Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-01T02:01:31.706Z Has data issue: false hasContentIssue false

16 - Computer Simulations of Planetary Rings

from III - Ring Systems by Type and Topic

Published online by Cambridge University Press:  26 February 2018

H. Salo
Affiliation:
University of Oulu Oulu, FINLAND
K. Ohtsuki
Affiliation:
Kobe University Kobe, JAPAN
M. C. Lewis
Affiliation:
Trinity University San Antonio, Texas, USA
Matthew S. Tiscareno
Affiliation:
SETI Institute, California
Carl D. Murray
Affiliation:
Queen Mary University of London
Get access
Type
Chapter
Information
Planetary Ring Systems
Properties, Structure, and Evolution
, pp. 434 - 493
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albers, N., and Spahn, F. 2006. The influence of particle adhesion on the stability of agglomerates in Saturn's rings. Icarus, 181, 292–301.CrossRefGoogle Scholar
Albers, N., Sremčević, M., and Esposito, L. W. 2015. A new mooninduced structure. Page 874 of: European Planetary Science Congress 2015, vol. 10.Google Scholar
Altobelli, N., Spilker, L., Pilorz, S., et al. 2007. C ring fine structures revealed in thermal infrared. Icarus, 191, 691–701.CrossRefGoogle Scholar
Altobelli, N., Spilker, L., Pilorz, S., et al. 2009. Thermal phase curves observed in Saturn's main rings by Cassini-CIRS: Detection of an opposition effect? Geophys. Res. Lett., 36, L10105.CrossRefGoogle Scholar
Araki, S. 1988. The dynamics of particle disks. II. Effects of spin degrees of freedom. Icarus, 76, 182–198.CrossRefGoogle Scholar
Araki, S. 1991. The dynamics of particle disks III. Dense and spinning particle disks. Icarus, 90, 139–171.CrossRefGoogle Scholar
Araki, S., and Tremaine, S. 1986. The dynamics of dense particle disks. Icarus, 65, 83–109.CrossRefGoogle Scholar
Attree N, O., Murray, C. D., Cooper, N. J., and Williams, G. A. 2012. Detection of low-velocity collisions in Saturn's F ring. Astrophys. J. Lett., 755, L27.CrossRefGoogle Scholar
Baillié, K., Colwell, J. E., Lissauer, J. J., Esposito, L. W., and Sremčevi ć, M. 2011. Waves in Cassini UVIS stellar occultations. 2. The C ring. Icarus, 216, 292–308.CrossRefGoogle Scholar
Barbara, J. M., and Esposito, L. W. 2002. Moonlet collisions and the effects of tidally modified accretion in Saturn's F ring. Icarus, 160, 161–171.CrossRefGoogle Scholar
Barkstrom, B. R. 1973. A comparison of the Minneart reflectance law and the reflectance from a nonconservative isotropic scattering atmosphere. J. Geophys. Res., 78, 6370–6372.CrossRefGoogle Scholar
Barnes, J., and Hut, P. 1986. A hierarchical O(N log N) forcecalculation algorithm. Nature, 324, 446–449.Google Scholar
Belleman, R. G., Bdorf, J., and Zwart, S. F. Portegies. 2008. High performance direct gravitational N-body simulations on graphics processing units II: An implementation in CUDA. New Astronomy, 13(2), 103–112.Google Scholar
Borderies, N., Goldreich, P., and Tremaine, S. 1985. A granular flow model for dense planetary rings. Icarus, 63, 406–420.CrossRefGoogle Scholar
Borderies, N., Goldreich, P., and Tremaine, S. 1989. The formation of sharp edges in planetary rings by nearby satellites. Icarus, 80, 344–360.CrossRefGoogle Scholar
Brahic, A. 1977. Systems of colliding bodies in a gravitational field. I –Numerical simulation of the standard model. Astron. & Astrophys., 54, 895–907.Google Scholar
Bridges, F. G., Hatzes, A. P., and Lin, D. N. C. 1984. Structure, stability and evolution of Saturn's rings. Nature, 309, 333–338.CrossRefGoogle Scholar
Brilliantov, N., Krapivsky, P. L., Bodrova, A., et al. 2015. Size distribution of particles in Saturn's rings from aggregation and fragmentation. PNAS, 112, 9536–9541.CrossRefGoogle ScholarPubMed
Brilliantov, N. V., Albers, N., Spahn, F., and Pöschel, T. 2007. Collision dynamics of granular particles with adhesion. Phys. Rev. E, 76(5), 051302.CrossRefGoogle ScholarPubMed
Brilliantov, N. V., Spahn, F., Hertzsch, J. -M., and Pöschel, T. 1996. Model for collisions in granular gases. Phys. Rev. E, 53, 5382–5392.CrossRefGoogle ScholarPubMed
Burns, J. A., and Cuzzi, J. N. 2006. Our local astrophysical laboratory. Science, 312, 1753–1755.CrossRefGoogle ScholarPubMed
Camichel, H. 1958. Mesures photométriques de Saturne et de son anneau. Annales d'Astrophysique, 21, 231–242.Google Scholar
Canup, R. M. 2010. Origin of Saturn's rings and inner moons by mass removal from a lost Titan-sized satellite. Nature, 468, 943–946.CrossRefGoogle ScholarPubMed
