature 485, 478–481.CrossRefGoogle ScholarPubMed
Maehara, H., Shibayama, T., Notsu, Y., Notsu, S., Honda, S., Nobami, D., and Shibata, K. 2015, Statistical properties of superflares on solar-type stars based on 1-min cadence data, Earth, Planets and Space 67, 59.CrossRefGoogle Scholar
Maehara, H., et al. 2017, Starspot activity and superflares on solar-type stars, PASJ 69, 41.CrossRefGoogle Scholar
Main, I. G. and Burton, P. W. 1984, Physical links between crustal deformation, seismic moment and seismic hazard for regions of varying seismicity, Geophysics Journal 79(2), 469–488.Google Scholar
Mandelbrot, B. B. 1977, Fractals: Form, Chance, and Dimension, Translation of Les objects fractals, W. H. Freeman, San Francisco.Google Scholar
Mandelbrot, B. B. 1983, The fractal geometry of nature, W. H. Freeman, San Francisco. Mandelbrot, B. B. 1985, Self-affine fractals and fractal dimension, Physica Scripta 32, 257–260.Google Scholar
Marek, M. and Schreiber, R. 2017, Is the AKR cyclotron maser instability a self-organized criticality system? in Planetary Radio Emissions VIII (ed. Fischer, G.), Academy of Sciences Press, Vienna 2017, pp. 269–277.Google Scholar
Marek, M. and Schreiber, R. 2022, Can the auroral kilometric radiation be a self-organized criticality system? Earth and Space Science 8(5), id. e02148.Google Scholar
Markovic, D. and Gros, C. 2014, Power laws and self-organized criticality in theory and nature, Physics Reports 536, 41–74.CrossRefGoogle Scholar
Martin, E., Shreim, A., and Paczuski, M. 2010, Activity-dependent branching ratios in shocks, solar x-ray flux, and the Bak-Tang-Wiesenfeld sandpile model, Physical Review E 016109-1:6Google Scholar
Matthaeus, W. H. and Goldstein, M. L. 1986, Low-frequency 1/f noise in the interplanetary magnetic field, Physical Review Letters 57(4), 495–408.CrossRefGoogle ScholarPubMed
McAteer, R. T. J., Gallagher, P. T., Ireland, J., and Young, C. A. 2005, Automated boundary-extraction And region-growing techniques applied to solar magnetograms, SoPh 228, 55–66.Google Scholar
McAteer, R. T. J., Young, C. A., Ireland, J., and Gallagher, P. T. 2007, The bursty nature of solar flare X-ray emission, ApJ 662, 691–700.Google Scholar
McAteer, R. T. J. 2013, Self-organized criticality and fractal geometry (Chapter 3), in Self-Organized Criticality Systems (ed. Aschwanden, M. J.), Open Academic Press GmbH Co.Google Scholar
McAteer, R. T. J., et al. 2016, 25 Years of self-organized criticality: numerical detection methods, SSRv 198, 217–266.Google Scholar
McFadden, L. A. and Binzel, R. P. 2007, Near-earth objects, in Encyclopedia of the Solar System (eds. McFadden, L.A., Weissman, P.R., and Johnson, T.V.), Elsevier, p. 293.Google Scholar
McIntosh, S. W. and Charbonneau, P. 2001, Geometric effects in avalanche models of solar flares: Implications for coronal heating, ApJ 563, L165168.Google Scholar
McIntosh, S. W., Charbonneau, P., Bogdan, T. J., Liu, H. L., and Norman, J. P. 2002, Geometrical properties of avalanches in self-organized critical models of solar flares, PhRvE 65, 6125.Google ScholarPubMed
McIntosh, S. W. and Gurman, J. B. 2005, Nine years of EUV bright points, SoPh 228, 285–299.Google Scholar
McTiernan, J. M., Fisher, G. H., and Li, P. 1999, The solar soft X-ray differential emission measure and the Neupert effect at different temperatures, ApJ 514, 472–483.Google Scholar
Melatos, A., Peralta, C., and Wyithe, J. S. B. 2008, Avalanche dynamics of radio pulsar glitches, ApJ 672, 1103–1118.Google Scholar
Melatos, A., Douglass, J. A., and Simula, T. P. 2015, Persistent gravitational radiation from glitching pulsars, ApJ 807(123), 12.Google Scholar
Melatos, A., Howitt, G., and Fulgenzi, W. 2018, Size-waiting-time correlations in pulsar glitches, ApJ 863, 196.Google Scholar
Melnick, J. and Selman, F. J. 2000, Self-organized criticality and the IMF of starbursts, in Cosmic Evolution and Galaxy Formation: Structure, Interactions, and Feedback, ASP Conference Series 215 (eds. Franco, J., Terlevich, E., Lopez-Cruz, Aretxaga, O., I.), Astronomical Society of the Pacific, San Francisco.Google Scholar
Mendoza, B., Melendez, R., Miroshnichenko, L. I., and Enriquez, Perez. R. 1997, Frequency distributions of solar proton events, Proceeding of 25th International Cosmic Ray Conference, Potchefstroom University, Vol. 1, p. 81.Google Scholar
Mercier, C. and Trottet, G. 1997, Coronal radio bursts: A signature of nanoflares? ApJ 484, 920–926.Google Scholar
Meunier, N. 1999, Large-scale dynamics of active regions and small photospheric magnetic features, ApJ 527, 967–976.Google Scholar
Meunier, N. 2004, Complexity of magnetic structures: Flares and cycle phase dependence, AA 420, 333–342.CrossRefGoogle Scholar
Meyer, M., Scargle, J. D., and Blandford, R. D. 2019, Characterizing the gamma-ray variability of the brightest flat spectrum radio quasars observed with the Fermi LAT, ApJ 877, 39.Google Scholar
Meyrand, R., and Galtier, S. 2010, A universal law for solar-wind turbulence at electron scales, ApJ 721, 1421–1424.Google Scholar
Michilli, D., et al. 2018, An extreme magneto-ionic environment associated with the fast radio burst source FRB 121102, Nature 553(7687), 182–185.CrossRefGoogle ScholarPubMed
Milikh, G. M., Guzdar, P. N., and Sharma, A. S. 2005, Gamma ray flashes due to plasma processes in the atmosphere: Role of whistler waves, JGR 110(A2), A02308.CrossRefGoogle Scholar
Milovanov, A. V., Zelenyi, L. M., Zimbardo, G., and Veltri, P. 2001, Self-organized branching of magnetotail current system near the percolation threshold, JGR 106(A4), 6291–6308.CrossRefGoogle Scholar
Milovanov, A. V. and Zelenyi, L. M. 2002, Nonequilibrium stationary states in the earth’s magnetotail: Stochastic acceleration processes and nonthermal distribution functions, Advances in Space Research, 30, 2667.CrossRefGoogle Scholar
Milovanov, A. V. 2013, Percolation models of self-organized critical phenomena (Chapter 4), in Self-Organized Criticality Systems (ed. Aschwanden, M. J.), Open Academic Press GmbH Co.Google Scholar
Mineshige, S. and Negoro, H. 1999, Accretion disks in the context of self-organized criticality: How to produce 1/f fluctuations? in High Energy Processes in Accreting Black Holes, ASP Conference Series 161, 113–128.Google Scholar
Mineshige, S., Takeuchi, M., and Nishimori, H. 1994a, Is a black hole accretion disk in a self-organized critical state? ApJ 435, L125–L128.Google Scholar
Mineshige, S., Ouchi, B., and Nishimori, H. 1994b, On the generation of 1/f fluctuations in X-rays from black-hole objects, PASJ 46, 97–105.Google Scholar
Miroshnichenko, L. I., Mendoza, B., and Perez-Enriquez, R. 2001, Size distributions of the >10 MeV solar proton events, SoPh 202, 151–171.Google Scholar
Miroshnichenko, L. I. and Nymmik, R. A. 2014, Extreme fluxes in solar energetic particle events: Methodological and physical limitations, Radiation Measurements 61, 6–15.CrossRefGoogle Scholar
