Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-08T05:03:18.214Z Has data issue: false hasContentIssue false

15 - Imaging of protoplanetary and debris disks

from III - Stars and their environment

Published online by Cambridge University Press:  05 May 2015

Ludmilla Kolokolova
Affiliation:
University of Maryland, College Park
James Hough
Affiliation:
University of Hertfordshire
Anny-Chantal Levasseur-Regourd
Affiliation:
Université de Paris VI (Pierre et Marie Curie)
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Apai, D., Pascucci, I., Brandner, W.et al. (2004). NACO polarimetric differential imaging of TW Hya. A sharp look at the closest T Tauri disk. Astronomy and Astrophysics, 415, 671.CrossRefGoogle Scholar
Ardila, D. R., Golimowski, D. A., Krist, J. E.et al. (2007). Hubble Space Telescope advanced camera for surveys coronagraphic observations of the dust surrounding HD 100546. The Astrophysical Journal, 665(1), 512534.CrossRefGoogle Scholar
Batcheldor, D., Schneider, G., Hines, D. C.et al. (2009). High-accuracy near-infrared imaging polarimetry with NICMOS. Publications of the Astronomical Society of the Pacific, 121, 153.CrossRefGoogle Scholar
Bazzon, A., Gisler, D., Roelfsema, R. et al. (2012). SPHERE/ ZIMPOL: Characterization of the FLC polarization modulator. In Ground-Based and Airborne Instrumentation for Astronomy IV. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8446. Bellingham WA: International Society for Optics and Photonics, p. 93.Google Scholar
Beuzit, J.-L., Feldt, M., Dohlen, K.et al. (2008). SPHERE: A planet finder instrument for the VLT. In McLean, I. S., ed., Ground-Based and Airborne Instrumentation for Astronomy II. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7014. Bellingham WA: International Society for Optics and Photonics, p. 41.Google Scholar
Biller, B., Lacour, S., Juh asz, A.et al. (2012). A likely close-in low-mass stellar companion to the transitional disk star HD 142527. The Astrophysical Journal Letters, 753, L38.CrossRefGoogle Scholar
Breckinridge, J. B. and Oppenheimer, B. R. (2004). Polarization effects in reflecting coronagraphs for white-light applications in astronomy. The Astrophysical Journal, 600, 10911098.CrossRefGoogle Scholar
Burrows, C. J., Stapelfeldt, K. R., Watson, A. M.et al. (1996). Hubble Space Telescope observations of the disk and jet of HH 30. The Astrophysical Journal, 473, 437.CrossRefGoogle Scholar
Canovas, H., Rodenhuis, M., Jeffers, S. V., Min, M., and Keller, C. U. (2011). Data-reduction techniques for high-contrast imaging polarimetry. Applications to ExPo. Astronomy and Astrophysics, 531, 102.CrossRefGoogle Scholar
Canovas, H., Min, M., Jeffers, S. V., Rodenhuis, M., and Keller, C. U. (2012). Constraining the circumbinary envelope of Z Canis Majoris via imaging polarimetry. Astronomy and Astrophysics, 543, A70.CrossRefGoogle Scholar
Canovas, H., Ménard, F., Hales, A.et al. (2013). Near-infrared imaging polarimetry of HD 142527. Astronomy and Astrophysics, 556, 123.CrossRefGoogle Scholar
Carson, J., Thalmann, C., Janson, M.et al. (2013). Direct imaging discovery of a “Super-Jupiter” around the late B-type star κ And. The Astrophysical Journal Letters, 763, L32.CrossRefGoogle Scholar
Cellino, A., di Martino, M., Levasseur-Regourd, A.-C.et al. (2007). Asteroids compositions: Some evidence from Polarimetry. Advances in Geosciences, 7, 2132.CrossRefGoogle Scholar
Cho, J. and Lazarian, A. (2007). Grain alignment and polarized emission from magnetized T Tauri disks. The Astrophysical Journal, 669, 1085.CrossRefGoogle Scholar
Close, L. M., Roddier, F., Northcott, M., Roddier, C., and Elon Graves, J. (1997). Adaptive optics 0.2" resolution infrared images of HL Tauri: Direct images of an active accretion disk around a protostar. The Astrophysical Journal, 478(2), 766777.CrossRefGoogle Scholar
Close, L., Males, J., Morzinski, K.et al. (2013). Diffraction-limited visible light images of Orion Trapezium Cluster with the Magellan Adaptive Secondary Adaptive Optics System (MagAO). The Astrophysical Journal, 774, 94.CrossRefGoogle Scholar