Chandrasekhar, S. 1960. Radiative Transfer. New York: Dover.Google Scholar
Chandrasekhar, S. 1969. Ellipsoidal Figures of Equilibrium. YaleUniv. Press.Google Scholar
Charnoz, S., Morbidelli, A., Dones, L., and Salmon, J. 2009. Did Saturn's rings form during the Late Heavy Bombardment? Icarus, 199, 413–428.CrossRefGoogle Scholar
Charnoz, S., Salmon, J., and Crida, A. 2010. The recent formation of Saturn's moonlets from viscous spreading of the main rings. Nature, 465, 752–754.CrossRefGoogle ScholarPubMed
Charnoz, S., Crida, A., Castillo-Rogez, J. C., et al. 2011. Accretion of Saturn's mid-sized moons during the viscous spreading of young massive rings: Solving the paradox of silicate-poor rings versus silicate-rich moons. Icarus, 216, 535–550.CrossRefGoogle Scholar
Ciarniello, M., Capaccioni, F., and Filacchione, G. 2014. A test of Hapke's model by means of Monte Carlo ray-tracing. Icarus, 237, 293–305.CrossRefGoogle Scholar
Colombo, G., Goldreich, P., and Harris, A. W. 1976. Spiral structure as an explanation for the asymmetric brightness of Saturn's A ring. Nature, 264, 344–345.CrossRefGoogle Scholar
Colwell, J. E., Esposito, L. W., and Sremčević, M. 2006. Self-gravity wakes in Saturn's A ring measured by stellar occultations from Cassini. Geophys. Res. Lett., 33, L07201. 1–L07201. 4.CrossRefGoogle Scholar
Colwell, J. E., Esposito, L. W., Sremčević, M., Stewart, G. R., and McClintock, W. E. 2007. Self-gravity wakes and radial structure of Saturn's Bring. Icarus, 190, 127–144.CrossRefGoogle Scholar
Crida, A., and Charnoz, S. 2012. Formation of regular satellites from ancient massive rings in the solar system. Science, 338, 1196.CrossRefGoogle ScholarPubMed
Cundall, P. A., and Strack, O. D. L. 1979. A discrete numerical model for granular assemblies. Geotechnique, 29, 47–65.CrossRefGoogle Scholar
Cuzzi, J. N., Durisen, R. H., Burns, J. A., and Hamill, P. 1979. The vertical structure and thickness of Saturn's rings. Icarus, 38, 54–68.CrossRefGoogle Scholar
Cuzzi, J. N., French, R. G., and Dones, L. 2002. HST Multicolor (255–1042 nm) Photometry of Saturn's main rings. I: Radial profiles, phase and opening angle variations, and regional spectra. Icarus, 158, 199–223.CrossRefGoogle Scholar
Cuzzi, J., Clark, R., Filacchione, G., et al. 2009. Ring particle composition and size distribution. Page 459 of: Dougherty, M. K., Esposito, L. W., and Krimigis, S. M. (eds.), Saturn from Cassini-Huygens. Springer.Google Scholar
Cuzzi, J. N., Burns, J. A., Charnoz, S., et al. 2010. An evolving view of Saturn's dynamic rings. Science, 327, 1470–1475.CrossRefGoogle ScholarPubMed
Daisaka, H., and Ida, S. 1999. Spatial structure and coherent motion in dense planetary rings induced by self-gravitational instability. Earth, Planets, and Space, 51, 1195–1213.CrossRefGoogle Scholar
Daisaka, H., Tanaka, H., and Ida, S. 2001. Viscosity in a dense planetary ring with self-gravitating particles. Icarus, 154, 296–312.CrossRefGoogle Scholar
Déau, E. 2015. The opposition effect in Saturn's main rings as seen by Cassini ISS: 2. Constraints on the ring particles and their regolith with analytical radiative transfer models. Icarus, 253, 311–345.CrossRefGoogle Scholar
Déau, E., Dones, L., Charnoz, S., et al. 2013. The opposition effect in Saturn's main rings as seen by Cassini ISS: 1. Morphology of phase functions and dependence on the local optical depth. Icarus, 226, 591–603.CrossRefGoogle Scholar
Dilley, J. P. 1993. Energy loss in collisions of icy spheres: Loss mechanism and size-mass dependence. Icarus, 105, 225–234. Dones, L. 1991. A recent cometary origin for Saturn's rings? Icarus, 92, 194–203.CrossRefGoogle Scholar
Dones, L., and Porco, C. C. 1989. Spiral density wakes in Saturn's A ring? Page 929 of: Bull. American Astron. Soc., vol. 21.Google Scholar
Dones, L., Cuzzi, J. N., and Showalter, M. R. 1993. Voyager photometry of Saturn's A Ring. Icarus, 105, 184–215.CrossRefGoogle Scholar
Dunn, D. E., Molnar, L. A., Niehof, J. T., de Pater, I., and Lissauer, J. J. 2004. Microwave observations of Saturn's rings: anisotropy in directly transmitted and scattered saturnian thermal emission. Icarus, 171, 183–198.CrossRefGoogle Scholar
Durisen, R. H., Cramer, N. L., Murphy, B. W., et al. 1989. Ballistic transport in planetary ring systems due to particle erosion mechanisms. I –Theory, numerical methods, and illustrative examples. Icarus, 80, 136–166.CrossRefGoogle Scholar