Mocanu, G. and Grumiller, D. 2012, Self-organized criticality in boson clouds around black holes, Physical Review D 85(10), is.105022.CrossRefGoogle Scholar
Moffett, J. J. 1974, UV Ceti flare stars observational data, ApJS 273, 29, 1–42.Google Scholar
Moffat, J. W. 1997, Stochastic gravity and self-organized critical cosmology, in Very High Energy Phenomena in the Universe, Morion Workshop (eds. Giraud-Heraud, Y. and Than Van, J. T.), p. 353.Google Scholar
Moloney, N. R. and Davidsen, J. 2011, Extreme bursts in the solar wind, GRL 38(4), CiteID L14111.CrossRefGoogle Scholar
Moloney, N. R. and Davidsen, J. 2014, Stationarity of extreme bursts in the solar wind, Physical Review E, 89(5), id 052812.CrossRefGoogle ScholarPubMed
Monte-Moreno, E. and Hernandez-Pajares, M. 2014, Occurrence of solar flares viewed with GPS: Statistics and fractal nature, JGR Space Physics 119(11), 9216–9227.CrossRefGoogle Scholar
Moon, Y. J., Choe, G. S., Wang, H., and Park, Y. D. 2003, Sympathetic coronal mass ejections, ApJ 588, 1176–1182.Google Scholar
Moradhaseli, M. A., Javaherian, M., Fathalian, N., and Safari, H. 2021, Empirical scaling relations for the photospheric magnetic elements of the flaring and non-flaring active regions, Acta Astronomia 71, 163.Google Scholar
Morales, L. and Charbonneau, P. 2008, Self-organized critical model of energy release in an idealized coronal loop, ApJ 682, 654–666.Google Scholar
Morales, L. F. and Charbonneau, P. 2009, Geometrical properties of avalanches in a pseudo-3D coronal loop, ApJ 698, 1893–1902.Google Scholar
Morales, L. F., Dmitruk, P., and Gomez, D. O. 2020, Energy dissipation in coronal loops: Statistical analysis of intermittent structures in magnetohydrodynamic turbulence, ApJ 894, 90–95.Google Scholar
Morina, D., Serra, I., Puig, P., and Corral, A. 2019, Probability estimation of a Carringtonlike geomagnetic storm, Scientific Reports 9, id. 2393.CrossRefGoogle ScholarPubMed
Mottez, F., Zarka, P., and Voison, G. 2020, Repeating fast radio bursts caused by small bodies orbiting a pulsar or a magnetar, AA 644, id. A156.CrossRefGoogle Scholar
Mullan, D. J., Mathioudakis, M., Bloomfield, D. S., and Christian, D. J. 2006, A comparative study of flaring loops in active stars, ApJSS 164, 173–201.Google Scholar
Nagler, J., Hauert, C., and Schuster, H. G. 1999, Self-organized criticality in a nutshell, Physical Review E 60 2706–2709.CrossRefGoogle Scholar
Nakazato, K. 2014, Self-organized criticality in a spherically closed cellular automaton: Modeling soft gamma repeater bursts driven by magnetic reconnection, Physical Review D 90(4), id. 043010.CrossRefGoogle Scholar
Negoro, H., Kitamoto, S., Takeuchi, M., and Mineshige, S. 1995, Statistics of X-ray fluctuations from Cygnus X-1: Reservoirs in the disk? ApJ 452, L49–L52.Google Scholar
Nelson, K. P. 2020, Independent approximates enable closed-form parameter estimation of heavy-tailed distributions, arXiv:2012.11026.Google Scholar
Neupert, W. M. 1968, Comparison of solar X-ray line emission with microwave emission during flares, ApJ 153, L59L64.Google Scholar
Newman, M. E. J. 2011, Complex systems: A survey, American J. Physics 79/8, 800–810.Google Scholar
Nhalil, N. V., Nelson, C. J., Mathioudakis, M., and Doyle, G. J. 2020, Power-law energy distributions of small-scale impulsive events on the active Sun: Results from IRIS, MNRAS 499, 1385–1394.Google Scholar
Nicol, R. M., Chapman, S. C., and Dendy, R. O. 2009, Quantifying the anisotropy and solar cycle dependence of 1/f solar wind fluctuations observed by advanced composition explorer, ApJ 703, 2138.Google Scholar
Nielsen, M. B., Gizon, L., Schunker, H., Karoff, C. 2013, Rotation periods of 12,000 mainsequence Kepler stars: Dependence on stellar spectral type and comparison with v sin i observations, AA 557 id. L10.CrossRefGoogle Scholar
Ning, Z., Wu, H., and Meng, X. 2007, Frequency distributions of microwave pulses for the 18 March 2003 solar flare, SoPh 242, 101–109.Google Scholar
Ning, Z. and Cao, W. 2010a, Investigation of the Neupert effect in the various intervals of solar flares, SoPh 264, 329–344.Google Scholar
Ning, Z. and Cao, W. 2010b, Investigation of chromospheric evaporation in a Neupert-type solar flare, ApJ 717, 1232–1242.Google Scholar
Nishizuka, N., Asai, A., Takasaki, H., Kurokawa, H., and Shibata, K. 2009, The power-law distribution of flare kernels and fractal current sheets in a solar flare, ApJ 694, L74–L78.Google Scholar
Nishizuka, N. and Shibata, K. 2013, Fermi acceleration in plasmoids interacting with fast shocks of reconnection via fractal reconnection, Physics Reviews and Letters 110, id. 051101.CrossRefGoogle ScholarPubMed
Nita, G. M., Gary, D. E., Lanzerotti, L. J., and Thomson, D. J. 2002, The peak flux distribution of solar radio bursts, ApJ 570, 423–438.Google Scholar
Notsu, Y., Shibayama, T., Maehara, H., Notsu, S., Nagao, T., Honda, S., Ishi, T. T., Nogami, D., and Shibata, K. 2013, Superflare on solar-type stars observed with KEPLER II. Photometric variability of superflare-generating stars: A signature of stellar rotation and starspots, ApJ 771, 127.Google Scholar
Notsu, Y., Honda, S., Maehara, H., Notsu, S., Shibayama, T. Nogami, D., and Shibata, K. 2015a, High dispersion spectroscopy of solar-type superflare stars, I. Temperature, surface gravity, metallicity, and v sin i, PASJ 67(3), id. 32, 24pp.CrossRefGoogle Scholar
Notsu, Y., Honda, S., Maehara, H., Notsu, S., Shibatama, T., Nogami, D., and Shibta, K. 2015b, High dispersion spectroscopy of solar-type superflare stars. II. Stellar rotation, Starspots, and chromospheric activities, PASJ 67(3), id.33, 14pp.Google Scholar
Nozakura, T. and Ikeuchi, S. 1988, Spiral patterns on a differentially rotating galactic disk – Self-organized structures in galaxies, ApJ 333, 68–77.Google Scholar
Nurhan, Y. I., Johnson, J. R., Homan, J. R., Wing, S., and Aschwanden, M. J. 2021, Role of the solar minimum in the waiting time distribution throughout the heliosphere, GRL 48, 16.CrossRefGoogle Scholar
Ofman, L. 2010, Wave modeling of the solar wind, living reviews in solar physics, 7, 4. Osten, R. A. and Brown, A. 1999, Extreme Ultraviolet Explorer photometry of RS Canum Venaticorum systems” Four flaring megaseconds, ApJ 515, 746–761.Google Scholar
Ostgaard, N., Gjesteland, T., Hansen, R. S., Collier, A. B., and Carlson, B. 2012, The true fluence distribution of terrestrial gamma flashes at satellite altitude, JGR 117(A3), CiteID A03327.CrossRefGoogle Scholar
Paczuski, M. and Hughes, D. 2004, A heavenly example of scale free networks and Self-Organized criticality, Physica A 342(1), 158–163.CrossRefGoogle Scholar
Paizis, A. and Sidoli, L. 2014, Cumulative luminosity distributions of supergiant fast X-ray transients in hard X-rays, MNRAS 439(4), 3439–3452.CrossRefGoogle Scholar
Paniveni, U., Krishan, V., Singh, J., and Srikanth, R. 2005, On the fractal structure of solar supergranulation, SoPh 231, 1.Google Scholar