Cotera, A., Schneider, G., Hines, D. C.et al. (2004). Imaging polarimetry of young stellar objects with ACS and NICMOS: A study in dust grain evolution. Bulletin of the American Astronomical Society, 36(136), 1568.Google Scholar
Dollfus, A. (1996). Saturn’s rings: Optical reflectance polarimetry. Icarus, 124, 237261.CrossRefGoogle Scholar
Dong, R., Rafikov, R., Zhu, Z.et al. (2012). The missing cavities in the SEEDS polarized scattered light images of transitional protoplanetary disks: A generic disk model. The Astrophysical Journal, 750, 161.CrossRefGoogle Scholar
Duchene, G., Silber, J., Menard, F., and Gledhill, T. (2000). Circumbinary disks around T Tauri Stars: HST/NICMOS near-infrared images and polarimetric maps. In Garzón, F., Eiroa, C., de Winter, D., and Mahoney, T. J., eds., Disks, Planetesimals, and Planets. ASP Conference Proceedings, Vol. 219. San Francisco: Astronomical Society of the Pacific, p. 169.Google Scholar
Esposito, T., Fitzgerald, M., Kalas, P., and Graham, J. R. (2012). Modeling self-subtraction of extended emission in angular differential imaging: Application to the HD 32297 debris disk. American Astronomical Society Meeting Abstracts, 219.Google Scholar
Follette, K. B., Tamura, M., Hashimoto, J.et al. (2013a). Mapping H-band scattered light emission in the mysterious SR21 transitional disk. The Astrophysical Journal, 767, 10.CrossRefGoogle Scholar
Follette, K. B., Close, L. M., Males, J. R. et al. (2013b). The first circumstellar disk imaged in silhouette at visible wavelengths with adaptive optics: MagAO imaging of Orion 218–354. The Astrophysical Journal Letters, 775, L13.CrossRefGoogle Scholar
Fukagawa, M., Hayashi, M., Tamura, M.et al. (2004). Spiral structure in the circumstellar disk around AB Aurigae. The Astrophysical Journal Letters, 605, L53L56.CrossRefGoogle Scholar
Fukagawa, M., Wisniewski, J. P., Hashimoto, J.et al. (2011). High-contrast polarimetric imaging of the protoplanetary disk around AB Aurigae. In The Astrophysics of Planetary Systems: Formation, Structure, and Dynamical Evolution. Proceedings of the International Astronomical Union Symposium, Vol. 276. Cambridge University Press, pp. 420421.Google Scholar
Garrison, L. M. and Anderson, C. M. (1978). Observational studies of the Herbig Ae/Be stars. II – Polarimetry. The Astrophysical Journal, 221, 601.CrossRefGoogle Scholar
Gledhill, T., Scarrott, S., and Wolstencroft, R. (1991). Optical polarization in the disc around Beta Pictoris. Monthly Notices of the Royal Astronomical Society, 252, 5054.CrossRefGoogle Scholar
Grady, C., Woodgate, B., Bruhweiler, F. C.et al. (1999). Hubble Space Telescope space telescope imaging spectrograph coronagraphic imaging of the Herbig Ae star AB Aurigae. The Astrophysical Journal, 523, L151.CrossRefGoogle Scholar
Grady, C. A., Muto, T., Hashimoto, J.et al. (2013). Spiral arms in the asymmetrically illuminated disk of MWC 758 and constraints on giant planets. The Astrophysical Journal, 762, 48.CrossRefGoogle Scholar
Graham, J. R., Kalas, P. G., and Matthews, B. C. (2007). The signature of primordial grain growth in the polarized light of the AU Microscopii debris disk. The Astrophysical Journal, 654, 595.CrossRefGoogle Scholar
Guyon, O., Schneider, G., Belikov, R., and Tenerelli, D. J. (2012). The EXoplanetary Circumstellar Environments and Disk Explorer (EXCEDE). In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8442. Bellingham WA: International Society for Optics and Photonics.Google Scholar
Hales, A. S., Gledhill, T. M., Barlow, M. J., and Lowe, K. T. E. (2006). Near-infrared imaging polarimetry of dusty young stars. Monthly Notices of the Royal Astronomical Society, 365, 1348.CrossRefGoogle Scholar
Hardy, J. W. (1998). Adaptive Optics for Astronomical Telescopes. New York: Oxford University Press.CrossRefGoogle Scholar
Hasegawa, H., Ichikawa, T., Abe, S. et al. (1997). Near-infrared photometric and polarimetric observations of comet Hale–Bopp. Earth, 78, 353.Google Scholar