Esposito, L. W. 1979. Extensions to the classical calculation of the effect of mutual shadowing in diffuse reflection. Icarus, 39, 69–80.CrossRefGoogle Scholar
Esposito, L. W., and Lumme, K. 1977. The tilt effect for Saturn's rings. Icarus, 31, 157–167.CrossRefGoogle Scholar
Estrada, P. R., Durisen, R. H., Cuzzi, J. N., and Morgan, D. A. 2015. Combined structural and compositional evolution of planetary rings due to micrometeoroid impacts and ballistic transport. Icarus, 252, 415–439.CrossRefGoogle Scholar
Ferrari, C., Brooks, S., et al. 2009. Structure of self-gravity wakes in Saturn's A ring as measured by Cassini CIRS. Icarus, 199, 145–153. Ferrin, I. 1975. On the structure of Saturn's rings and the ‘real’ rotational period for the planet. Astrophys. Space Sci., 33, 453–457.CrossRefGoogle Scholar
Franklin, F. A., Cook, A. F., Barrey, R. T. F., et al. 1987. Voyager observations of the azimuthal brightness variations in Saturn's rings. Icarus, 69, 280–296.CrossRefGoogle Scholar
French, R. G., Salo, H., McGhee, C. A., and Dones, L. 2007a. HST observations of azimuthal asymmetry in Saturn's rings. Icarus, 189, 493–522.CrossRefGoogle Scholar
French, R. G., Verbiscer, A., Salo, H., McGhee, C., and Dones, L. 2007b. Saturn's rings at true opposition. Publ. Astron. Soc. Pacific, 119, 623–642.CrossRefGoogle Scholar
Goldreich, P., and Lynden-Bell, D. 1965. II. Spiral arms as sheared gravitational instabilities. Mon. Not. R. Astron. Soc., 130, 125–158.CrossRefGoogle Scholar
Goldreich, P., and Tremaine, S. 1978a. The excitation and evolution of density waves. Astrophys. J., 222, 850–858.CrossRefGoogle Scholar
Goldreich, P., and Tremaine, S. 1978b. The velocity dispersion in Saturn's rings. Icarus, 34, 227–239.CrossRefGoogle Scholar
Goldreich, P., Rappaport, N., and Sicardy, B. 1995. Single sided shepherding. Icarus, 118, 414–417.CrossRefGoogle Scholar
Hahn, J. M., and Spitale, J. N. 2013. An N-body integrator for gravitating planetary rings, and the outer edge of Saturn's Bring. Astrophys. J., 772, 122.Google Scholar
Hämeen-Anttila, K. A. 1978. An improved and generalized theory for the collisional evolution of Keplerian systems. Astrophys. Space Sci., 58, 477–519.CrossRefGoogle Scholar
Hämeen-Anttila, K. A. 1982. Saturn's rings and bimodality of Keplerian systems. Earth, Moon & Planets, 26, 171–196.Google Scholar
Hämeen-Anttila, K. A. 1984. Collisional theory of non-identical particles in a gravitational field. Earth, Moon & Planets, 31, 271–299.CrossRefGoogle Scholar
Hämeen-Anttila, K. A., and Lukkari, J. 1980. Numerical simulations of collisions in Keplerian systems. Astrophys. Space Sci., 71, 475–497.Google Scholar
Hämeen-Anttila, K. A., and Salo, H. 1993. Generalized theory of impacts in particulate systems. Earth, Moon & Planets, 62, 47–84.CrossRefGoogle Scholar
Hänninen, J., and Salo, H. 1994. Collisional simulations of satellite Lindblad resonances. 2: Formation of narrow ringlets. Icarus, 108, 325–346.CrossRefGoogle Scholar
Hänninen, J., and Salo, H. 1995. Formation of isolated narrow ringlets by a single satellite. Icarus, 117, 435–438.CrossRefGoogle Scholar
Hansen, A. K., and Lewis, M. C. 2015. Simulating “Straw” in the Keeler Gap region. In: AAS/Division for Planetary Sciences Meeting Abstracts, vol. 47.Google Scholar
Hapke, B. 1986. Bidirectional reflectance spectroscopy. IV –The extinction coefficient and the opposition effect. Icarus, 67, 264–280.CrossRefGoogle Scholar
Hapke, B. 1990. Coherent backscatter and the radar characteristics of outer planet satellites. Icarus, 88, 407–417.CrossRefGoogle Scholar
Hapke, B. 2002. Bidirectional reflectance spectroscopy. 5. The Coherent backscatter opposition effect and anisotropic scattering. Icarus, 157, 523–534.Google Scholar
Hapke, B. 2008. Bidirectional reflectance spectroscopy. 6. Effects of porosity. Icarus, 195, 918–926.CrossRefGoogle Scholar
Harris, A. W. 1984. The origin and evolution of planetary rings. Pages 641–659 of: Greenberg, R., and Brahic, A. (eds.), Planetary Rings. Tucson Arizona: University of Arizona Press.Google Scholar
Hatzes, A., Bridges, F. G., and Lin, D. N. C. 1988. Collisional properties of ice spheres at low impact velocities. Mon. Not. R. Astron. Soc., 231, 1091–1115.CrossRefGoogle Scholar
Hedman, M. M., and Nicholson, P. D. 2014. More kronoseismology with Saturn's rings. Mon. Not. Royal Astron. Soc., 444, 1369–1388.CrossRefGoogle Scholar
Hedman, M. M., and Nicholson, P. D. 2016. The B-ring's surface mass density from hidden density waves: Less than meets the eye? Icarus, 279, 109–124.