Paniveni, U., Krishan, V., Singh, J., and Srikanth, R. 2010, Activity dependence of solar supergranular fractal dimension, MNRAS 402, 424.CrossRefGoogle Scholar
Pankine, A. A. and Ingersoll, A. P. 2004a, Interannual variability of Mars global dust storms: An example of self-organized criticality? Ikarus 170, 514–518.Google Scholar
Pankine, A. A. and Ingersoll, A. P. 2004b, Interannual variability of Mars global dust storms: An example of self-organized criticality? American Geophysical Union, Fall Meeting, abstract #P31B-0993.Google Scholar
Pallavicini, R., Tagliaferri, G., and Stella, L. 1990, X-ray emission from solar neighbourhood flare stars a comprehensive survey of EXOSAT results, AA 228, 403–425.Google Scholar
Papadopoulos, K., Sharma, A. S., and Valdivia, J. A. 1993, Is the magnetosphere a lens for MHD waves? GRL 20(24), 2809–2812.CrossRefGoogle Scholar
Parker, E. N. 1958, Dynamics of the interplanetary gas and magnetic fields, ApJ 128, 664.Google Scholar
Parker, E. N. 1988, Nanoflares and the solar X-ray corona, ApJ 330, 474–479.Google Scholar
Parnell, C. E. and Jupp, P. E. 2000, Statistical analysis of the energy distribution of nanoflares in the quiet Sun, ApJ 529, 554–569.Google Scholar
Parnell, C. E., DeForest, C. E., Hagenaar, H. J., Johnston, B. A., Lamb, D. A., and Welsch, B. T. 2009, A power-law distribution of solar magnetic fields over more than five decades in flux, ApJ 698, 75–82.Google Scholar
Pavan, J. and Vinas, A. F. 2019, Temperature fluctuation at the Sun and large-scale electric field in the solar wind: A challenge for the Parker Solar Probe Mission, ApJ 882, 28 (6pp).Google Scholar
Pavlidou, V., Kuijpers, J., Vlahos, L., and Isliker, H. 2001, A cellular automaton model for the magnetic activity in accretion disks, AA 372, 326–337.CrossRefGoogle Scholar
Pavlos, G. P., Karakatsanis, L. P., and Xenakis, M. N. 2012, Tsallis non-extensive statistics, intermittent turbulence, SOC and chaos in the solar plasma. I. Sunspot dynamics, Physica A: Statistical Mechanics and Its Applications 391, 6287.CrossRefGoogle Scholar
Pearce, G., Rowe, A. K., and Yeung, J. 1993, A statistical analysis of hard X-ray solar flares, ApJSS 208, 99.Google Scholar
Peebles, P. J. E. 1980, The Large-Scale Structure of the Universe, Princeton University Press, Princeton, NJ, 435p.Google Scholar
Peng, F. K., et al. 2023, Self-organized criticality in solar GeV flares, MNRAS 518(3), 3959–3965.Google Scholar
Perez-Enriquez, R. and Miroshnichenko, L. I. 1999, Frequency distributions of solar gamma ray events related and not related with SPEs 1989–1995, SoPh 188, 169–185.Google Scholar
Perez-Enriquez, R., Carrillo, A., and Rodriguez, C. 2006, Fractal character of G index of IPS data for the period 1991–1994, obtained from multiscale wavelet analysis, Advanced Journal of Social Science 38(8), 1819–1823.Google Scholar
Pietras, M., Falewicz, R., Siarkovski, M., Bicz, K., and Pres, P. 2022, Statistical analysis of stellar flares from the first three years of TESS observations, ApJ 935, 143.Google Scholar
Pietronero, L., Vispignani, A., and Zapperi, S. 1994, Renormalization scheme for Self-Organized criticality in sandpile models, Physical Review Letters 72(11), 1690–1693.CrossRefGoogle ScholarPubMed
Podesta, J. J. 2006a, Radial decay law for large-scale velocity and magnetic field fluctuations in the solar wind, JGR (Space Physics), 111, 8103.Google Scholar
Podesta, J. J., Roberts, D. A., and Goldstein, M. L. 2006b, Self-similar scaling of magnetic energy in the inertial range of solar wind turbulence, JGR (Space Physics), 111, 9105.Google Scholar
Podesta, J. J., Roberts, D. A., and Goldstein, M. L. 2007a, Spectral exponents of kinetic and magnetic energy spectra in solar wind turbulence, ApJ 664, 543–548.Google Scholar
Podesta, J. J. 2007b, Self-similar scaling of kinetic energy density in the inertial range of solar wind turbulence, JGR (Space Physics), 112, 11104.Google Scholar
Pontin, D. I. and Hornig, G. 2015, The structure of current layers and degree of field-line braiding in coronal loops, ApJ 805(1), article ID 47, 12.Google Scholar
Price, C. P. and Newman, D. E. 2001, Using the /R/S statistic to analyze/AE data, JASTR 63(13), 1387–1397.Google Scholar
Pruessner, G. 2012, Self-organised Criticality: Theory, Models and Characterisation, Cambridge University Press: Cambridge.CrossRefGoogle Scholar
Pruessner, G. 2013, Self-organized criticality computer simulations (Chapter 7), in Self-Organized Criticality Systems (ed. Aschwanden, M. J.), Open Academic Press GmbH Co.Google Scholar
Purkhart, S. and Veronig, A. M. 2022, Nanoflare distributions over solar cycle 24 based on SDO/AIA differential emission measure observations, AA 661, id. A149, 13pp.CrossRefGoogle Scholar
Raup, D. M. 1997, How nature works: The science of self-organized criticality, Complexity, 2(6), 30–33.3.0.CO;2-L>CrossRefGoogle Scholar
Reames, D. V. 2013, The two sources of solar energetic particles, SSRv 175(1–4), 53–92.Google Scholar
Rieutord, M., et al. 2008, Solar supergranulation revealed by granule tracking, AA 479, L17.CrossRefGoogle Scholar
Rieutord, M., Roudier, T., and Rincon, F., 2010, On the power spectrum of solar surface flows, AA 512, A4.CrossRefGoogle Scholar
Rincon, F., Roudier, T., Schekochihin, A. A., and Rieutord, M. 2017, Supergranulation and multiscale flows in the solar photosphere. Global observations versus a theory of anisotropic turbulent convection, AA 599, A69.CrossRefGoogle Scholar
Robbrecht, E., Patsourakos, S., and Vourlidas, A. 2009a, No trace left behind: STEREO observations of a coronal mass ejection without low coronal signatures, ApJ 701, 283–291.Google Scholar
Robbrecht, E., Berghmans, D., and Van der Linden, R. A. M. 2009b, Automated LASCO CME catalog for solar cycle 23: Are CMEs scale invariant? ApJ 691, 1222–1234.Google Scholar
Robinson, R. D., Carpenter, K. G., and Percival, J. W. 1999, A search for microflaring activity on dMe flare stars. II. Observations of YZ Canis Minoris, ApJ 516, 916–923.Google Scholar
Rosa, R. R., Sharma, A. S., and Valdicia, J. A. 1998, Characterization of localized turbulence in plasma extended systems, Physica A, 257,1–4, 509–514.CrossRefGoogle Scholar
Rosa, R. R., Sharma, A. S., and Valdicia, J. A. 1999, Characterization of asymmetric fragmentation patterns in spatially extended systems. International Journal of Modern Physics C, 10(01), 147–163.CrossRefGoogle Scholar
Rosenshein, E. B. 2003, Applicability of complexity theory to Martian fluvial systems: A preliminary Analysis in 34th Annual Lunar and Planetary Science Conference, League City, Texas, abstract no. 1660.Google Scholar
Rosner, R. and Vaiana, G. S. 1978, Cosmic flare transients: Constraints upon models for energy storage and release derived from the event frequency distribution, ApJ 222, 1104.Google Scholar