Hashimoto, J., Tamura, M., Muto, T.et al. (2011). Direct imaging of fine structures in giant planet-forming regions of the protoplanetary disk around AB Aurigae. The Astrophysical Journal Letters, 729, L17.CrossRefGoogle Scholar
Hashimoto, J., Dong, R., Kudo, T.et al. (2012). Polarimetric imaging of large cavity structures in the pre-transitional protoplanetary disk around PDS 70: Observations of the disk. The Astrophysical Journal Letters, 758, L19.CrossRefGoogle Scholar
Hines, D. C. and Schneider, G. (2004). NICMOS coronagraphic polarimetry: A new observing mode for HST. Bulletin of the American Astronomical Society, 205, 1341.Google Scholar
Hines, D. C., Schmidt, G. D., and Schneider, G. (2000). Analysis of polarized light with NICMOS. Publications of the Astronomical Society of the Pacific, 112, 983.CrossRefGoogle Scholar
Hines, D. C., Schneider, G., Hollenbach, D.et al. (2007). The moth: An unusual circumstellar structure associated with HD 61005. The Astrophysical Journal Letters, 671, L165L168.CrossRefGoogle Scholar
Hines, D. C., Videen, G., Zubko, E.et al. (2014). Hubble Space Telescope pre-perihelion ACS/WFC imaging polarimetry of comet ISON (c/2012 s1) at 3.81 AU. The Astrophysical Journal, 780, L32.CrossRefGoogle Scholar
Hinkley, S., Oppenheimer, B. R., Soummer, R.et al. (2009). Speckle suppression through dual imaging polarimetry, and a ground-based image of the HR 4796A circumstellar disk. The Astrophysical Journal, 701, 804.CrossRefGoogle Scholar
Hioki, T., Itoh, Y., Oasa, Y., Fukagawa, M., and Hayashi, M. (2011). High-resolution optical and near-infrared images of the FS Tauri circumbinary disk. Publications of the Astronomical Society of Japan, 63, 543.CrossRefGoogle Scholar
Hodapp, K. W., Tamura, M., Suzuki, R.et al. (2006). Design of the HiCIAO instrument for the Subaru Telescope. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 6269. Bellingham WA: International Society for Optics and Photonics, p. 123.Google Scholar
Hughes, A. M., Hull, C. L. H., Wilner, D. J., and Plambeck, R. L. (2013). Interferometric upper limits on millimeter polarization of the disks around DG Tau, GM Aur, and MWC 480. The Astronomical Journal, 145, 115.CrossRefGoogle Scholar
Jeffers, S., Min, M., Waters, L.et al. (2012). Direct imaging of a massive dust cloud around R Coronae Borealis. Astronomy and Astrophysics, 539, A56.CrossRefGoogle Scholar
Kalas, P., Liu, M. C., and Matthews, B. C. (2004). Discovery of a large dust disk around the nearby star AU Microscopii. Science, 303, 1990.CrossRefGoogle ScholarPubMed
Kolokolova, L. and Mackowski, D. (2012). Polarization of light scattered by large aggregates. Journal of Quantitative Spectroscopy and Radiative Transfer, 113, 25672572.CrossRefGoogle Scholar
Kolokolova, L., Hanner, M., Levasseur-Regourd, A., and Gustafson, B. (2004). Physical properties of cometary dust from light scattering and thermal emission. In Comets II. Tucson AZ: University of Arizona Press, pp. 577604.CrossRefGoogle Scholar
Kóspál, A., Ábrahám, P., Apai, D. et al. (2008). High-resolution polarimetry of Parsamian 21: Revealing the structure of an edge-on FUOri disc. Monthly Notices of the Royal Astronomical Society, 383, 1015.CrossRefGoogle Scholar
Kowalski, A. F., Wisniewski, J. P., Clampin, M.et al. (2009). Diagnosing the structure of the HD 163296 protoplanetary disk via coronagraphic imaging polarimetry. In Stempels, E., ed., 15th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun. American Institute of Physics Conference Series, Vol. 1094. Melville NY: AIP Publishing, pp. 393396.Google Scholar
Krejny, M., Matthews, T. G., Novak, G.et al. (2009). Polarimetry of DG TAU at 350 μm. The Astrophysical Journal, 705, 717722.CrossRefGoogle Scholar
Krivova, N. A., Krivov, A. V., and Mann, I. (2000). The disk of Pictoris in the light of polarimetric data. The Astrophysical Journal, 539, 424.CrossRefGoogle Scholar
Kuhn, J. R., Potter, D., and Parise, B. (2001). Imaging polarimetric observations of a new circumstellar disk system. The Astrophysical Journal, 553, L189.CrossRefGoogle Scholar