Hedman, M. M., Nicholson, P. D., Salo, H., et al. 2007. Self-gravity wake structures in Saturn's A ring revealed by Cassini VIMS. Astron. J., 133, 2624–2629.CrossRefGoogle Scholar
Hedman, M. M., Burns, J. A., Evans, M. W., Tiscareno, M. S., and Porco, C. C. 2011. Saturn's curiously corrugated C ring. Science, 332, 708–711.CrossRefGoogle ScholarPubMed
Hedman, M. M., Nicholson, P. D., and Salo, H. 2014. Exploring overstabilities in Saturn's A ring using two stellar occultations. Astron. J, 148, 1–9.CrossRefGoogle Scholar
Hernquist, L., and Katz, N. 1989. TREESPH –A unification of SPH with the hierarchical tree method. Astrophys. J., Supp., 70, 419–446.CrossRefGoogle Scholar
Hertz, H. 1882. Über die Berührung fester elastischer Körper. J. f. Reine Angew. Math., 92, 156.Google Scholar
Hyodo, R., and Ohtsuki, K. 2014. Collisional disruption of gravitational aggregates in the tidal environment. Astrophys. J., 787, 56.CrossRefGoogle Scholar
Hyodo, R., and Ohtsuki, K. 2015. Saturn's F ring and shepherd satellites a natural outcome of satellite system formation. Nature Geoscience, 8, 686–689.CrossRefGoogle Scholar
Hyodo, R., Ohtsuki, K., and Takeda, T. 2015. Formation of multiplesatellite systems from low-mass circumplanetary particle disks. Astron. J., 799, 40.CrossRefGoogle Scholar
Hyodo, R., Charnoz, S., Ohtsuki, K., and Genda, H. 2017. Ring formation around giant planets by tidal disruption of a single passing large Kuiper belt object. Icarus, 282, 195–213.CrossRefGoogle Scholar
Julian, W. H., and Toomre, A. 1966. Non-axisymmetric responses of differentially rotating disks of stars. Astrophys. J., 146, 810–827.CrossRefGoogle Scholar
Karjalainen, R. 2007. Aggregate impacts in Saturn's rings. Icarus, 189, 523–537.CrossRefGoogle Scholar
Karjalainen, R., and Salo, H. 2004. Gravitational accretion of particles in Saturn's rings. Icarus, 172, 328–348.CrossRefGoogle Scholar
Kolvoord, R. A., Burns, J. A., and Showalter, M. R. 1990. Periodic features in Saturn's F ring –Evidence for nearby moonlets. Nature, 345, 695–697.CrossRefGoogle Scholar
Langbert, Z., and Lewis, M. C. 2014. Processing hard sphere collisions on a GPU using OpenCL. Pages 35–41 of: PDPTA, vol. 1. CSREA Press.Google Scholar
Latter, H. N., and Ogilvie, G. I. 2006. The linear stability of dilute particulate rings. Icarus, 184, 498–516.CrossRefGoogle Scholar
Latter, H. N., and Ogilvie, G. I. 2008. Dense planetary rings and the viscous overstability. Icarus, 195, 725–751.CrossRefGoogle Scholar
Latter, H. N., and Ogilvie, G. I. 2009. The viscous overstability, nonlinear wavetrains, and finescale structure in dense planetary rings. Icarus, 202, 565–583.CrossRefGoogle Scholar
Latter, H. N., and Ogilvie, G. I. 2010. Hydrodynamical simulations of viscous overstability in Saturn's rings. Icarus, 210, 318–329.CrossRefGoogle Scholar
Lees, A. W., and Edwards, S. F. 1972. The computer study of transport process under extreme conditions. J. Phys. C Solid State Phys., 5, 1921–1928.CrossRefGoogle Scholar
Leinhardt, Z. M., Ogilvie, G. I., Latter, H. N., and Kokubo, E. 2012. Tidal disruption of satellites and formation of narrow rings. Mon. Not. R. Astron. Soc., 424, 1419–1431.CrossRefGoogle Scholar
Lewis, M., and Massingill, B. L. 2006. Multithreaded collision detection in Java. Pages 583–592 of: Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications.
Lewis, M. C., and Stewart, G. R. 2000. Collisional dynamics of perturbed planetary rings. I. Astron. J., 120, 3295–3310.CrossRefGoogle Scholar
Lewis, M. C., and Stewart, G. R. 2002. A new methodology for granular flow simulations of planetary rings –coordinates and boundary conditions. Pages 292–297 of: Hamza M. (ed.), Proceedings of the IASTED International Conference, Modeling and Simulation. ACTA Press.
Lewis, M. C., and Stewart, G. R. 2003. A new methodology for granular flow simulations of planetary rings –collision handling. Pages 292–297 of: Hamza M. (ed.), Proceedings of the IASTED International Conference, Modeling and Simulation, Palm Springs. ACTA Press.
Lewis, M. C., and Stewart, G. R. 2005. Expectations for Cassini observations of ring material with nearby moons. Icarus, 178, 124–143.CrossRefGoogle Scholar
Lewis, M. C., and Stewart, G. R. 2006a. Simulating Saturns Keeler Gap region. Proceedings of the 17th IASTED international conference on Modeling and Simulation, Montreal, Canada, 268–273.
Lewis, M. C., and Stewart, G. R. 2006b. Simulating the Keeler gap in Saturn's rings: Wake and edge dynamics. Page 560 of: Bulletin of the American Astronomical Society, vol. 38.Google Scholar
Lewis, M. C., and Stewart, G. R. 2007. Collisional simulations of the F ring with Prometheus and Pandora. Page 26. 08 of: AAS/Division for Planetary Sciences Meeting Abstracts, vol. 39.Google Scholar
Lewis, M. C., and Stewart, G. R. 2009. Features around embedded moonlets in Saturn's rings: The role of self-gravity and particle size distributions. Icarus, 199, 387–412.CrossRefGoogle Scholar
Lewis, M. C., and Wing, N. 2002. A distributed methodology for hard sphere collisional simulations. Pages 404–409 of: Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications-Volume 1. CSREA Press.
