Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-08T09:19:32.222Z Has data issue: false hasContentIssue false

10 - Young stellar objects and their environment

from III - Stars and their environment

Published online by Cambridge University Press:  05 May 2015

Ludmilla Kolokolova
Affiliation:
University of Maryland, College Park
James Hough
Affiliation:
University of Hertfordshire
Anny-Chantal Levasseur-Regourd
Affiliation:
Université de Paris VI (Pierre et Marie Curie)
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, F. C., Lada, C. J., and Shu, F. H. (1987). Spectral evolution of young stellar objects. The Astrophysical Journal, 312, 788806.CrossRefGoogle Scholar
Andre, P., Ward-Thompson, D., and Barsony, M. (1993). Submillimeter continuum observations of Rho Ophiuchi A – The candidate protostar VLA 1623 and prestellar clumps. The Astrophysical Journal, 406, 122141.CrossRefGoogle Scholar
Bailey, J., Chrysostomou, A., Hough, J. H.et al. (1998). Circular polarization in star-formation regions: Implications for biomolecular homochirality. Science, 281, 672674.CrossRefGoogle ScholarPubMed
Barvainis, R., Clemens, D. P., and Leach, R. (1988). Polarimetry at 1.3 mm using MILLIPOL – Methods and preliminary results for Orion. The Astronomical Journal, 95, 510515.CrossRefGoogle Scholar
Bonner, W. A. (1991). The origin and amplification of biomolecular chirality. Origins of Life and Evolution of Biospheres, 21, 59111.CrossRefGoogle ScholarPubMed
Buschermöhle, M., Whittet, D. C. B., Chrysostomou, A.et al. (2005). An extended search for circularly polarized infrared radiation from the OMC-1 region of Orion. The Astrophysical Journal, 624, 821826.CrossRefGoogle Scholar
Capps, R. W. and Knacke, R. F. (1976). Infrared polarization of the galactic center. The Astrophysical Journal, 210, 7684.CrossRefGoogle Scholar
Chrysostomou, A., Menard, F., Gledhill, T. M.et al. (1997). Polarimetry of young stellar objects – II. Circular polarization of GSS 30. Monthly Notices of the Royal Astronomical Society, 285, 750758.CrossRefGoogle Scholar
Chrysostomou, A., Gledhill, T. M., Menard, F.et al. (2000). Polarimetry of young stellar objects – III. Circular polarimetry of OMC-1. Monthly Notices of the Royal Astronomical Society, 312, 103115.CrossRefGoogle Scholar
Clark, S., McCall, A., Chrysostomou, A. et al. (2000). Polarization models of young stellar objects – II. Linear and circular polarimetry of R Coronae Australis. Monthly Notices of the Royal Astronomical Society, 319, 337349.Google Scholar
Cronin, J. R. and Pizzarello, S. (1997). Enantiomeric excesses in meteoritic amino acids. Science, 275, 951955.CrossRefGoogle ScholarPubMed
Cudlip, W., Furniss, I., King, K. J., and Jennings, R. E. (1982). Far infrared polarimetry of W51A and M42. Monthly Notices of the Royal Astronomical Society, 200, 11691173.CrossRefGoogle Scholar
DavisJr., L. and Greenstein, J. L. (1951). The polarization of starlight by aligned dust grains. The Astrophysical Journal, 114, 206240.CrossRefGoogle Scholar
Dennison, B. (1977). On the infrared polarization of the Orion Nebula. The Astrophysical Journal, 215, 529532.CrossRefGoogle Scholar
Dennison, B., Ward, D. B., Gull, G. E., and Harwit, M. (1977). Far-infrared polarization of M42. The Astronomical Journal, 82, 3941.CrossRefGoogle Scholar
Dowell, C. D., Cook, B. T., Al Harper, D.et al. (2010). HAWCPol: A first-generation far-infrared polarimeter for SOFIA. In SPIE Astronomical Telescopes + Instrumentation. Bellingham WA: International Society for Optics and Photonics, p. 77356H.Google Scholar
Dyck, H. M. and Beichman, C. A. (1974). Observations of infrared polarization in the Orion Nebula. The Astrophysical Journal, 194, 5764.CrossRefGoogle Scholar
Dyck, H. M. and Capps, R. W. (1978). Near-infrared polarimetry of compact infrared sources associated with H II regions and molecular clouds. The Astrophysical Journal, 220, L49L51.CrossRefGoogle Scholar