Kusakabe, N., Grady, C. A., Sitko, M. L.et al. (2012). High-contrast near-infrared polarization imaging of MWC480. The Astrophysical Journal, 753, 153.CrossRefGoogle Scholar
Kuzuhara, M., Tamura, M., Kudo, T.et al. (2013). Direct imaging of a cold Jovian exoplanet in orbit around the Sun-like star GJ 504. The Astrophysical Journal, 774, 11.CrossRefGoogle Scholar
Lafrenière, D., Marois, C., Doyon, R., Nadeau, D., and Artigau, E. (2007). A new algorithm for point-spread function subtraction in high-contrast imaging: A demonstration with angular differential imaging. The Astrophysical Journal, 660, 770.CrossRefGoogle Scholar
Langlois, M., Dohlen, K., Augereau, J.-C.et al. (2010). High contrast imaging with IRDIS near infrared polarimeter. In McLean, I., ed., Ground- based and Airborne Instrumentation for Astronomy III. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7735, Bellingham WA: International Society for Optics and Photonics, p. 97.Google Scholar
Langlois, M., Vigan, A., Moutou, C.et al. (2012). Infrared differential imager and spectrograph for SPHERE: Performance status with extreme adaptive optics before shipment to ESO/VLT. In Adaptive Optics Systems III. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8447. Bellingham WA: International Society for Optics and PhotonicsGoogle Scholar
Levasseur-Regourd, A. C., Mukai, T., Lasue, J., and Okada, Y. (2007). Physical properties of cometary and interplanetary dust. Planetary and Space Science, 55, 10101020.CrossRefGoogle Scholar
Lucas, P. W., Fukagawa, M., Tamura, M.et al. (2004). High-resolution imaging polarimetry of HL Tau and magnetic field structure. Monthly Notices of the Royal Astronomical Society, 352, 1347.CrossRefGoogle Scholar
Macintosh, B. A., Graham, J. R., Palmer, D. W.et al. (2008). The Gemini Planet Imager: From science to design to construction. In Society of Photo- Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7015. Bellingham WA: International Society for Optics and Photonics.Google Scholar
Macintosh, B., Anthony, A., Atwood, J. et al. (2012). The Gemini Planet Imager: Integration and status. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8446. Bellingham WA: International Society for Optics and Photonics.Google Scholar
Maness, H. (2009) HST-NICMOS coronagraphic polarimetry of the Beta Pic debris disk. Bulletin of the American Astronomical Society, 41, 501.Google Scholar
Maness, H. L., Kalas, P., Peek, K. M. G.et al. (2009). Hubble Space Telescope optical imaging of the eroding debris disk HD 61005. The Astrophysical Journal, 707, 1098.CrossRefGoogle Scholar
Marois, C., Lafrenière, D., Doyon, R., Macintosh, B. A., and Nadeau, D. (2006). Angular differential imaging: A powerful high-contrast imaging technique. The Astrophysical Journal, 641, 556.CrossRefGoogle Scholar
Masiero, J., Hartzell, C., and Scheeres, D. J. (2009). The effect of the dust size distribution on asteroid polarization. The Astronomical Journal, 138, 15571562.CrossRefGoogle Scholar
Mayama, S., Hashimoto, J., Muto, T.et al. (2012). Subaru imaging of asymmetric features in a transitional disk in Upper Scorpius. The Astrophysical Journal Letters, 760, L26.CrossRefGoogle Scholar
Meakin, C. A., Hines, D. C., and Thompson, R. I. (2005). Young stars and dust in AFGL 437: Hubble Space Telescope NICMOS polarimetric imaging of an outflow source. The Astrophysical Journal, 634, 1146.CrossRefGoogle Scholar
Ménard, F. (2005). Polarimetry of circumstellar disks around T Tauri stars. In Astronomical Polarimetry: Current Status and Future Directions. ASP Conference Series, Vol. 343. San Francisco: Astronomical Society of the Pacific, p. 128.Google Scholar
Milli, J., Mouillet, D., Mawet, D.et al. (2013). Prospects of detecting the polarimetric signature of the Earth-mass planet Centauri B b with SPHERE/ZIMPOL. Astronomy and Astrophysics, 556, 64.CrossRefGoogle Scholar
Muto, T., Grady, C. A., Hashimoto, J.et al. (2012). Discovery of small-scale spiral structures in the disk of SAO 206462 (HD 135344B): Implications for the physical state of the disk from spiral density wave theory. The Astrophysical Journal Letters, 748, L22.CrossRefGoogle Scholar