Lewis, M., Maly, M., and Massingill, B. L. 2009. Hybrid Parallelization of N-Body Simulations Involving Collisions and Self-Gravity. Pages 324–330 of: Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications. Lewis, M., Stewart, G., Leezer, J., and West, A. 2011. Negative diffusion in planetary rings with a nearby Moon. Icarus, 213(1), 201–217.Google Scholar
Lin, D. N. C., and Bodenheimer, P. 1981. On the stability of Saturn's rings. Astrophys. J. Lett., 248, L83–L86.CrossRefGoogle Scholar
Longaretti, P. -Y., and Rappaport, N. 1995. Viscous overstabilities in dense narrow planetary rings. Icarus, 116, 376–396.CrossRefGoogle Scholar
Lukkari, J. 1981. Collisional amplification of density fluctuations in Saturn's rings. Nature, 292, 433–435.CrossRefGoogle Scholar
Lumme, K., and Bowell, E. 1981. Radiative transfer in the surfaces of atmosphereless bodies. I –Theory. II –Interpretation of phase curves. Astron. J., 86, 1694–1721.Google Scholar
Lumme, K., Esposito, L. W., Irvine, W. M., and Baum, W. A. 1977. Azimuthal brightness variations of Saturn's rings. II –Observations at an intermediate tilt angle. Astrophys. J. Lett., 216, L123–L126.CrossRefGoogle Scholar
Lumme, K., Irvine, W. M., and Esposito, L. W. 1983. Theoretical interpretation of the ground-based photometry of Saturn's Bring. Icarus, 53, 174–184.CrossRefGoogle Scholar
Lynden-Bell, D., and Kalnajs, A. J. 1972. On the generating mechanism of spiral structure. Mon. Not. R. Astron. Soc., 157, 1–30.CrossRefGoogle Scholar
Makino, J., and Funato, Y. 1993. The GRAPE Software System. Publications of the Astronomical Society of Japan, 45, 279–288.Google Scholar
Michikoshi, S., Fujii, A., Kokubo, E., and Salo, H. 2015. Dynamics of self-gravity wakes in dense planetary rings. I. Pitch angle. Astrophys. J., 812, 151.CrossRefGoogle Scholar
Mishchenko, M. I. 1992. The angular width of the coherent backscatter opposition effect –an application to icy outer planet satellites. Ap&SS, 194, 327–333.Google Scholar
Morishima, R., and Salo, H. 2004. Spin rates of small moonlets embedded in planetary rings: I. Three-body calculations. Icarus, 167, 330–346.CrossRefGoogle Scholar
Morishima, R., and Salo, H. 2006. Simulations of dense planetary rings IV. Spinning self-gravitating particles with size distributions. Icarus, 181, 272–291.CrossRefGoogle Scholar
Morishima, R., Spilker, L., Salo, H., et al. 2010. A multilayer model for thermal infrared emission of Saturn's rings II: Albedo, spins, and vertical mixing of ring particles inferred from Cassini CIRS. Icarus, 210, 330–345.CrossRefGoogle Scholar
Morishima, R., Spilker, L., and Ohtsuki, K. 2011. A multilayer model for thermal infrared emission of Saturn's rings. III: Thermal inertia inferred from Cassini CIRS. Icarus, 215, 107–127.CrossRefGoogle Scholar
Morishima, R., Spilker, L., and Turner, N. 2014. Azimuthal temperature modulations of Saturn's A ring caused by self-gravity wakes. Icarus, 228, 247–259.CrossRefGoogle Scholar
Mosqueira, I. 1996. Local simulations of perturbed dense planetary rings. Icarus, 122, 128–152.CrossRefGoogle Scholar
Muinonen, K. O., Sihvola, A. H., Lindell, I. V., and Lumme, K. A. 1991. Scattering by a small object close to an interface. II. Study of backscattering. Journal of the Optical Society of America A, 8, 477–482.CrossRefGoogle Scholar
Nelson, R. M., Hapke, B. W., Smythe, W. D., and Spilker, L. J. 2000. The opposition effect in simulated planetary regoliths. Reflectance and circular polarization ratio change at small phase angle. Icarus, 147, 545–558.CrossRefGoogle Scholar
Nicholson, P. D., French, R. G., Campbell, D. B., et al. 2005. Radar imaging of Saturn's rings. Icarus, 177, 32–62.CrossRefGoogle Scholar
Ohtsuki, K. 1992. Equilibrium velocities in planetary rings with low optical depth. Icarus, 95, 265–282.CrossRefGoogle Scholar
Ohtsuki, K. 1993. Capture probability of colliding planetesimals: Dynamical constraints on accretion of planets, satellites, and ring particles. Icarus, 106, 228–246.CrossRefGoogle Scholar
Ohtsuki, K. 1999. Evolution of particle velocity dispersion in a circumplanetary disk due to inelastic collisions and gravitational interactions. Icarus, 137, 152–177.CrossRefGoogle Scholar
Ohtsuki, K. 2004a. Formulation and analytic calculation for the spin angular momentum of a moonlet due to inelastic collisions of ring particles. Earth Planets Space, 56, 909–919.CrossRefGoogle Scholar
