Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-02T20:37:41.295Z Has data issue: false hasContentIssue false

12 - Genetics and conservation on islands: the Galaápagos giant tortoise as a case study

from From genetic data to practical management: issues and case studies

Published online by Cambridge University Press:  05 July 2015

Giorgio Bertorelle
Affiliation:
Università degli Studi di Ferrara, Italy
Michael W. Bruford
Affiliation:
Cardiff University
Heidi C. Hauffe
Affiliation:
Edmund Mach Foundation, Trento, Italy
Annapaolo Rizzoli
Affiliation:
Edmund Mach Foundation, Trento, Italy
Cristiano Vernesi
Affiliation:
Edmund Mach Foundation, Trento, Italy
Claudio Ciofi
Affiliation:
University of Florence
Adalgisa Caccone
Affiliation:
Yale University
Luciano B. Beheregaray
Affiliation:
Macquarie University
Michel C. Milinkovitch
Affiliation:
University of Geneva
Michael Russello
Affiliation:
University of British Columbia Okanagan
Jeffrey R. Powell
Affiliation:
Yale University
Get access

Summary

INTRODUCTION

The study of intraspecific genetic variation has demonstrated a vast potential to reconstruct phylogeographic patterns, infer historical demographic processes and define levels of gene flow of conservation relevance (Avise 2004). Evolutionary and demographic studies, along with evidence of current genetic and ecological diversity can, in fact, describe levels of population distinctiveness and direct management initiatives of importance to the retention of intraspecific genetic variability and the long-term fitness of endangered species (Fraser and Bernatchez 2001).

Population divergence and taxonomy

Molecular genetics is a particularly valuable tool for the study of island systems where different selective pressures and dispersal ability of endemic species can hamper clear patterns of morphological and ecological diversification for populations of taxonomic importance. In the Galápagos giant tortoise Geochelone nigra (or G. elephantopus: see Zug 1997), the taxonomy first proposed by Van Denburgh (1914) has been somewhat controversial. Taxon designation was originally based on two main tortoise morphologies and their variants: a large, dome morphotype with rounded carapace and short limbs, and a smaller saddlebacked form with a highly elevated anterior part of the carapace, longer neck and limbs, and thinner shell. Five saddlebacked subspecies were described, on the islands of Española (hoodensis), San Cristóbal (chatamensis), Pinzón (ephippium), Fernandina (phantastica) and Pinta (abingdoni). Domed tortoises were instead reported from Santa Cruz (porteri), Rábida (wallacei) and in Isabela on Volcan Darwin (microphyes), Volcan Alcedo (vandenburghi), Sierra Negra (guntheri) and Cerro Azul (vicina).

Tortoises from Santiago (darwini) are of intermediate morphology. Similarly, heterogeneous morphotypes, assigned to the becki subspecies, were described on Volcan Wolf, in northern Isabela. For the majority of island populations recent genetic analysis validated the proposed taxonomy, while for others new patterns were recovered which were inconsistent with previous morphologically based nomenclature (Caccone et al. 2002; Beheregaray et al. 2003a; Russello et al. 2005; Ciofi et al. 2006).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×