Book contents
- The Physics of Graphene
- The Physics of Graphene
- Copyright page
- Dedication
- Contents
- Preface to the second edition
- Preface to the first edition
- 1 The electronic structure of ideal graphene
- 2 Electron states in a magnetic field
- 3 Quantum transport via evanescent waves
- 4 The Klein paradox and chiral tunneling
- 5 Edges, nanoribbons, and quantum dots
- 6 Point defects
- 7 Optics and response functions
- 8 The Coulomb problem
- 9 Crystal lattice dynamics, structure, and thermodynamics
- 10 Gauge fields and strain engineering
- 11 Scattering mechanisms and transport properties
- 12 Spin effects and magnetism
- 13 Graphene on hexagonal boron nitride
- 14 Twisted bilayer graphene
- 15 Many-body effects in graphene
- References
- Index
13 - Graphene on hexagonal boron nitride
Published online by Cambridge University Press: 24 May 2020
- The Physics of Graphene
- The Physics of Graphene
- Copyright page
- Dedication
- Contents
- Preface to the second edition
- Preface to the first edition
- 1 The electronic structure of ideal graphene
- 2 Electron states in a magnetic field
- 3 Quantum transport via evanescent waves
- 4 The Klein paradox and chiral tunneling
- 5 Edges, nanoribbons, and quantum dots
- 6 Point defects
- 7 Optics and response functions
- 8 The Coulomb problem
- 9 Crystal lattice dynamics, structure, and thermodynamics
- 10 Gauge fields and strain engineering
- 11 Scattering mechanisms and transport properties
- 12 Spin effects and magnetism
- 13 Graphene on hexagonal boron nitride
- 14 Twisted bilayer graphene
- 15 Many-body effects in graphene
- References
- Index
Summary
Using graphene on hexagonal boron nitride (hBN) as an example, we introduce the concept of van der Waals heterostructures. First, we explain extraordinary high quality of graphene on hBN. Then we discuss the physics of formation of moiré patterns and a general problem of commensurability and incommensurability. We also discuss the basic consequences for electronic structure and electron transport properties, including a conductivity along zero-mass lines, formation of additional Dirac points and recently experimentally discovered new types of magneto-oscillation effects in graphene superlattuces.
Keywords
- Type
- Chapter
- Information
- The Physics of Graphene , pp. 351 - 378Publisher: Cambridge University PressPrint publication year: 2020