Fischer, O., Henning, T., and Yorke, H. W. (1994). Simulation of polarization maps. 1: Protostellar envelopes. Astronomy and Astrophysics, 284, 187209.Google Scholar
Fischer, O., Henning, T., and Yorke, H. W. (1996). Simulation of polarization maps. II. The circumstellar environment of pre-main sequence objects. Astronomy and Astrophysics, 308, 863885.Google Scholar
Flett, A. M. and Murray, A. G. (1991). First results from a submillimetre polarimeter on the James Clerk Maxwell Telescope. Monthly Notices of the Royal Astronomical Society, 249, 4P6P.CrossRefGoogle Scholar
Fukagawa, M., Hayashi, M., Tamura, M.et al. (2004). Spiral structure in the circumstellar disk around AB Aurigae. The Astrophysical Journal Letters, 605, L53L56.CrossRefGoogle Scholar
Fukue, T., Tamura, M., Kandori, R.et al. (2009). Near-infrared circular polarimetry and correlation diagrams in the Orion Becklin-Neugebauer/Kleinman-low region: Contribution of dichroic extinction. The Astrophysical Journal Letters, 692, L88L91.CrossRefGoogle Scholar
Gatley, I., Merrill, K. M., Fowler, A. M., and Tamura, M. (1991). The luminosity function in regions of massive star formation. In R. Elston, ed., Astronomical Society of the Pacific Conference Series, Vol. 14. San Francisco CA: Astronomical Society of the Pacific, pp. 230237.Google Scholar
Girart, J. M., Rao, R., and Marrone, D. P. (2006). Magnetic fields in the formation of Sun-like stars. Science, 313, 812814.CrossRefGoogle ScholarPubMed
Girart, J. M., Rao, R., and Marrone, D. P. (2008). SMA observations of the magnetic fields around a low-mass protostellar system. Astrophysics and Space Science, 313, 8790.CrossRefGoogle Scholar
Gonatas, D. P., Engargiola, G. A., Hildebrand, R. H.et al. (1990). The far-infrared polarization of the Orion nebula. The Astrophysical Journal, 357, 132137.CrossRefGoogle Scholar
Goodman, A. A., Bastien, P., Menard, F., and Myers, P. C. (1990). Optical polarization maps of star-forming regions in Perseus, Taurus, and Ophiuchus. The Astrophysical Journal, 359, 363377.CrossRefGoogle Scholar
Goodman, A. A., Jones, T. J., Lada, E. A., and Myers, P. C. (1992). The structure of magnetic fields in dark clouds – Infrared polarimetry in B216-217. The Astrophysical Journal, 399, 108113.CrossRefGoogle Scholar
Greaves, J. S., Murray, A. G., and Holland, W. S. (1994). Investigating the magnetic field structure around star formation cores. Astronomy and Astrophysics, 284, L19L22.Google Scholar
Greaves, J. S., Holland, W. S., and Murray, A. G. (1995). Magnetic field compression in the MON R2 cloud core. Astronomy and Astrophysics, 297, L49L52.Google Scholar
Greaves, J. S., Holland, W. S., Jenness, T.et al. (2003). A submillimetre imaging polarimeter at the James Clerk Maxwell Telescope. Monthly Notice of the Royal Astronomical Society, 340, 353361.CrossRefGoogle Scholar
Gull, G. E., Houck, J. R., McCarthy, J. F., Forrest, W. J., and Harwit, M. (1978). Far-infrared polarization of the Kleinmann-Low Nebula in Orion. The Astronomical Journal, 83, 14401444.CrossRefGoogle Scholar
Hashimoto, J., Tamura, M., Muto, T.et al. (2011). Direct imaging of fine structures in giant planet-forming regions of the protoplanetary disk around AB Aurigae. The Astrophysical Journal Letters, 729, id. L17.CrossRefGoogle Scholar
Hashimoto, J., Dong, R., Kudo, T.et al. (2012). Polarimetric imaging of large cavity structures in the pre-transitional protoplanetary disk around PDS 70: Observations of the disk. The Astrophysical Journal Letters, 758, id. L19.CrossRefGoogle Scholar
Hildebrand, R. H., Dragovan, M., and Novak, G. (1984). Detection of submillimeter polarization in the Orion nebula. The Astrophysical Journal, 284, L51L54.CrossRefGoogle Scholar