Rosner, R., Tucker, W. H., and Vaiana, G. S. 1978, Dynamics of quiescent solar corona, ApJ 220, 643.Google Scholar
Rostoker, G. 1984, Implications of the hydrodynamic analogue for the solar terrestrial interaction and the mapping of high latitude convection pattern into the magnetotail, Geophysical Research Letters 11, 251.CrossRefGoogle Scholar
Roudier, T. and Muller, R. 1986, Structure of the solar granulation, SoPh 107, 11.Google Scholar
Rybczynski, M., Wodarczyk, Z., and Wilk, G. 2001, Self-organized criticality in atmospheric cascades, Nuclear Physics B Proceedings Supplements 97, 81–84.CrossRefGoogle Scholar
Rypdal, M. and Rypdal, K. 2010, Stochastic modeling of the AE index and its relation to fluctuations in z of the IMF on time scales shorter than substorm duration, JGR 115(A11), CiteID A11216.CrossRefGoogle Scholar
Rypdal, M. and Rypdal, K. 2011, Discerning a linkage between solar wind turbulence and ionospheric dissipation by a method of confined multifractal motions, JGR 116, A02202, doi:10.1029/2010JA015907.CrossRefGoogle Scholar
Ryan, D. F., Dominique, M., Seaton, D., Stegen, K., and White, A. 2016, Effects of flare definitions on the statistics of derived flare distributions, AA 592, A133.CrossRefGoogle Scholar
Sachs, M. K., et al. 2013, Self-organizing complex earthquakes: Scaling in data, models, and forecasting (Chapter 9), in Self-Organized Criticality Systems (ed. Aschwanden, M. J.), Open Academic Press GmbH Co.Google Scholar
Sahraoui, F., Goldstein, M. L., Robert, P., and Khotyaintsev, Y. V. 2009, Evidence of a cascade and dissipation of solar-wind turbulence at the electron gyroscale, Physical Review Letters 102(23), id. 231102.CrossRefGoogle ScholarPubMed
Saichev, A., Malevergne, Y., and Sornette, D. 2009, Theory of Zipf’s Law and Beyond, Lecture Notes in Economics and Mathematical Systems, Vol. 632, Springer, Berlin.Google Scholar
Sanchez, R., Newman, D. E., and Carreras, B. A. 2002, Waiting-time statistics of Self-Organized criticality systems, Physical Review Letters 88(6), 068302.CrossRefGoogle ScholarPubMed
Sanchez, N., Anez, N., Alfaro, E., and Odekon, M. C. 2010, The fractal dimension of star-forming regions at different spatial scales in M33, ApJ 720, 541–547.Google Scholar
Sanchez, R. and Newman, D. 2018, A primer on complex systems, Lecture Notes in Physics 943, S.CrossRefGoogle Scholar
Savin, S., et al. 2002, Multi-spacecraft tracing of turbulent boundary layer, Advances in Space Research 30(12), 2821–2830.CrossRefGoogle Scholar
Scholkmann, F. 2017, Harmonic orbital resonances and orbital long-range order of the TRAPPIST-1 exoplanetary system, Progress in Physics 2017, 9, 85–89.Google Scholar
Schulman, L. S. and Seiden, P. E. 1986a, Percolation and galaxies, Science 425–431.CrossRefGoogle ScholarPubMed
Schulman, L. S. and Seiden, P. E. 1986b, Hierarchical structure in the distribution of galaxies, ApJ 311, 1–5.Google Scholar
Scholz, P., Spitler, L. G., Hessels, J. W. T., Chatterjee, S. 2016, The repeating fast radio burst FRB 121102: Multi-wavelength observations and additional bursts, ApJ 833(2), id. 177, 17pp.Google Scholar
Scholz, P., et al. 2017, Simultaneous X-ray, gamma-ray, and radio observations of the repeating fast radio burst FRB 121102, ApJ 846(1), id. 80, 10pp.Google Scholar
Schrijver, C. J., et al. 2012, Estimating the frequency of extremely energetic solar events, based on solar, stellar, lunar, and terrestrial records, JGR (Space Physics) 117, 8103.Google Scholar
Schroeder, M. 1991, Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise, Freeman: New York.Google Scholar
Schwartz, R. A., Dennis, B. R., Fishman, G. J., Meegan, C. A., Wilson, R. B., Paciesas, W. S. 1992, BATSE flare observations in solar cycle 22, in The Compton Observatory Science Workshop (eds. Shrader, C. R., Gehrels, N., and Dennis, B. R.), NASA CP 3137, NASA, Washington DC, 457.Google Scholar
Scott, A. C. 2007, The Nonlinear Universe: Chaos, Emergence, Life, Springer, Berlin, 364p.Google Scholar
Searle, L. and Zinn, R. 1978, Compositions of halo clusters and the formation of the galactic halo, ApJ 225, 357–379.Google Scholar
Seiden, P. E. and Schulman, L. S. 1990. Percolation model of galactic structure, Advanced Physics 39(1), 1–54.CrossRefGoogle Scholar
Shao, X., Sitnov, M. I., Sharma, A. S., Papadopoulos, K., Goodrich, C. C., Guzdar, P. N., Milikh, G. M., Wiltberger, M. J., and Lyon, J. G. 2003, Phase transition-like behavior of substorms: Global MHD simulations results, Journal of Geophysical Research 108(A1), 1037.CrossRefGoogle Scholar
Shapoval, A., Le Mouel, J. L., Shnirman, M., and Courtillot, V. 2018, Observational evidence in favor of scale-free evolution of sunspot groups, AA 618, A183.CrossRefGoogle Scholar
Sharma, A. S., Vassiliadis, D., and Papadopoulos, K. 1993, Reconstruction on lowdimensional magnetospheric dynamics by singular spectrum analysis, Research Letters 20(5), 335–338.CrossRefGoogle Scholar
Sharma, A. S. 1995, Assessing the magnetospheres nonlinear behavior – its dimension is low, its predictability high Reviews of Geophysics 33 (Suppl.), 645–650.Google Scholar
Sharma, A. S. and Kaw, P. K. 2005, Nonequilibrium Phenomena in Plasmas (eds. Sharma, A.S. and Kaw, K.), e-book, Dordrecht.CrossRefGoogle Scholar
Sharma, A. S., Sitnov, M. I., and Papadopoulos, K. 2001, Substorms as nonequilibrium transitions of the magnetosphere, JASTR 63(13), 1399–1406.Google Scholar
Sharma, A. S., Baker, D. N., Bhattacharyya, A., Bunde, A., Dimri, V. P., Gupta, H. K., Gupta, V. K., Lovejoy, S., Main, I. G., Schertzer, D., von Storch, H., and Watkins, N. W. 2012, Complexity and extreme events in geosciences: An overview, in Complexity and Extreme Events in Geosciences, Geophysical Monograph Series, Vol. 196 (eds., Sharma, A. S., Dimri, V. P., Bunde, A., and Baker, D. N.), American Geophysical Union, Washington, pp. 1–16.Google Scholar
Sharma, A. S., Aschwanden, M. J., Crosby, N. B., Klimas, A. J., Milovanov, A. V., Morales, L., Sanchez, R., and Uritsky, V. 2016, 25 Years of self-organized criticality: Space and laboratory plasmas, SSRv 198, 167–216.Google Scholar
Sheikh, M. A., Weaver, R. L., and Dahmen, I. A. 2016, Avalanche statistics identity intrinsic stellar processes near criticality in KIC 8462852, PhRvL 117, 1101.Google Scholar
Sheppard, S. S. and Trujillo, C. A. 2010, The size distribution of the Neptune Trojans and the missing intermediate-sized planetesimals, ApJ 723, L233L237.CrossRefGoogle Scholar
Shibayama, T., Maehara, H., Notsu, S., Notsu, Y., Nagao, T., Honda, S., Ishii, T. T., Nogami, D., and Shibata, K. 2013, Superflares and solar-type stars observed with Kepler. I. Statistical properties of superflares, ApJSS 209, 5 13pp.CrossRefGoogle Scholar
Shimizu, T. 1995, Energetics and occurrence rate of active-region transient brightenings and implications for the heating of the active-region corona, PASJ 47, 251–263.Google Scholar