Ohtsuki, K. 2004b. On the rotation of a moonlet embedded in planetary rings. Icarus, 172, 432–445.CrossRefGoogle Scholar
Ohtsuki, K. 2005. Rotation rates of particles in Saturn's rings. Astrophys. J., 626, L61–L64.CrossRefGoogle Scholar
Ohtsuki, K. 2006a. Rotation rate and velocity dispersion of planetary ring particles with size distribution. I. Formulation and analytic calculation. Icarus, 183, 373–383.Google Scholar
Ohtsuki, K. 2006b. Rotation rate and velocity dispersion of planetary ring particles with size distribution. II. Numerical simulation for gravitating particles. Icarus, 183, 384–395.Google Scholar
Ohtsuki, K. 2012. Collisions and gravitational interactions between particles in planetary rings. Prog. Theor. Phys. Suppl., 195, 29–47.CrossRefGoogle Scholar
Ohtsuki, K., and Emori, H. 2000. Local N-body simulations for the distribution and evolution of particle velocities in planetary rings. Astron. J., 119, 403–416.Google Scholar
Ohtsuki, K., and Toyama, D. 2005. Local N-body simulations for the rotation rates of particles in planetary rings. Astron. J., 130, 1302–1310.Google Scholar
Ohtsuki, K., Stewart, G. R., and Ida, S. 2002. Evolution of planetesimal velocities based on three-body orbital integrations and growth of protoplanets. Icarus, 155, 436–453.CrossRefGoogle Scholar
Ohtsuki, K., Yasui, Y., and Daisaka, H. 2013. Accretion rates of moonlets embedded in circumplanetary particle disks. Astronomical Journal, 146, 25.CrossRefGoogle Scholar
Perrine, R. P., and Richardson, D. C. 2006. A computational model of moons in planetary ring gaps. Page 560 of: AAS/Division for Planetary Sciences Meeting Abstracts #38. Bulletin of the American Astronomical Society, vol. 38.Google Scholar
Perrine, R. P., and Richardson, D. C. 2007. Numerical studies of satellite–ring interactions. Page 425 of: AAS/Division for Planetary Sciences Meeting Abstracts #39. Bulletin of the American Astronomical Society, vol. 39.Google Scholar
Perrine, R. P., and Richardson, D. C. 2012. N-body simulations of cohesion in dense planetary rings: a study of cohesion parameters. Icarus, 219, 515–533.CrossRefGoogle Scholar
Perrine, R. P., Richardson, D. C., and Scheeres, D. J. 2011. A numerical model of cohesion in planetary rings. Icarus, 212, 719–735.CrossRefGoogle Scholar
Petit, J. M., and Hénon, M. 1987. A numerical simulation of planetary rings. I. Binary encounters. Astron. & Astrophys., 173, 389–404.Google Scholar
Porco, C. C., Thomas, P. C., Weiss, J. W., and Richardson, D. C. 2007. Saturn's small inner satellites: Clues to their origins. Science, 318, 1602–1607.CrossRefGoogle ScholarPubMed
Porco, C. C., Weiss, J. W., Richardson, D. C., et al. 2008. Simulations of the dynamical and light-scattering behavior of Saturn's rings and the derivation of ring particle and disk properties. Astron. J., 136, 2172–2200.CrossRefGoogle Scholar
Pöschel, T., and Schwager, T. 2005. Computational Granular Dynamics. Springer-Verlag Berlin Heidelberg.Google Scholar
Poulet, F., Cuzzi, J. N., French, R. G., and Dones, L. 2002. A study of Saturn's ring phase curves from HST observations. Icarus, 158, 224–248.CrossRefGoogle Scholar
Rein, H., and Latter, H. N. 2013. Large-scale N-body simulations of the viscous overstability in Saturn's rings. Mon. Not. Royal Astron. Soc., 431, 145–158.CrossRefGoogle Scholar
Rein, H., and Liu, S. -F. 2012. REBOUND: an open-source multipurpose N-body code for collisional dynamics. Astron. & Astrophys., 537, A128.Google Scholar
Reitsema, H. J., Beebe, R. F., and Smith, B. A. 1976. Azimuthal brightness variations in Saturn's rings. Astron. J., 81, 209–215.CrossRefGoogle Scholar
Richardson, D. C. 1993. A new tree code method for simulation of planetesimal dynamics. Mon. Not. R. Astron. Soc., 261, 396–414.CrossRefGoogle Scholar
Richardson, D. C. 1994. Tree code simulations of planetary rings. Mon. Not. R. Astron. Soc., 269, 493–511.CrossRefGoogle Scholar
Richardson, D. C., Quinn, T., Stadel, J., and Lake, G. 2000. Direct large-scale N-body simulations of planetesimal dynamics. Icarus, 143, 45–59.CrossRefGoogle Scholar
Robbins, S. J., Stewart, G. R., Lewis, M. C., Colwell, J. E., and Sremčević, M. 2010. Estimating the masses of Saturn's A and Brings from high-optical depth N-body simulations and stellar occultations. Icarus, 206, 431–445.Google Scholar
Safronov, V. 1969. Evolution of the protoplanetary cloud and the formation of the earth and planets. Nauka, NASA TTF-667.