Norris, B. R. M, Tuthill, P. G., Ireland, M. J.et al. (2012). Probing dusty circumstellar environments with polarimetric aperture-masking interferometry. In Optical and Infrared Interferometry III. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8445. Bellingham WA: International Society for Optics and Photonics, p. 3.Google Scholar
Olofsson, G., Nilsson, R., Florén, H.-G., Djupvik, A., and Aberasturi, M. (2012). Polarimetric coronagraphy of BD + 31 643. Astronomy and Astrophysics, 544, 43.CrossRefGoogle Scholar
Oppenheimer, B. R., Brenner, D., Hinkley, S.et al. (2008). The solar-system-scale disk around AB Aurigae. The Astrophysical Journal, 679, 1574.CrossRefGoogle Scholar
Perrin, M. D., Graham, J. R., Kalas, P.et al. (2004). Laser guide star adaptive optics imaging polarimetry of Herbig Ae/Be stars. Science, 303, 1345.CrossRefGoogle ScholarPubMed
Perrin, M. D., Graham, J. R., Kalas, P. et al. (2005). Adaptive optics polarimetry of Herbig Ae/Be stars. In Astronomical Polarimetry: Current Status and Future Directions. ASP Conference Series, Vol. 343. San Francisco, USA: Astronomical Society of the Pacific, p. 379.Google Scholar
Perrin, M. D., Duchene, G., Kalas, P., and Graham, J. R. (2006). Discovery of an optically thick, edge-on disk around the Herbig Ae star PDS 144N. The Astrophysical Journal, 645, 1272.CrossRefGoogle Scholar
Perrin, M. D., Graham, J. R., and Lloyd, J. P. (2008). The IRCAL polarimeter: Design, calibration, and data reduction for an adaptive optics imaging polarimeter. Publications of the Astronomical Society of the Pacific, 120, 555.CrossRefGoogle Scholar
Perrin, M. D., Vacca, W. D., and Graham, J. R. (2009a). Evidence for an edge-on disk around the young star MWC 778 from infrared imaging and polarimetry. The Astronomical Journal, 137, 4468.CrossRefGoogle Scholar
Perrin, M. D., Duchene, G., Graham, J. R.et al. (2009b). Investigating circumstellar disk geometry and dust properties with coronagraphic polarimetry. In Exoplanets and Disks: Their Formation and Diversity: Proceedings of the International Conference. AIP Conference Proceedings, Vol. 1158. American Institute of Physics, p. 17.Google Scholar
Perrin, M. D., Schneider, G., Duchene, G.et al. (2009c). The case of AB Aurigae’s disk in polarized light: Is there truly a gap?The Astrophysical Journal, 707, L132L136.CrossRefGoogle Scholar
Perrin, M. D., Graham, J. R., Larkin, J. E.et al. (2010). Imaging polarimetry with the Gemini Planet Imager. In Ellerbroek, B., ed., Imaging Polarimetry with the Gemini Planet Imager. Adaptive Optics Systems II. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7736. Bellingham WA: International Society for Optics and Photonics, p. 192.Google Scholar
Perrin, M. D., Graham, J. R., Macintosh, B.et al. (2015). Gemini planet imager polarimetry of the circumstellar disk around HR 4796A. The Astrophysical Journal, 799, 182208. Available online at: http://adsabs.harvard.edu/abs/2014arXiv1407.2495P (accessed January 26, 2015).CrossRefGoogle Scholar
Piirola, V., Scaltriti, F., and Coyne, G. V. (1992). Circumstellar disks deduced from sub-arcsecond polarization observations of two young stars. Nature, 359, 399.CrossRefGoogle Scholar
Pinte, C., Menard, F., Duchene, G., and Bastien, P. (2006). Monte Carlo radiative transfer in protoplanetary disks. Astronomy and Astrophysics, 459, 797.CrossRefGoogle Scholar
Pinte, C., Harries, T. J., Min, M.et al. (2009). Benchmark problems for continuum radiative transfer. High optical depths, anisotropic scattering, and polarisation. Astronomy and Astrophysics, 498, 967.CrossRefGoogle Scholar
Postman, M. (2009). ATLAST Concept Study Team: The Science Case for an 8-m to 16-m advanced technology UVOIR Space Telescope. American Astronomical Society, AAS Meeting #213, #450.01. Bulletin of the American Astronomical Society, 41, 342.Google Scholar
Potter, D. (2003). A search for debris disks with a dual channel adaptive optics imaging polarimeter. Ph. D. thesis, University of Hawaii.Google Scholar