Shimojo, M. and Shibata, K. 1999, Occurrence rate of microflares in an X-ray bright point within an active region, ApJ 516, 934.Google Scholar
Shuo, X., et al. 2023, Discovery of the linear energy dependence of the spectral lag of X-ray bursts from SGR J1935+2154, MNRAS 521(4), 5308–5333.Google Scholar
Silverberg, S. M., Kowalski, A. F., Davenport, J. R. A., Wisniewski, J. P., Hawley, S. L., and Hilton, E. J. 2016, Kepler flares. IV. A Comprehensive analysis of the activity of the dM4e star GJ 1243, ApJ 829.2, id. 129, 11pp.Google Scholar
Siscoe, G., 1991, The magnetosphere: A uniform of interdependent parts, EOS 72, S494S495.CrossRefGoogle Scholar
Sitnov, M. I., Sharma, A. S., Papadopoulos, K., Vassiliadis, D., Valdivia, J. A., Klimas, A. J., and Baker, D. N. 2000, Phase transition-like behavior of the magnetosphere during substorms, JGR 12955.CrossRefGoogle Scholar
Sitnov, M. I., Sharma, A. S., Papadopoulos, K., and Vassiliadis, D. 2002, Modeling substorm dynamics of the magnetosphere: From self-organization and self-organized criticality to nonequilibrium phase transitions, Physical Review 65, 016116.Google ScholarPubMed
Sivron, R. and Goralski, E. A. 1998, Organized criticality and variability of structure with data from MCG-6-30-15, 193 AAS Meeting, abstract no. 57.04, Vol. 30, p. 1333.Google Scholar
Sivron, R. 1998, Self-organized criticality in compact plasmas, ApJ 503, L57.Google Scholar
Smith, D. M., Lopez, L. I., Lin, R. P., and Barrington-Leigh, C. P. 2005, Terrestrial gammaray flashes observed up to 20 MeV, Science 307, 5712, 1085–1088.CrossRefGoogle ScholarPubMed
Smirnova, N. A. and Hayakawa, M. 2007, Fractal characteristics of the ground-observed ULF emission in relation to geomagnetic and seismic activities, JASTP 69(15), 1833–1841.Google Scholar
Spitler, L. G., et al. 2018, Detection of bursts from FRB 121102 with the Effelsberg 100 m radio telescope at 5 GHz and the Role of scintillation, ApJ 863(2), id. 150, 8pp.Google Scholar
Sornette, D. 2004, Critical Phenomena in Natural Sciences: Chaos, Fractals, SelfOrganization and Disorder: Concepts and Tools, Springer, Heidelberg, 528p.Google Scholar
Sornette, D. 2009, Dragon-Kings, black swans and the prediction of crises, preprint arXiv:0907. 4290.CrossRefGoogle Scholar
Sornette, D. and Ouillon, G. 2012, Dragon-Kings: Mechanisms, statistical methods and empirical evidence, preprint arXiv:1205.1002.Google Scholar
Souza, A. M., Echer, E., Bolzan, M. J. A., and Hajra, R. 2016, A study on the main periodicities in interplanetary magnetic field Bz component and geomagnetic AE index during HILDCAA events using wavelet analysis, JASTP 149, 81–86.Google Scholar
Stelzer, B., Flaccomio, E., Briggs, K., Micela, G., Scelsi, L, Audard, M., Pillitteri, I., and Güdel, M. 2007, A statistical analysis of X-ray variability in pre-main sequence objects of the Taurus molecular cloud, AA 468, 463–475.CrossRefGoogle Scholar
Strugarek, A. and Charbonneau, P. 2014, Predictive capabilities of avalanche models for solar flares, SoPh 289, 4137.Google Scholar
Stumpf, M. P. H. and Porter, M. A. 2012, Critical truths about power laws, Science 335, February 10, 2012.CrossRefGoogle ScholarPubMed
Su, Y., Gan, W. Q., and Li, Y. P. 2006, A statistical study of RHESSI flares, SoPh 238, 61–72.Google Scholar
Svanda, M. and Karlicky, M. 2016, Flares on A-type stars: Evidence for heating of solar corona by nanoflares, ApJ 831(9), 7.Google Scholar
Tainaka, K. I., Fukazawa, S., and Mineshige, S. 1993, Spatial pattern formation of an interstellar medium, PASJ 45, 57–64.Google Scholar
Takalo, J., Timonen, J., and Koskinen, H. 1993, Correlation dimension and affinity of AE data and bicolored noise, GRL 20(15), 1527–1530.CrossRefGoogle Scholar
Takalo, J., Timonen, J., Klimas, A. J., Valdivia, J. A., and Vassiliadis, D. 1999a, A coupledmap model for the magnetotail current sheet, GRL 26, 2913.CrossRefGoogle Scholar
Takalo, J., Timonen, J., Klimas, A., Valdivia, J., and Vassiliadis, D. 1999b, Nonlinear energy dissipation in a cellular automaton magnetotail field model, GRL 26, 1813.CrossRefGoogle Scholar
Takalo, J., Timonen, J., Klimas, A. J., Valdivia, J. A., and Vassiliadis, D. 2001, A coupled map as a model of the dynamics of the magnetotail current sheet, JASTP 63(13), 1407–1414.Google Scholar
Takeuchi, M., Mineshige, S., and Negoro, H. 1995, X-ray fluctuations from black-hole objects and self organization of accretion disks, Publications of the Astronomical Society of Japan 47, 617–627.Google Scholar
Takeuchi, M., Mineshige, S., and Negoro, H. 1997, X-ray fluctuations from advectiondominated accretion disks with a critical behavior, ApJ 486, 160–168.Google Scholar
Tam, S. W. Y., Chang, T., Chapman, S. C., and Watkins, N. W. 2000, Analytical determination of power-law index for the Chapman et al. sandpile (FSOC) analog for magnetospheric activity – renormalization-group analysis, GRL 27(9), 1367–1370.CrossRefGoogle Scholar
Tavecchio, F., Landoni, M., and Sironi, L. 2020a, Probing shock acceleration in BL Lac jets through X-ray polarimetry: the time-dependent view, MNRAS 498(1), 599–608.CrossRefGoogle Scholar
Tavecchio, F., Bonnoli, G., and Galanti, G. 2020b, On the distribution of fluxes of gammaray blazars: hints for a stochastic process? MNRAS 497(1), 1294–1300.CrossRefGoogle Scholar
Tavecchio, F. and Sobacchi, E. 2020c, Anisotropic electron populations in BL Lac jets: Consequences for the observed mission, MNRAS 491(2), pp. 2198–2204.Google Scholar
Telloni, D., Carbone, V., Lepreti, F., and Antonucci, E. 2014, Stochasticity and persistence of solar coronal mass ejections, ApJ 781, L1 (5pp).Google Scholar
Thalmann, J. K., Tiwari, S. K., and Wiegelmann, T. 2014, Force-free field modeling of twist and braiding-induced magnetic energy in an active-region Corona, ApJ 780, 102.Google Scholar
Thibeault, C., Strugarek, A., Charbonneau, P., and Tremblay, B. 2022, Forecasting solar flares by data assimilation in sandpile models, SoPh 297, 9, 125.Google Scholar
Tindale, E., Chapman, S. C., Moloney, N. R., and Watkins, N. W. 2018, The dependence of solar wind burst size on burst duration and its invariance across solar cycles 23 and 24, JGR 123(9), 7196–7210.Google Scholar
Thompson, C. and Duncan, R. C. 1996, The soft gamma repeaters as very strongly magnetized neutron stars. II. Quiescent neutrino, X-ray, and Alfvén wave emission, ApJ 473, 322–342.Google Scholar
Tlatov, A. G. and Pevtsov, A. A. 2014, Bimodal distribution of magnetic fields and areas of sunspots, SoPh 289, 1143.Google Scholar
Toledo-Roy, J. C., Rivera, A. L., and Frank, A. 2019, Symmetry, criticality and complex systems, AIPC 2150, 0014.Google Scholar
Tomczak, M. 1999, Yohkoh observations of the Neupert effect, AA 342, 583–591.Google Scholar
Thronton, D., et al. 2013, A population of fast radio bursts at cosmological distances, Science 341(6141), 53–56.Google Scholar
Tranquille, C., Hurley, K., and Hudson, H. S. 2009, The Ulysses catalog of solar hard X-ray flares, SoPh 258, 141–166.Google Scholar