Hildebrand, R. H., Dotson, J. L., Dowell, C. D.et al. (1995). Far-infrared polarimetry. In Airborne Astronomy Symposium on the Galactic Ecosystem: From Gas to Stars to Dust. Astronomical Society of the Pacific Conference Series, Vol. 73. San Francisco CA: Astronomical Society of the Pacific, pp. 97104.Google Scholar
Hillenbrand, L. A. and Carpenter, J. M. (2000). Constraints on the stellar/substellar mass function in the inner Orion Nebula Cluster. The Astrophysical Journal, 540, 236254.CrossRefGoogle Scholar
Henning, Th., Wolf, S., Launhardt, R., and Waters, R. (2001). Measurements of the magnetic field geometry and strength in Bok globules. The Astrophysical Journal, 561, 871879.CrossRefGoogle Scholar
Hodapp, K.-W. (1994). A K' imaging survey of molecular outflow sources. The Astrophysical Journal Supplement, 94, 615649.CrossRefGoogle Scholar
Hough, J. H. (1997). New opportunities for astronomical polarimetry. Journal of Quantitative Spectroscopy and Radiative Transfer, 106, 122132.CrossRefGoogle Scholar
Hughes, A. M., Andrews, S. M., Espaillat, C.et al. (2009). A spatially resolved inner hole in the disk around GM Aurigae. The Astrophysical Journal, 698, 131142.CrossRefGoogle Scholar
Johnson, H. L. (1965). Interstellar extinction in the galaxy. The Astrophysical Journal, 141, 923942.CrossRefGoogle Scholar
Jones, T. J. (1997). Infrared imaging polarimetry of galaxies. The Astronomical Journal, 114, 13931404.CrossRefGoogle Scholar
Kim, S.-H. and Martin, P. G. (1995). The size distribution of interstellar dust particles as determined from polarization: Spheroids. The Astrophysical Journal, 444, 293305.CrossRefGoogle Scholar
Kwon, J. (2013). Near-infrared linear and circular polarimetry in star forming regions. Ph.D. thesis, GUAS.Google Scholar
Kwon, J., Tamura, M., Kandori, R.et al. (2011). Complex scattered radiation fields and multiple magnetic fields in the protostellar cluster in NGC 2264. The Astrophysical Journal, 741, id. 35.CrossRefGoogle Scholar
Kwon, J., Tamura, M., Lucas, P.et al. (2013). Near-infrared circular polarization images of NGC 6334-V. The Astrophysical Journal Letters, 765, id. L6.CrossRefGoogle Scholar
Kwon, J., Tamura, M., Hough, J. H.et al. (2014). Near-infrared circular polarization survey in star-forming regions: Correlations and trends. The Astrophysical Journal Letters, 795, 17.CrossRefGoogle Scholar
Lada, C. J. and Adams, F. C. (1992). Interpreting infrared color-color diagrams – Circumstellar disks around low- and intermediate-mass young stellar objects. The Astrophysical Journal, 393, 278288.CrossRefGoogle Scholar
Lada, C. J., DePoy, D. L., Merrill, K. M., and Gatley, I. (1991). Infrared images of M17. The Astrophysical Journal, 374, 533539.CrossRefGoogle Scholar
Lonsdale, C. J., Dyck, H. M., Capps, R. W., and Wolstencroft, R. D. (1980). Near-infrared circular polarization observations of molecular cloud sources, The Astrophysical Journal, 238, L31L35.CrossRefGoogle Scholar
Lucas, P. W. and Roche, P. F. (1998). Imaging polarimetry of class I young stellar objects. Monthly Notices of the Royal Astronomical Society, 299, 699722.CrossRefGoogle Scholar
Lucas, P. W., Fukagawa, M., Tamura, M.et al. (2004). High-resolution imaging polarimetry of HL Tau and magnetic field structure. Monthly Notices of the Royal Astronomical Society, 352, 13471364.CrossRefGoogle Scholar
Leach, R. W., Clemens, D. P., Kane, B. D., and Barvainis, R. (1991). Polarimetric mapping of Orion using MILLIPOL – Magnetic activity in BN/KL. The Astrophysical Journal, 370, 257262.CrossRefGoogle Scholar
Margulis, M., Lada, C. J., and Young, E. T. (1989). Young stellar objects in the Monoceros OB1 molecular cloud. The Astrophysical Journal, 345, 906917.CrossRefGoogle Scholar
Martin, P. G. (1972). Interstellar circular polarization. Monthly Notices of the Royal Astronomical Society, 159, 179190.CrossRefGoogle Scholar
Martin, P. G. (1974). Interstellar polarization from a medium with changing grain alignment. The Astrophysical Journal, 187, 461472.CrossRefGoogle Scholar