Potter, D. E. (2005). A dual imaging polarimetric survey of YSO environments using Gemini/Hokupa’a. In Astronomical Polarimetry: Current Status and Future Directions. ASP Conference Series, Vol. 343. San Francisco, USA: Astronomical Society of the Pacific, p. 143.Google Scholar
Potter, D. E., Close, L. M., Roddier, F.et al. (2000). A high-resolution polarimetry map of the circumbinary disk around UY Aurigae. The Astrophysical Journal, 540, 422.CrossRefGoogle Scholar
Quanz, S. P., Schmid, H. M., Geissler, K.et al. (2011). Very Large Telescope/NACO polarimetric differential imaging of HD 100546—Disk structure and dust grain properties between 10 and 140 AU. The Astrophysical Journal, 738, 23.CrossRefGoogle Scholar
Quanz, S. P., Birkmann, S. M., Apai, D., Wolf, S., and Henning, T. (2012). Resolving the inner regions of the HD 97048 circumstellar disk with VLT/NACO polarimetric differential imaging. Astronomy and Astrophysics, 538, 92.CrossRefGoogle Scholar
Quanz, S. P., Avenhaus, H., Buenzli, E.et al. (2013a). Gaps in the HD 169142 protoplanetary disk revealed by polarimetric imaging: Signs of ongoing planet formation?The Astrophysical Journal Letters, 766, L2.CrossRefGoogle Scholar
Quanz, S. P., Amara, A., Meyer, M. R.et al. (2013b). A young protoplanet candidate embedded in the circumstellar disk of HD 100546. The Astrophysical Journal Letters, 766, L1.CrossRefGoogle Scholar
Robitaille, T. (2012). HYPERION: An open-source parallelized three-dimensional dust continuum radiative transfer code. Astronomy and Astrophysics, 536, 79.CrossRefGoogle Scholar
Rodenhuis, M., Canovas, H., Jeffers, S.et al. (2012). The extreme polarimeter: Design, performance, first results and upgrades. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8446. Bellingham WA: International Society for Optics and Photonics.Google Scholar
Rodenhuis, M., Canovas, H., Jeffers, S. V., Min, M., and Keller, C. U. (2013). Observing circumstellar neighbourhoods with the extreme polarimeter. In Wijburg, M., ed., 370 Years of Astronomy in Utrecht. Proceedings of a conference held 2–5 April, Vol. 470. San Francisco: Astronomical Society of the Pacific, p. 407.Google Scholar
Rodgers, E., Cotera, A., Whitney, B., and Robitaille, T. (2013). Probing the evolution of dust grains through detailed modeling of nearby YSOs. American Astronomical Society Meeting Abstracts, 221, #256.12.Google Scholar
Rodriguez, D., Perrin, M., and Macintosh, B. (2009). HST NICMOS and WFPC2 imaging of BP Piscium. Bulletin of the American Astronomical Society, 41, 208.Google Scholar
Roelfsema, R., Gisler, D., Pragt, J.et al. (2013). SPHERE-ZIMPOL system testing: Status report on polarimetric high contrast results. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8864. Bellingham WA: International Society for Optics and Photonics.Google Scholar
Ruiz, M. T., Blanco, V., Maza, J.et al. (1987). IRAS 18059-3211 – Optically known as “Gomez’s Hamburger.”The Astrophysical Journal, 316, L21.CrossRefGoogle Scholar
Safonov, B. S. (2013). Performance analysis of differential speckle polarimetry. Astronomy Letters, 39, 237.CrossRefGoogle Scholar
Sauvage, J.-F., Beuzit, J.-L., Roelfsema, R.et al. (2013). SPHERE: Complete laboratory performance and prediction for on-sky first light. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8864, Bellingham WA: International Society for Optics and Photonics, p. 88640B.Google Scholar
Schmid, H. M., Beuzit, J., Mouillet, D.et al. (2010). Polarimetry of extra-solar planets and circumstellar disks with ZIMPOL/ SPHERE. In Boccaletti, A., ed., Proceedings of the Conference In the Spirit of Lyot 2010: Direct Detection of Exoplanets and Circumstellar Disks. October 25–29, 2010. University of Paris Diderot, Paris, France, p. 49.Google Scholar
Schneider, G. and Hines, D. C. (2007). High contrast imaging with NICMOS – I: Teaching an old dog new tricks with coronagraphic polarimetry. In Kalas, P., ed., Proceedings of the conference In the Spirit of Bernard Lyot: The Direct Detection of Planets and Circumstellar Disks in the 21st Century. June 4–8, 2007. University of California, Berkeley CA, USA, p. 22.Google Scholar