Tsurutani, B. T., Gonzalez, W. D., Guarnieri, F., Kamide, Y., Zhou, X., and Arballo, J. K. 2004, Are high-intensity long-duration continuous AE activity (HILDCAA) events substorm expansion events? JASTP 66(2), 167–176.Google Scholar
Tsurutani, B., Suguira, M., Iyemori, T., Goldstein, B. E., Gonzalez, W. D., Akasofu, S.I., and Smith, E. J. 1990, The nonlinear response of AE to the IMF Bs, Geophysical Research Letters 17, 1990.CrossRefGoogle Scholar
Tu, Z. L., Yang, M., and Zhang, Z. J. 2020, Superflares on solar-type stars from the first year observation of TESS, ApJ 890, 46.Google Scholar
Turcotte, D. L. 1999, Self-organized criticality, Reports on Progress in Physics 62, 1377–1429.CrossRefGoogle Scholar
Turolla, R., Zane, S., and Watts, A. L. 2015, Magnetars: The physics behind observations. A review, RPPh 78(11), id. 116901.Google ScholarPubMed
Ulyanov, A. S., Bogachev, S. A., Reva, A. A., Kirichenko, A. S., and Loboda, L. P. 2019, The energy distribution of nanoflares at the minimum and rising phase of solar cycle 24, Astronomy Letters, 45(4), 248–257.CrossRefGoogle Scholar
Ukhorskiy, A. Y., Sitnov, M. I., Sharma, A. S., and Papadopoulos, K., 2002, Global and multiscale aspects of magnetospheric dynamics in local-linear filters, Journal of Geophysical Research 107(A11), 1369.CrossRefGoogle Scholar
Ukhorskiy, A. Y., Sitnov, M. I., Sharma, A. S., and Papadopoulos, K., 2003, Combining global and multi-scale features in a description of the solar wind-magnetosphere coupling, Annales Geophysicae 21(9), 1913–1929.CrossRefGoogle Scholar
Ukhorskiy, A. Y., Sitnov, M. I., Sharma, A. S., and Papadopoulos, K., 2004, Global and multiscale features of solar wind-magnetosphere coupling: From modeling to forecasting, GRL 31(8), Lo 8802.CrossRefGoogle Scholar
Uritsky, V. M. and Pudovkin, M. I. 1998, Low frequency 1/f-like fluctuations of the AEindex as a possible manifestation of self-organized criticality in the magnetosphere, Annales Geoophysicae 16(12), 1580–1588.Google Scholar
Uritsky, V. M., Klimas, A. J., and Vassiliadis, D. 2001, Comparative study of dynamical critical scaling in the auroral electrojet index versus solar wine fluctuations, GRL 28(19), 3809–3812.CrossRefGoogle Scholar
Uritsky, V. M., Klimas, A. J., Vassiliadis, D., Chua, D., Parks, G., 2002, Scale-free statistics of spatiotemporal emissions as depicted by POLAR UVI images: Dynamic magnetosphere is an avalanching system, JGR (Space Physics) 107(A12), CiteID 1426.Google Scholar
Uritsky, V. M., Klimas, A. J., and Vassiliadis, D. 2003, Evaluation of spreading critical exponents from the spatiotemporal evolution of emission regions in the nighttime aurora, GRL 30(15), CiteID 1813.CrossRefGoogle Scholar
Uritsky, V. M., Klimas, A. J., and Vassiliadis, D. 2006, Analysis and prediction of high-latitude geomagnetic disturbances based on a self-organized criticality framework, Advances in Space Research 37, 539–546.CrossRefGoogle Scholar
Uritsky, V. M., Klimas, A. J., and Vassiliadis, D. 2006a, Analysis and prediction of high-latitude geomagnetic disturbances based on a self-organized criticality framework, Advances in Space Research 37, 539–546.CrossRefGoogle Scholar
Uritsky, V. M., Klimas, A. Vassiliadis, D. 2006b, Critical finite-size scaling of energy and lifetime probability distributions of auroral emission, GRL 33, 8102.CrossRefGoogle Scholar
Uritsky, V. M., Paczuski, M., Davila, J. M., and Jones, S. I. 2007, Coexistence of Self-Organized criticality and intermittent turbulence in the solar corona, Physical Review Letters 99(2), 25001–25004.CrossRefGoogle ScholarPubMed
Uritsky, V. M., Donovan, E., Klimas, A. J., and Spanswick, E. 2008, Scale-free scaledependent modes of energy release dynamics in the nighttime magnetosphere, GRL 35(21), CiteID L21101.CrossRefGoogle Scholar
Uritsky, V. M., Liang, J., Donovan, E., Spanswick, E., Knudsen, D., Liu, W., Bonnell, J., Glassmeier, K. H. 2009, Longitudinally propagating arc wave in the pre-onset optical aurora, GRL 36(21), CiteID L21103.CrossRefGoogle Scholar
Uritsky, V. M., Donovan, E., Trondsen, T., Pineau, D., and Kozelov, B. V. 2010, Dataderived spatiotemporal resolution constraints for global auroral imagers, JGR 115, A09205.CrossRefGoogle Scholar
Uritsky, V. M., Pouquet, A., Rosenberg, D., Mininni, P. D. and Donovan, E. 2010, Structures in magnetohydrodynamic turbulence: detection and scaling, Physical Review E 82(5), 056326.CrossRefGoogle ScholarPubMed
Uritsky, V. M., Davila, J. M., Ofman, L., and Coyner, A. J. 2013, Stochastic coupling of solar photosphere and Corona, ApJ 769, 62.Google Scholar
Uritsky, V. M. and Davila, J. M. 2014, Spatiotemporal organization of energy release events in the quiet solar corona, ApJ 795, 15 (5pp).Google Scholar
Valdivia, J. A., Sharma, A. S., and Papadopoulos, K. 1996, Evaluation of spreading critical exponents from the spatiotemporal evolution of emission regions in the nighttime aurora, GRL 30(15), 1813, SSC 7–1.Google Scholar
Validivia, J. A., Vassiliadis, D., Klimas, A., and Sharma, A. S. 1999a, Modeling the spatial structure of the high latitude magnetic disturbances and the related current systems, Physics of Plasmas 6(11), 4185–4194.Google Scholar
Validivia, J. A., Vassiliadis, D., Klimas, A., and Sharma, A. S. 1999b, Spatio-temporal activity of magnetic storms, JGR 104(A6), 12239–12250.Google Scholar
VallieRes-Nollet, M. A., Charbonneau, P., Uritsky, V., Donovan, E., and Liu, W. 2010, Dual scaling for self-organized critical models of the magnetosphere, JGR (Space Physics) 115, A12217.Google Scholar
Van Doorsselaere, T., Hoda, S., Debosscher, J. 2017, Stellar flares observed in longcadence data from the Kepler mission, ApJSS 232(2), article ID 26, 13pp.Google Scholar
Van Hollebeke, M. A. I., Ma Sung, L. S., and McDonald, F. B. 1975, The variation of solar proton energy spectra and size distribution with heliolongitude, SoPh 41, 189–223.Google Scholar
Van Houten, C. J., van Houten-Groeneveld, I., Herget, P., and Gehrels, T. 1970, The Palomar-Leiden survey of faint minor planets, AASS 2(5), 339–448.Google Scholar
Vassiliadis, D., Sharma, A. S., Eastman, T. E., and Papadopoulos, K. 1990, Lowdimensional chaos in magnetospheric activity from AE index time series, Geophysical Research Letters 17(11), 1841–1844.CrossRefGoogle Scholar
Vassiliadis, D., Sharma, A. S., and Papadopoulos, K. 1991, Lyapunov exponent of magnetospheric activity from AL time series, Geophysical Research Letters 18(8), 1731–1734.CrossRefGoogle Scholar
Vassiliadis, D., Sharma, A. S., and Papadopoulos, K. 1993, An empirical model relating the auroral geomagnetic activity to the interplanetary magnetic field, Geophysical Research Letters 20(16), 1643–1646.CrossRefGoogle Scholar
Vassiliadis, D., Klimas, A. J., Baker, D. N., and Roberts, A. 1995, A description of solar wind-magnetosphere coupling based on nonlinear filters, JGR 100, 3495.CrossRefGoogle Scholar