Salmon, J., Charnoz, S., Crida, A., and Brahic, A. 2010. Long-term and large-scale viscous evolution of dense planetary rings. Icarus, 209, 771–785.CrossRefGoogle Scholar
Salo, H. 1987a. Collisional evolution of rotating, non-identical particles. Moon Planets, 38, 149–181.Google Scholar
Salo, H. 1987b. Numerical simulations of collisions between rotating particles. Icarus, 70, 37–51.CrossRefGoogle Scholar
Salo, H. 1991. Numerical simulations of dense collisional systems. Icarus, 92, 367–368.CrossRefGoogle Scholar
Salo, H. 1992a. Gravitational wakes in Saturn's rings. Nature, 359, 619–621.CrossRefGoogle Scholar
Salo, H. 1992b. Numerical simulations of dense collisional systems. II. Extended distribution of particle sizes. Icarus, 96, 85–106.CrossRefGoogle Scholar
Salo, H. 1995. Simulations of dense planetary rings. III. Selfgravitating identical particles. Icarus, 117, 287–312.CrossRefGoogle Scholar
Salo, H. 2001. Numerical simulations of the collisional dynamics of planetary rings. Pages 330–349 of: Pöschel, T., and Luding, S. (eds.), Granular Gases. Lecture Notes in Physics, Berlin, Springer Verlag, vol. 564.CrossRefGoogle Scholar
Salo, H. 2012. Simulating the formation of fine-scale structure in Saturn's rings. Prog. Theor. Phys. Suppl., 195, 48–67.CrossRefGoogle Scholar
Salo, H., and French, R. G. 2010. The opposition and tilt effects of Saturn's rings from HST observations. Icarus, 210, 785–816.CrossRefGoogle Scholar
Salo, H., and Karjalainen, R. 2003. Photometric modeling of Saturn's rings. I. Monte Carlo method and the effect of nonzero volume filling factor. Icarus, 164, 428–460.Google Scholar
Salo, H., and Schmidt, J. 2010. N-body simulations of viscous instability of planetary rings. Icarus, 206, 390–409.CrossRefGoogle Scholar
Salo, H., Schmidt, J., and Spahn, F. 2001. Viscous overstability in Saturn's Bring: I. Direct simulations and measurement of transport coefficients. Icarus, 153, 295–315.CrossRefGoogle Scholar
Salo, H., Karjalainen, R., and French, R. G. 2004. Photometric modeling of Saturn's rings. II. Azimuthal asymmetry in reflected and transmitted light. Icarus, 170, 70–90.CrossRefGoogle Scholar
Salo, H. J., and Schmidt, J. 2007. Release of impact-debris in perturbed ring regions: Dynamical and photometric simulations. Page 425 of: Bull. American Astron. Soc. Bull. American Astron. Soc., vol. 38.Google Scholar
Schmidt, J., and Salo, H. 2003. A weakly nonlinear model for viscous overstability in Saturn's dense rings. Physical Review Letters, 90(6), 061102.CrossRefGoogle ScholarPubMed
Schmidt, J., Salo, H., Spahn, F., and Petzschmann, O. 2001. Viscous overstability in Saturn's Bring: II. Hydrodynamic theory and comparison to simulations. Icarus, 153, 316–331.CrossRefGoogle Scholar
Schmidt, J., Ohtsuki, K., Rappaport, N., Salo, H., and Spahn, F. 2009. Dynamics of Saturn's dense rings. Page 413 of: Dougherty, M. K., Esposito, L. W., and Krimigis, S. M. (eds.), Saturn from Cassini-Huygens. Springer.Google Scholar
Schmit, U., and Tscharnuter, W. M. 1995. A fluid dynamical treatment of the common action of self-gravitation, collisions, and rotation in Saturn's B-ring. Icarus, 115, 304–319.CrossRefGoogle Scholar
Schmit, U., and Tscharnuter, W. M. 1999. On the formation of the fine–scale structure in Saturn's Bring. Icarus, 138, 173–187.CrossRefGoogle Scholar
Sellwood J, A. 2014. GALAXY package for N-body simulation. ArXiv e-prints 1406. 6606.