Schneider, G., Smith, B. A., Becklin, E. E.et al. (1999). NICMOS imaging of the HR 4796A circumstellar disk. The Astrophysical Journal Letters, 513, L127L130.CrossRefGoogle Scholar
Seager, S. and Deming, D. (2010). Exoplanet atmospheres. Annual Review of Astronomy and Astrophysics, 48, 631672.CrossRefGoogle Scholar
Seager, S., Whitney, B. A., and Sasselov, D. D. (2000). Photometric light curves and polarization of close-in extrasolar giant planets. The Astrophysical Journal, 540, 504520.CrossRefGoogle Scholar
Silber, J., Gledhill, T. M., Duchene, G., and Menard, F. (2000). Near-infrared imaging polarimetry of the GG Tauri circumbinary ring. The Astrophysical Journal, 536, L89.CrossRefGoogle ScholarPubMed
Simpson, J. P., Whitney, B. A., Hines, D. C.et al. (2013). Aligned grains and inferred toroidal magnetic fields in the envelopes of massive young stellar objects. Monthly Notices of the Royal Astronomical Society, 435, 34193436.CrossRefGoogle Scholar
Sitko, M. L., Carpenter, W. J., Kimes, R. L.et al. (2008). Variability of disk emission in pre-main-sequence and related stars. I. HD 31648 and HD 163296: Isolated Herbig Ae stars driving Herbig-Haro flows. The Astrophysical Journal, 678, 1070.CrossRefGoogle Scholar
Smith, B. (1994). 10 years of Beta Pictoria – A personal reminiscence. In Circumstellar Dust Disks and Planet Formation. Proceedings of the 10th IAP Astrophysics Meeting, Institut D’Astrophysique de Paris, July 4–8, 1994, Editions Frontieres, p. 1.Google Scholar
Smith, B. and Terrile, R. (1984). A circumstellar disk around Beta Pictoris. Science, 226, 14211424.CrossRefGoogle ScholarPubMed
Soummer, R., Pueyo, L., and Larkin, J. (2012). Detection and characterization of exoplanets and disks using projections on Karhunen-Loève eigenimages. The Astrophysical Journal Letters, 755(2), 15.CrossRefGoogle Scholar
Sparks, W. B. and Axon, D. J. (1999). Panoramic polarimetry data analysis. Publications of the Astronomical Society of the Pacific, 111, 12981315.CrossRefGoogle Scholar
Spergel, D., Gehrels, N., Breckinridge, J.et al. (2013). Wide-field infrared survey telescope – Astrophysics focused telescope assets WFIRST-AFTA final report. Available online at: http://arxiv.org/abs/1305.5422 (accessed January 8, 2015).Google Scholar
Strubbe, L. E. and Chiang, E. I. (2006). Dust dynamics, surface brightness profiles, and thermal spectra of debris disks: The case of AU Microscopii. The Astrophysical Journal, 648, 652.CrossRefGoogle Scholar
Takami, M., Karr, J. L., Hashimoto, J.et al. (2013). High-contrast near-infrared imaging polarimetry of the protoplanetary disk around RY TAU. The Astrophysical Journal, 772, 145.CrossRefGoogle Scholar
Tamura, M. (2009). Subaru strategic exploration of exoplanets and disks with HiCIAO/AO188 (SEEDS). In Exoplanets and Disks: Their formation and Diversity. Proceedings of the International Conference. AIP Conference Proceedings, Vol. 1158. American Institute of Physics, p. 11.Google Scholar
Tamura, M. and Fukagawa, M. (2005). Circumstellar disks in PMS and T Tauri stars—Herbig Ae/Be Stars, Vega-like stars, and submillimeter polarizations. In Astronomical Polarimetry: Current Status and Future Directions. ASP Conference Series, Vol. 343. San Francisco, USA: Astronomical Society of the Pacific, p. 215.Google Scholar
Tamura, M., Hough, J. H., and Hayashi, S. S. (1995). 1 millimeter polarimetry of young stellar objects: Low-mass protostars and T Tauri stars. The Astrophysical Journal, 448, 346.CrossRefGoogle Scholar
Tamura, M., Suto, H., Itoh, Y.et al. (2000). Coronagraph imager with adaptive optics (CIAO): Description and first results. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 4008. Bellingham WA: International Society for Optics and Photonics, pp. 11531161.Google Scholar
Tamura, M., Fukagawa, M., Murakawa, K.et al. (2003). Near-infrared polarimeter for the Subaru telescope. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 4843. Bellingham WA: International Society for Optics and Photonics, pp. 190195.Google Scholar