Vassiliadis, D., Anastasiadis, A., Georgoulis, M., and Vlahos, L. 1998, Derivation of solar flare cellular automata models from a subset of the magnetohydrodynamic equations, ApJ 509, L53L56.Google Scholar
Vassiliadis, D., 2006, Systems theory for geospace plasma dynamics, Reviews of Geophysics 44, RG2002.CrossRefGoogle Scholar
Veltri, P., Malara, F., and Primavera, L. 1999, Nonlinear Alfven Wave Interaction with Large-Scale Heliospheric Current Sheet, Lecture Notes in Physics, Springer Verlag, Berlin, Vol. 536, 222.Google Scholar
Verbeeck, C., Kraaikamp, E., Ryan, D. F., and Podladchikova, O. 2019, Solar flare distributions: Lognormal instead of power law? ApJ 884 50.Google Scholar
Verma, A. K, Pandit, R., and Brachet, M. E. 2020, Rotating self-gravitating Bose-Einstein condensates with a crust: a minimal model for pulsar glitches, arXiv:2005.13310.Google Scholar
Veronig, A., Temmer, M., Hanslmeier, A., Otruba, W., and Messerotti, M. 2002a, Temporal aspects and frequency distributions of solar soft X-ray flares, AA 382, 1070–1080.CrossRefGoogle Scholar
Veronig, A., Vrsnak, B., Temmer, M., and Hanslmeier, A. 2002b, Investigation of the Neupert effect in solar flares. I. Statistical properties and the evaporation model, AA 392, 699.CrossRefGoogle Scholar
Veronig, A., Vrsnak, B., Temmer, M., Hanslmeier, A. 2002c, Relative timing of solar flares observed at different wavelengths, SoPh 208, 297.Google Scholar
Veronig, A. M., Brown, J. C., Dennis, B. R., Schwartz, R. A., Sui, L., and Tolbert, A. K. 2005, Physics of the Neupert Effect: Estimates of the effects of source energy and mass transport, and geometry, using RHESSI and GOES data, ApJ 621, 482–497.Google Scholar
Vespignani, A., Zapperi, S., and Pietronero, L. 1995, Renormalization approach to the Self-Organized critical behavior of sandpile models, Physical Review E 51(3), 1711–1724.CrossRefGoogle Scholar
Vlahos, L., Georgoulis, M., Kluiving, R., and Paschos, P. 1995, The statistical flare, AA 299, 897–911.Google Scholar
Vlahos, L. and Georgoulis, M. K. 2004, On the self-similarity of unstable magnetic discontinuities in solar active regions, ApJL 603, L61L64.CrossRefGoogle Scholar
Vlahos, L. and Isliker, H. 2016, Complexity methods applied to turbulence in plasma astrophysics, EPJST 225, 977.Google Scholar
Walkowicz, L. M., et al. 2011, White-light flares on cool stars in the KEPLER quarter 1 data, ApJ 141, 50, 9p.CrossRefGoogle Scholar
Wang, J. S., Wang, F. Y., and Dai, Z. G. 2017, Self-organized criticality in type I X-ray bursts, MNRAS 471(3), 2517–2522.Google Scholar
Wang, F. Y. and Dai, Z. G. 2013, Solar flare-like origin of X-ray flares in gamma-ray burst afterglows, Nature Physics 9(8), 465–467.CrossRefGoogle Scholar
Wang, F. Y. and Dai, Z. G. 2017, A universal scaling law of black hole activity including gamma-ray bursts, MNRAS 470(1), 1101–1106.CrossRefGoogle Scholar
Wang, F. Y., Dai, Z. G., Yi, S. X., and Xi, S. Q. 2015, Universal behavior of X-ray flares from black hole systems, ApJSS 216(1), id. 8, 8p.Google Scholar
Wang, F. Y. and Zhang, G. Q. 2019, A universal energy distribution for FRB 121102, ApJ 882(2), id. 108, 10p.Google Scholar
Wang, F. Y., Zhang, G. Q., and Dai, Z. G. 2021, Galactic and cosmological fast ratio bursts as scaled-up solar radio bursts, MNRAS 501(3), 3155–3161.CrossRefGoogle Scholar
Wang, W. B., Li, C., Tu, Z. L., Guo, J. H., Chen, P. F., and Wang, F. Y. 2022, Avalanches of magnetic flux rope in the state of self-organized criticality, MNRAS 512(2), 1567–1573.CrossRefGoogle Scholar
Wang, T. J., Innes, D. E., and Solanki, S. K. 2006, Fe XIX observations of active region brightenings in the corona, AA 455, 1105–1113.CrossRefGoogle Scholar
Wanliss, J. A. and Weygand, J. M. 2007, Power law burst lifetime distribution of the SYMH index, GRL 34(4), CiteID L04107.CrossRefGoogle Scholar
Warszawski, L. and Melatos, A. 2008, A cellular automaton model of pulsar glitches, MNRAS 390(1), 175–191.CrossRefGoogle Scholar
Warszawski, L. and Melatos, A. 2012, Knock-on processes in superfluid vortex avalanches and pulsar glitch statistics, MNRAS 428, 1911–1926.Google Scholar
Watkins, N. W., Chapman, S. C., Dendy, R. O., and Rowlands, G. 1999, Robustness of collective behaviour in strongly driven avalanche models: magnetospheric implications, GRL 26(16), 2617.CrossRefGoogle Scholar
Watkins, N. W., Oughton, S. and Freeman, M. P. 2001, What can we infer about the underlying physics from distributions observed in an RMHD simulation? Planetary and Space Science 49(12).CrossRefGoogle Scholar
Watkins, N. W. and Freeman, M. P. 2008, Natural complexity, Science 320, 323–324.CrossRefGoogle ScholarPubMed
Watkins, N. W., Chapman, S. C., and Rosenberg, S. J. 2009, Comment on “coexistence of self-organized criticality and intermittent turbulence in the solar corona, Physical Review Letters 103(3), id. 039501.CrossRefGoogle ScholarPubMed
Watkins, N. W., Pruessner, G., Chapman, S. C., Crosby, N. B., and Jensen, H. J. 2016, 25 Years of self-organized criticality: Concepts and controversies, SSRv 198, 3–44.Google Scholar
Wei, J. J., Wu, X. F., Dai, Z. G., Wang, F. Y., Wang, P., Li, D., and Zhang, B. 2021, Similar scale-invariant behaviors between soft gamma-ray repeaters and an extreme epoch from FRB 121102, ApJ 920(2), id. 153, 7pp.Google Scholar
Wheatland, M. S., Sturrock, P. A., and McTiernan, J. M. 1998, The waiting-time distribution of solar flare hard X-rays, ApJ 509, 448–455.Google Scholar
Wheatland, M. S. and Eddey, S. D. 1998, Models for flare statistics and the waiting-time distribution of solar flare hard X-ray bursts, in Proceedings of Nobeyama Symposium, Solar Physics with Radio Observations (eds. Bastian, T., Gopalswamy, N., and Shibasaki, K.), NRO Report 479, pp. 357–360.Google Scholar
Wheatland, M. S. 2000a, The origin of the solar flare waiting-time distribution, ApJ 536, L109L112.Google ScholarPubMed
Wheatland, M. S. 2000b, Do solar flares exhibit an interval-size relationship? SoPh 191, 381–389.Google Scholar
Wheatland, M. S. 2000c, Flare frequency-size distributions for individual active regions ApJ 532, 1209–1214.Google Scholar
Wheatland, M. S. 2001, Rates of flaring in individual active regions, SoPh 203, 87–106.Google Scholar
Wheatland, M. S. and Litvinenko, Y. E. 2002, Understanding solar flare waiting-time distributions, SoPh 211, 255–274.Google Scholar
Wheatland, M. S. 2003, The coronal mass ejection waiting-time distribution, SoPh 214, 361–373.Google Scholar
Wheatland, M. S. 2010, Evidence for departure from a power-law size distribution for a small solar active region, ApJ 710: 1324.Google Scholar
White, E. P., Enquist, B. J., and Green, J. L. 2008, On estimating the exponent of power-law frequency distributions, Ecology 89, 905.CrossRefGoogle ScholarPubMed
Wiesenfeld, K., Theiler, J., and McNamara, B. 1990, Self-organized criticality in a deterministic automaton, Physical Review Letters 65(8), 949–952.CrossRefGoogle Scholar