Showalter, M. R. 1991. Visual detection of 1981S13, Saturn's eighteenth satellite, and its role in the Encke gap. Nature, 351, 709–713.CrossRefGoogle Scholar
Showalter, M. R. 1998. Detection of centimeter-sized meteoroid impact events in Saturn's F ring. Science, 282, 1099–1102.CrossRefGoogle ScholarPubMed
Showalter, M. R., Cuzzi, J. N., Marouf, E. A., and Esposito, L. W. 1986. Satellite ‘wakes’ and the orbit of the Encke Gap moonlet. Icarus, 66, 297–323.CrossRefGoogle Scholar
Shu, F. H. 1984. Waves in planetary rings. Pages 513–561 of: Greenberg, R., and Brahic, A. (eds.), Planetary Rings. Tucson Arizona: University of Arizona Press.Google Scholar
Shu, F. H., and Stewart, G. R. 1985. The collisional dynamics of particulate disks. Icarus, 62, 360–383.CrossRefGoogle Scholar
Shukhman, I. G. 1984. Collisional dynamics of particles in Saturn's rings. Sov. Astron., 28, 574–585.Google Scholar
Spahn, F., and Sremčević, M. 2000. Density patterns induced by small moonlets in Saturn's rings? Astron. & Astrophys., 358, 368–372.Google Scholar
Spahn, F., Hertzsch, J. -M., and Brilliantov, N. V. 1995. The role of particle collisions for the dynamics in planetary rings. Chaos, Solitons and Fractals, 5, 1945–1964.CrossRefGoogle Scholar
Springel, V. 2005. The cosmological simulation code GADGET-2. Mon. Not. Royal Astron. Soc., 364, 1105–1134.CrossRefGoogle Scholar
Sremčević, M., Schmidt, J., Salo, H., et al. 2007. A belt of moonlets in Saturn's A ring. Nature, 449, 1019–1021.CrossRefGoogle ScholarPubMed
Stadel, J., Wadsley, J., and Richardson, D. C. 2002. High performance computational astrophysics with pkdgrav/gasoline. Pages 501–523 of: High Performance Computing Systems and Applications. Springer.Google Scholar
Stewart, G. R. 1991. Nonlinear satellite wakes in planetary rings. I –Phase-space kinematics. Icarus, 94, 436–450.CrossRefGoogle Scholar
Stewart, G. R., Lin, D. N. C., and Bodenheimer, P. 1984. Collisioninduced transport processes in planetary rings. Pages 447–512 of: Greenberg, R., and Brahic, A. (eds.), Planetary Rings. Tucson, Arizona: Univ. of Arizona Press.Google Scholar
Stewart, S. T., and Leinhardt, Z. M. 2009. Velocity-dependent catastrophic disruption criteria for planetesimals. Astrophys. J. Lett., 691, L133–L137.CrossRefGoogle Scholar
Supulver, K. D., Bridges, F. G., and Lin, D. N. C. 1995. The coefficient of restitution of ice particles in glancing collisions: Experimental results for unfrosted surfaces. Icarus, 113, 188–199.CrossRefGoogle Scholar
Tanaka, H., Ohtsuki, K., and Daisaka, H. 2003. A new formulation of the viscosity in planetary rings. Icarus, 161, 144–156.CrossRefGoogle Scholar
Thompson, W. T., Lumme, K., Irvine, W. M., Baum, W. A., and Esposito, L. W. 1981. Saturn's rings –Azimuthal variations, phase curves, and radial profiles in four colors. Icarus, 46, 187–200.CrossRefGoogle Scholar
Thomson, F. S., Marouf, E. A., Tyler, G. L., French, R. G., and Rappaport, N. J. 2007. Periodic microstructure in Saturn's rings A and B. Geophys. Res. Lett., 34, 24 203.CrossRefGoogle Scholar
Tiscareno, M. S., Burns, J. A., Hedman, M. M., et al. 2006. Observation of “propellers” indicates 100-metre diameter moonlets reside in Saturn's A-ring. Nature, 440, 648–650.CrossRefGoogle Scholar
Tiscareno, M. S., Burns, J. A., Nicholson, P. D., Hedman, M. M., and Porco, C. C. 2007. Cassini imaging of Saturn's rings: II. A wavelet technique for analysis of density waves and other radial structure in the rings. Icarus, 189, 14–34.CrossRefGoogle Scholar
Tiscareno, M. S., Perrine, R. P., Richardson, D. C., et al. 2010. An analytic parameterization of self-gravity wakes in Saturn's rings, with application to occultations and propellers. Astron. J., 139, 492–503.CrossRefGoogle Scholar
Tiscareno, M. S., Hedman, M. M., Burns, J. A., and Castillo-Rogez, J. 2013a. Compositions and origins of outer planet systems: Insights from the Roche critical density. Astrophys. J. Lett., 765, L28.Google Scholar
Tiscareno, M. S., Hedman, M. M., Burns, J. A., Weiss J, W., and Porco, C. C. 2013b. Probing the inner boundaries of Saturn's A ring with the Iapetus −1:0 nodal bending wave. Icarus, 224, 201–208.CrossRefGoogle Scholar
Toomre, A. 1964. On the gravitational stability of a disk of stars. Astrophys. J., 139, 1217–1238.CrossRefGoogle Scholar
Toomre, A. 1981. What amplifies the spirals. Pages 111–136 of: Fall S, M., and Lynden-Bell, D. (eds.), Structure and Evolution of Normal Galaxies. Cambridge University Press.Google Scholar
Toomre, A., and Kalnajs, A. J. 1991. Spiral chaos in an orbiting patch. Pages 341–358 of: Sundelius, B. (ed.), Dynamics of Disc Galaxies. Almquist-Wiksell, Göteborg.
Tremaine, S. 2003. On the origin of irregular structure in Saturn's rings. Astron. J., 125(Feb.), 894–901.CrossRefGoogle Scholar
Trulsen, J. 1972. Numerical simulation of jetstreams, 1: The threedimensional case. Astrophys. Space Sci., 17, 241–262.CrossRefGoogle Scholar
Ward, W. R. 1981. On the radial structure of Saturn's rings. Geophys. Res. Lett., 8, 641–643.CrossRefGoogle Scholar
Weidenschilling, S. J., Chapman, C. R., Davis, D. R., and Greenberg, R. 1984. Ring particles: Collisional interactions and physical nature. Pages 367–415 of: Greenberg, R., and Brahic, A. (eds.), Planetary Rings. Tucson Arizona: Univ. of Arizona Press.Google Scholar
Wisdom, J., and Tremaine, S. 1988. Local simulations of planetary rings. Astron. J., 95, 925–940.CrossRefGoogle Scholar
Yasui, Y., Ohtsuki, K., and Daisaka, H. 2012. Viscosity in planetary rings with spinning self-gravitating particles. Astron. J., 143, 110.CrossRefGoogle Scholar
Yasui, Y., Ohtsuki, K., and Daisaka, H. 2014. Gravitational accretion of particles onto moonlets embedded in Saturn's rings. Astrophys. J., 797, 93.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×