Tamura, M., Fukagawa, M., Hayashi, M., and the Sdps/Ciao Teams. (2004). Subaru AO coronagraphic and direct imaging of YSOs. In Burton, M. G., Jayawardhana, R., and Bourke, T. L., eds., Star Formation at High Angular Resolution. Proceedings of the IAU Symposium, Vol. 221. Dordrecht, The Netherlands: Kluwer Academic Publisher, p. 313.Google Scholar
Tamura, M., Fukagawa, M., Kimura, H.et al. (2006) First two-micron imaging polarimetry of Pictoris. The Astrophysical Journal, 641, 1172.CrossRefGoogle Scholar
Tanii, R., Itoh, Y., Kudo, T.et al. (2012). High-resolution near-infrared polarimetry of a circumstellar disk around UX Tau A. Publications of the Astronomical Society of Japan, 64(6), 110.CrossRefGoogle Scholar
Thalmann, C., Grady, C. A., Goto, M.et al. (2010). Imaging of a transitional disk gap in reflected light: Indications of planet formation around the young solar analog LkCa 15. The Astrophysical Journal Letters, 718, L87.CrossRefGoogle Scholar
Thalmann, C., Janson, M., Buenzli, E.et al. (2013). Imaging discovery of the debris disk around HIP 79977. The Astrophysical Journal Letters, 763, L29.CrossRefGoogle Scholar
Voshchinnikov, N. and Krügel, E. (1999). Circumstellar disc of Beta Pictoris: Constraints on grain properties from polarization. Astronomy and Astrophysics, 352, 508516.Google Scholar
Vrba, F. J., Schmidt, G. D., and Hintzen, P. M. (1979). Observations and evaluation of the polarization in Herbig Ae/Be stars. The Astrophysical Journal, 227, 185.CrossRefGoogle Scholar
Weintraub, D. A., Kastner, J. H., Zuckerman, B., and Gatley, I. (1992). Near-infrared polarized images of a nebula around T Tauri. The Astrophysical Journal, 391, 784.CrossRefGoogle Scholar
Whitney, B. A. and Wolff, M. J. (2002). Scattering and absorption by aligned grains in circumstellar environments. The Astrophysical Journal, 574, 205231.CrossRefGoogle Scholar
Whitney, B. A., Kenyon, S. J., and Gomez, M. (1997). Near-infrared imaging polarimetry of embedded young stars in the Taurus-Auriga molecular cloud. The Astrophysical Journal, 485, 703.CrossRefGoogle Scholar
Whitney, B. A., Robitaille, T. P., Bjorkman, J. E.et al. (2013). Three-dimensional radiation transfer in young stellar objects. The Astrophysical Journal Supplement, 207, 30.CrossRefGoogle Scholar
Wiktorowicz, S. (2013). Direct detection of exoplanets with polarimetry. American Astronomical Society Meeting Abstracts, 221.Google Scholar
Wiktorowicz, S., Duchene, G., Graham, J. R., and Kalas, P. (2010). Direct polarimetric detection of scattered, optical light from debris disks. In Boccaletti, A., ed., Proceedings of the Conference In the Spirit of Lyot 2010: Direct Detection of Exoplanets and Circumstellar Disks. October 25–29, 2010. University of Paris Diderot, Paris, France, p. 30.Google Scholar
Wiktorowicz, S., Millar-Blanchaer, M., Perrin, M. D.et al. (2012). Polarimetric performance of the Gemini Planet Imager. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8446. Bellingham WA: International Society for Optics and Photonics, p. 91.Google Scholar
Wisniewski, J. P., Clampin, M., Grady, C. A.et al. (2008). The HD 163296 circumstellar disk in scattered light: Evidence of time-variable self-shadowing. The Astrophysical Journal, 682, 548.CrossRefGoogle Scholar
Wisniewski, J., Fukagawa, M., Grady, C. et al. (2010). SEEDS J-band polarimetric imagery of the AB Aur protoplanetary disk. In: Boccaletti, A., ed., Proceedings of the Conference In the Spirit of Lyot 2010: Direct Detection of Exoplanets and Circumstellar Disks. October 25–29, 2010. University of Paris Diderot, Paris, France, p. 36.Google Scholar
Wolstencroft, R. D., Scarrott, S. M., and Gledhill, T. M. (1995). Properties of the Beta Pictoris disc deduced from optical imaging polarimetry. Astrophysics and Space Science, 224, 395.CrossRefGoogle Scholar
Zubko, E., Muinonen, K., Shkuratov, Y. et al. (2012) Evaluating the carbon depletion found by the Stardust mission in Comet 81P/Wild 2. Astronomy and Astrophysics, 544, L8.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×