Matthews, B. C. and Wilson, C. D. (2002). Magnetic fields in star-forming molecular clouds. V. Submillimeter polarization of the Barnard 1 Dark Cloud. The Astrophysical Journal, 574, 822833.CrossRefGoogle Scholar
Matthews, B. C., McPhee, C. A., Fissel, L. M., and Curran, R. L. (2009). The legacy of SCUPOL: 850 μm imaging polarimetry from 1997 to 2005. The Astrophysical Journal Supplement, 182, 143204.CrossRefGoogle Scholar
Ménard, F., Bastien, P., and Robert, C. (1988). Detection of circular polarization in R Monocerotis and NGC 2261 – Implications for the polarization mechanism. The Astrophysical Journal, 335, 290294.CrossRefGoogle Scholar
Minchin, N. and Murray, A. G. (1994). Submillimetre polarimetric mapping of DR 21 and NGC 7538-IRS 11: Tracing the circumstellar magnetic field. Astronomy and Astrophysics, 286, 579587.Google Scholar
Minchin, N. R., Hough, J. H., McCall, A.et al. (1991). Near-infrared imaging polarimetry of bipolar nebulae. I – The BN-KL region of OMC-1. Monthly Notices of the Royal Astronomical Society, 248, 715729.CrossRefGoogle Scholar
Mishchenko, M. I. (1991). Extinction and polarization of transmitted light by partially aligned nonspherical grains. The Astrophysical Journal, 367, 561574.CrossRefGoogle Scholar
Nakamura, F. and Li, Z.-Y. (2011). Clustered star formation in magnetic clouds: Properties of dense cores formed in outflow-driven turbulence. The Astrophysical Journal, 740, id. 36.CrossRefGoogle Scholar
Novak, G. (2011). Instrumentation for far-IR and submillimeter polarimetry. In P. Bastien, N. Manset, D. P. Clemens, and N. St-Louis, eds., Astronomical Polarimetry 2008: Science from Small to Large Telescopes. ASP Conference Series, Vol. 449. San Francisco: Astronomical Society of the Pacific, p. 50.Google Scholar
Novak, G., Predmore, C. R., and Goldsmith, P. F. (1990). Polarization of the lambda = 1.3 millimeter continuum radiation from the Kleinmann-Low nebula. The Astrophysical Journal, 355, 166171.CrossRefGoogle Scholar
Novak, G., Dotson, J. L., and Li, H. (2009). Dispersion of observed position angles of submillimeter polarization in molecular clouds. The Astrophysical Journal, 695, 13621369.CrossRefGoogle Scholar
Padoan, P., Goodman, A., Draine, B. T.et al. (2001). Theoretical models of polarized dust emission from protostellar cores. The Astrophysical Journal, 559, 10051018.CrossRefGoogle Scholar
Peretto, N., André, P., and Belloche, A. (2006). Probing the formation of intermediate- to high-mass stars in protoclusters. A detailed millimeter study of the NGC 2264 clumps. Astronomy and Astrophysics, 445, 979998.CrossRefGoogle Scholar
Perrin, M. D., Graham, J. R., Kalas, P.et al. (2004). Laser guide star adaptive optics imaging polarimetry of Herbig Ae/Be Stars. Science, 303, 13451348.CrossRefGoogle ScholarPubMed
Pizzarello, S. and Cronin, J. R. (2000). Non-racemic amino acids in the Murray and Murchison meteorites. Geochimica et Cosmochimica Acta, 64, 329338.CrossRefGoogle ScholarPubMed
Rao, R., Girart, J. M., Marrone, D. P., Lai, S-P., and Schnee, S. (2009). IRAS 16293: A “magnetic” tale of two cores. The Astrophysical Journal, 707, 921935.CrossRefGoogle Scholar
Scarrott, S. M. (1991). Optical polarization studies of astronomical objects. Vistas in Astronomy, 34, 163177.CrossRefGoogle Scholar
Scarrott, S. M. (1996). Optical polarization and magnetic fields in spiral galaxies. Quarterly Journal of the Royal Astronomical Society, 37, 297305.Google Scholar
Shafter, A. and Jura, M. (1980). Circular polarization from scattering by circumstellar grains. The Astronomical Journal, 85, 15131519.CrossRefGoogle Scholar
Siringo, G. (2003). PolKa: A polarimeter for submillimeter bolometer arrays. Ph.D. thesis, Rheinischen Friedrich-Wilhelms-Universität Bonn.Google Scholar
SpitzerJr., L. and Tukey, J. W. (1951). A theory of interstellar polarization. The Astrophysical Journal, 114, 187205.CrossRefGoogle Scholar