Willis, J. C. and Yule, G. U. 1922, Some statistics of evolution and geographical distribution in plants and animals, and their significance, Nature 109(2728), pp. 177–179.CrossRefGoogle Scholar
Wilkins, H. P. 1946, One Hundred Inch Reproduction of the Three Hundred Inch Map of the Moon, Stanley.Google Scholar
Wilmot-Smith, A. L., Hornig, G., and Pontin, D. I. 2009a, Magnetic braiding and parallel electric fields, ApJ 696, 1339–1347.Google Scholar
Wilmot-Smith, A. L., Hornig, G., and Pontin, D. I. 2009b, Magnetic braiding and quasiseparatrix layers, ApJ 704, 1288.Google Scholar
Wolfram, S. 2002, A New Kind of Science, Wolfram Media.Google Scholar
Wu, C. J., Ip, W. H., and Huang, L. C. 2015, A study in the frequency distributions of the superflares of G-type stars observed by the Kepler mission, ApJ 798(3), article ID 92, 13pp.Google Scholar
Xapsos, M. A., Stauffer, C., Barth, J. L., and Burke, E. A. 2006, Solar particle events and self-organized criticality: Are deterministic predictions of events possible? IEEE Transactions on Nuclear Science 53(4), p. 1839–1843.CrossRefGoogle Scholar
Xiao, S., et al. 2023a, Discovery of the linear energy dependence of the spectral lag of X-ray bursts from SGR J1935+2154. MNRAS 521(4), 5308–5333.CrossRefGoogle Scholar
Xiao, S., et al. 2023b, The minimum variation time scale of X-ray bursts from SGR J1935+2154, ApJSS 268, 5 (9pp).CrossRefGoogle Scholar
Xiong, Y., Witta, P. J., and Bao, G. 2000, Models for accretion-disk fluctuations through self-organized criticality including relativistic effects, PASJ 52, L1097L1107.CrossRefGoogle Scholar
Yan, D., Yang, S., Zhang, P., Dai, B., Wang, J., and Zhang, L. 2018, Statistical analysis of XMM-Newton X-ray flares of Mrk 421: Distributions of peak flux and flaring time duration, ApJ 864, 164 (16pp).Google Scholar
Yang, S., Yan, D., Dai, B., Zhang, P., and Zhu, Q. 2019, Statistical analysis of X-ray flares from the nucleus and HST-1 knot in the M87 jet, MNRAS 489(2), 2685–2693.CrossRefGoogle Scholar
Yang, H. and Liu, J. 2019, The flare catalog and the flare activity in the Kepler mission, ApJSS 241 29.CrossRefGoogle Scholar
Yashiro, S., Akiyama, S., Gopalswamy, N., and Howard, R. A. 2006, Different power law indices in the frequency distributions of flares with and without coronal mass ejections, ApJ 650, L143–L146.Google Scholar
Yeh, C. T., Ding, M. D., and Chen, P. F. 2005, Waiting time distribution of coronal mass ejections, Chinese Journal of Astronomy and Astrophysics 5, 193–197.CrossRefGoogle Scholar
Yermolaev, Y. I., Lodkina, I. G., Nikolaeva, N. S., and Yermoaev, M. Y. 2013, Occurrence rate of extreme magnetic storms, JGR (Space Physics) 118(8), 4760–4765.Google Scholar
Yonehara, A., Mineshige, S., and Welsh, W. F. 1997, Cellular-automaton model for flickering of cataclysmic variables, ApJ 486, 388–396.Google Scholar
Young, M. D. T. and Kenny, B. G. 1996, Are giant pulses evidence of self-organized criticality? ASP Conference Series 105: IAU Colloq. 160: Pulsars: Problems and Progress, 179.CrossRefGoogle Scholar
Yoshida, F., Nakamura, T., Watanab, J., Kinoshita, D., and Yamamoto, N., 2003, Size and spatial distributions of sub-km main-belt asteroids, PASJ 55, 701–715.CrossRefGoogle Scholar
Yoshida, F. and Nakamura, T. 2007, Subaru main belt asteroid survey (SMBAS) – size and color distributions of small main-belt asteroids, Planetary and Space Science 55, 113–1125.CrossRefGoogle Scholar
Yuan, Q., et al. 2018, A systematic Chandra study of Sgr A, II. X-ray flare statistics, MNRAS 473, 306.CrossRefGoogle Scholar
Zaslavsky, G. M., Edelman, M. N. Guzdar, P. N., Sitnov, M. I., and Sharma, A. S. 2007, Self-similarity and fractional kinetics of solar wind magnetosphere coupling, Physica A 321, 11–20.Google Scholar
Zaslavsky, G. M., Edelman, M. N. Guzdar, P. N., Sitnov, M. I., and Sharma, A. S. 2008, Multiscale behavior and fractional kinetics from the data of solar wind magnetosphere coupling, Communications in Nonlinear Science and Numerical Simulation 13, 314–330.CrossRefGoogle Scholar
Zebker, E. A., Marouf, G. L., and Tyler, G. L. 1985, Saturn’s rings particle size distributions for a thin layer model, Ikarus 64, 531–548.Google Scholar
Zeldovich, Ya. B. 1970, Gravitational instability: An approximate theory for large density perturbations, A&A 5, 85–89.Google Scholar
Zelenyi, L. M. and Milovanov, A. V. 2004, Reviews of topical problems: Fractal topology and strange kinetics: from percolation theory to problems in cosmic electrodynamics, Physics Uspekhi 47(8), R01.CrossRefGoogle Scholar
Zhang, Y. C. 1989, Scaling theory of self-organized criticality, Physical Review Letters 63(5), 470–474.CrossRefGoogle ScholarPubMed
Zhang, G. Q., Wang, P., Wu, Q., Wang, F. Y., Li, D., Dai, Z. B., and Zhang, B. 2021, Energy and waiting time distributions of FRB 121102 observed by FAST, ApJ 920L, 23.Google Scholar
Zhang, H. M., Zhang, J., Lu, R. J., Yi, T. F. Huang, X. L. and Liang E. W. 2018a, Flux and spectral variation characteristics of 3C 454.3 at the GeV band, RAA 18(4), article ID 040.Google Scholar
Zhang, H. M., Zhang, J., Lu, R. J., Yi, T. F., Huang, L., Liang, E. W. 2018b, Fast radio burst energetics and detectability from high redshifts, ApJL 867(2), idl. L21, 7pp.CrossRefGoogle Scholar
Zhang, W. L., Yi, S. X., Yang, U. P., and Qin, Y. 2022, Statistical properties of X-Ray flares from the supergiant fast X-Ray transients, Research in Astronomy and Astrophysics 22(6), id. 065012, 8pp.CrossRefGoogle Scholar
Zhang, et al. 2018c, Fast radio burst 121102 Pulse detection and periodicity: A machine learning approach, ApJ 866(2), id. 149, 18pp.Google Scholar
Zirker, J. B. 1993, Coronal heating (Invited review paper), SoPh 148, 43–60.Google Scholar
Zirker, J. B. and Cleveland, F. M. 1993a, Nanoflare mechanisms: Twisting and braiding, SoPh 144, 341–347.Google Scholar
Zirker, J. B. and Cleveland, F. M. 1993b, Avalanche models of active region heating and flaring, SoPh 145, 119–128.Google Scholar
Zou, Y., Heitig, J., and Kurth, J. 2013, Power laws of recurrence networks (Chapter 6), in Self-Organized Criticality Systems (ed. Aschwanden, M. J.), Open Academic Press GmbH Co., www.openacademicpress.deGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Markus Aschwanden, Lockheed-Martin
  • Book: Power Laws in Astrophysics
  • Online publication: 05 December 2024
  • Chapter DOI: https://doi.org/10.1017/9781009562942.022
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Markus Aschwanden, Lockheed-Martin
  • Book: Power Laws in Astrophysics
  • Online publication: 05 December 2024
  • Chapter DOI: https://doi.org/10.1017/9781009562942.022
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Markus Aschwanden, Lockheed-Martin
  • Book: Power Laws in Astrophysics
  • Online publication: 05 December 2024
  • Chapter DOI: https://doi.org/10.1017/9781009562942.022
Available formats
×