Published online by Cambridge University Press: 09 October 2009
Potential flows of incompressible fluids with constant properties are irrotational solutions of the Navier–Stokes equations that satisfy Laplace's equation. How do these solutions enter into the general problem of viscous fluid mechanics? Under certain conditions, the Helmholtz decomposition says that solutions of the Navier–Stokes equations can be decomposed into a rotational part and an irrotational part satisfying Laplace's equation. The irrotational part is required for satisfying the boundary conditions; in general, the boundary conditions cannot be satisfied by the rotational velocity, and they cannot be satisfied by the irrotational velocity; the rotational and irrotational velocities are both required and they are tightly coupled at the boundary. For example, the no-slip condition for Stokes flow over a sphere cannot be satisfied by the rotational velocity; harmonic functions that satisfy Laplace's equation subject to a Robin boundary condition in which the irrotational normal and tangential velocities enter in equal proportions are required.
The literature that focuses on the computation of layers of vorticity in flows that are elsewhere irrotational describes boundary-layer solutions in the Helmholtz decomposed forms. These kinds of solutions require small viscosity and, in the case of gas–liquid flows, are said to give rise to weak viscous damping. It is true that viscous effects arising from these layers are weak, but the main effects of viscosity in so many of these flows are purely irrotational, and they are not weak.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.