Stein, W. (1966). Infrared emission by circumstellar dust. The Astrophysical Journal, 145, 101105.CrossRefGoogle Scholar
Sugitani, K., Nakamura, F., Watanabe, M.et al. (2011). Near-infrared-imaging polarimetry toward Serpens South: Revealing the importance of the magnetic field. The Astrophysical Journal, 734, id. 63.CrossRefGoogle Scholar
Tamura, M. (1999). Submillimeter polarimetry of star forming regions: From cloud cores to circumstellar disks. In T. Nakamoto, ed., Proceedings of Star Formation 1999 Conference, Nagoya, Japan, June 21–25, 1999, pp. 212216.Google Scholar
Tamura, M. (2009). Subaru strategic exploration of exoplanets and disks with HiCIAO/AO188 (SEEDS), Exoplanets and Disks: Their formation and diversity: Proceedings of the International Conference. AIP Conference Proceedings, 1158, pp. 1116.CrossRefGoogle Scholar
Tamura, M. and Fukagawa, M. (2005). Circumstellar disks in PMS and T Tauri Stars-Herbig Ae/Be Stars, Vega-like stars, and submillimeter polarizations. In A. Adamson, C. Aspin, C. J. Davis, and T. Fujiyoshi, eds., Astronomical Polarimetry: Current Status and Future Directions. ASP Conference Series, Vol. 343, Proceedings of the Conference held 15–19 March, 2004 in Waikoloa, Hawaii, USA. San Francisco CA: Astronomical Society of the Pacific, p. 215.Google Scholar
Tamura, M., Nagata, T., Sato, S., and Tanaka, M. (1987). Infrared polarimetry of dark clouds. I – Magnetic field structure in Heiles Cloud 2. Monthly Notices of the Royal Astronomical Society, 224, 413423.CrossRefGoogle Scholar
Tamura, M., Gatley, I., Joyce, R. R.et al. (1991). Infrared polarization images of star-forming regions. I – The ubiquity of bipolar structure. The Astrophysical Journal, 378, 611627.CrossRefGoogle Scholar
Tamura, M., Hayashi, S. S., Yamashita, T.et al. (1993). Magnetic field in a low-mass protostar disk – Millimeter polarimetry of IRAS 16293-2422. The Astrophysical Journal Letters, 404, L21L24.CrossRefGoogle Scholar
Tamura, M., Hough, J. H., and Hayashi, S. S. (1995). 1 millimeter polarimetry of young stellar objects: Low-mass protostars and T Tauri stars. The Astrophysical Journal, 648, 346355.CrossRefGoogle Scholar
Tamura, M., Kandori, R., Kusakabe, N.et al. (2006a). Near-infrared polarization images of the Orion nebula. The Astrophysical Journal Letters, 649, L29L32.CrossRefGoogle Scholar
Tamura, M., Fukagawa, M., Kimura, H.et al. (2006b). First two-micron imaging polarimetry of β Pictoris. The Astrophysical Journal, 648, 11721177.CrossRefGoogle Scholar
Vallée, J. P. and Bastien, P. (1995). Extreme-infrared (800 microns) polarimetry at the JCMT of the W 75N-IRS 1 cloud, Astronomy and Astrophysics, 641, 831834.Google Scholar
Vallée, J. P. (1997). Observations of the magnetic fields inside and outside the Milky Way. Fundamentals of Cosmic Physics, 19, 189.Google Scholar
Vrba, F. J., Strom, S. E., and Strom, K. M. (1976). Magnetic field structure in the vicinity of five dark cloud complexes. The Astronomical Journal, 81, 958969.CrossRefGoogle Scholar
Weintraub, D. A., Goodman, A. A., and Akeson, R. L. (2000). Polarized light from star-forming regions. In V. Mannings, A. P. Boss, and S. S. Russell, eds., Protostars and Planets IV. Tucson: University of Arizona Press, pp. 247271.Google Scholar
Wildey, R. L. and Murray, B. C. (1964). 10-μ photometry of 25 stars from B8 to M7. The Astrophysical Journal, 139, 435441.CrossRefGoogle Scholar
Wolf-Chase, G., Moriarty-Schieven, G., Fich, M., and Barsony, M. (2003). Star formation in massive protoclusters in the Monoceros OB1 dark cloud. Monthly Notices of the Royal Astronomical Society, 344, 809822.CrossRefGoogle Scholar
Wolff, M. J., Clayton, G. C., and Meade, M. R. (1993). Ultraviolet interstellar linear polarization. I – Applicability of current dust grain models. The Astrophysical Journal, 403, 722735.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×