Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-18T06:02:24.846Z Has data issue: false hasContentIssue false

Part III - Interacting Bacteria and Biofilms

Published online by Cambridge University Press:  12 December 2024

Thomas Andrew Waigh
Affiliation:
University of Manchester
Get access
Type
Chapter
Information
The Physics of Bacteria
From Cells to Biofilms
, pp. 227 - 353
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Suggested Reading

Lauga, E., Bacterial hydrodynamics. Annual Review of Fluid Mechanics 2016, 48, 105130. Excellent theoretical overview of bacterial motility.CrossRefGoogle Scholar
Lauga, E. The Fluid Mechanics of Cellular Motility. Cambridge University Press: 2020. Some interesting calculations on bacteria in viscoelastic fluids are considered.Google Scholar
Pismen, L. Active Matter Within and Around Us. Springer: 2021. Excellent introduction to the active motility of cells.CrossRefGoogle Scholar

References

Lopez, H. M.; Gachelin, J.; Douarche, C.; Auradou, H.; Clement, E., Turning bacteria suspensions into superfluids. Physical Review Letters 2015, 115 (2), 28301.CrossRefGoogle ScholarPubMed
Sokolov, A.; Aranson, I. S.; Kessler, J. O.; Goldstein, R. E., Concentration dependence of the collective dynamics of swimming bacteria. Physical Review Letters 2007, 98 (15), 158102.CrossRefGoogle ScholarPubMed
Sokolov, A.; Aranson, I. S., Reduction of viscosity in suspension of swimming bacteria. Physical Review Letters 2009, 103 (14), 148101.CrossRefGoogle ScholarPubMed
Gachelin, J.; Mino, G.; Berthet, H.; Lindner, A.; Rousselet, A.; Clement, E., Non-Newtonian viscosity of Escherichia coli suspensions. Physical Review Letters 2013, 110 (26), 268103.CrossRefGoogle ScholarPubMed
Rhodeland, B.; Hoeger, K.; Ursell, T., Bacterial surface motility is modulated by colony-scale flow and granular jamming. Journal of Royal Society Interface 2020, 17 (167), 20200147.CrossRefGoogle ScholarPubMed
Waitukaitis, S. R.; Jaeger, H. M., Impact-activated solidification of dense suspensions via dynamic jamming fronts. Nature 2012, 487 (7406), 205209.CrossRefGoogle ScholarPubMed
Cates, M. E.; Tailleur, J., Motility-induced phase separation. Annual Review of Condensed Matter Physics 2015, 6, 219244.CrossRefGoogle Scholar
Stenhammer, J.; Tiribocchi, A.; Allen, R. J.; Marenduzzo, D.; Cates, M. E., Continuum theory of phase separation kinetics for active Brownian particles. Physical Review Letters 2013, 111 (14), 145702.CrossRefGoogle Scholar
Pismen, L., Active Matter Within and Around Us: From Self-propelled Particles to Flocks and Living Forms. Springer: 2021.CrossRefGoogle Scholar
Fu, X.; Tang, L. H.; Liu, C.; Huang, J. D.; Hwa, T.; Lenz, P., Stripe formation in bacterial systems with density-suppressed motility. Physical Review Letters 2012, 108 (19), 198102.CrossRefGoogle ScholarPubMed
Bechinger, C.; Di Leonardo, R.; Lowen, H.; Reichardt, C.; Volpe, G.; Volpe, G., Active particles in complex and crowded environments. Reviews of Modern Physics 2016, 88 (4), 045006.CrossRefGoogle Scholar
Kearns, D. B., A field guide to bacterial swarming motility. Nature Reviews Microbiology 2010, 8 (9), 634644.CrossRefGoogle ScholarPubMed
Darnton, N. C.; Turner, L.; Rojevsky, S.; Berg, H. C., Dynamics of bacterial swarming. Biophysical Journal 2010, 98 (10), 20822090.CrossRefGoogle ScholarPubMed
Vicsek, T.; Czirok, A.; Ben-Jacob, E.; Cohen, I.; Shochet, O., Novel type of phase transition in a system of self-driven particles. Physical Review Letters 1995, 75 (6), 12261229.CrossRefGoogle Scholar
Mounfield, C. C., The Handbook of Agent Based Modelling. Independent Publishing: 2020.Google Scholar
Czirok, A.; Ben-Jacob, E.; Cohen, I.; Vicsek, T., Formation of complex bacterial colonies via self-generated vortices. Physical Review E 1996, 54 (2), 1791.CrossRefGoogle ScholarPubMed
Cisneros, L. H.; Kessler, J. O.; Ganguly, S.; Goldstein, R. E., Dynamics of swimming bacteria: Transition to directional order at high concentration. Physical Review E 2011, 83 (6 Pt 1), 061907.CrossRefGoogle ScholarPubMed
Dogic, Z.; Fraden, S., Development of model colloidal liquid crystals and the kinetics of the isotropic-smectic transition. Philosophical Transactions of the Royal Society A 2001, 359 (1782), 9971015.CrossRefGoogle Scholar
Vroege, G. J.; Lekkerkerker, H. N. W., Phase transitions in lyotropic colloidal and polymeric liquid crystals. Reports on Progress in Physics 1992, 55 (8), 12411309.CrossRefGoogle Scholar
Ilkanaiv, B.; Kearns, D. B.; Ariel, G.; Be’er, A., Effect of cell aspect ratio on swarming bacteria. Physical Review Letters 2017, 118 (15), 158002.CrossRefGoogle ScholarPubMed
Chen, X.; Dong, X.; Be’er, A.; Swinney, H. L.; Zhang, H. P., Scale-invariant correlation in dynamic bacterial clusters. Physical Review Letters 2012, 108, 148101.CrossRefGoogle ScholarPubMed
Dombrowski, C.; Cisneros, L.; Chatkaew, S.; Goldstein, R. E.; Kessler, J. O., Self-concentration and large-scale coherence in bacterial dynamics. Physical Review Letters 2004, 93 (9), 098103.CrossRefGoogle ScholarPubMed
Shklarsh, A.; Finkelshtein, A.; Ariel, G.; Kalisman, O.; Ingham, C.; Ben-Jacob, E., Collective navigation of cargo-carrying swarms. Interface Focus 2012, 2 (6), 786798.CrossRefGoogle ScholarPubMed
Lu, S.; Bi, W.; Liu, F.; Wu, X., Loss of collective motion of bacteria undergoing stress. Physical Review Letters 2013, 111 (20), 208101.CrossRefGoogle ScholarPubMed
Yang, J.; Arratia, P. E.; Patterson, A. E.; Gopinath, A., Quenching active swarms: Effects of light exposure on collective motility in swarming Serratia marcescens. Journal of Royal Society Interface 2019, 16 (156), 20180960.CrossRefGoogle ScholarPubMed
Wu, X. L.; Libchaber, A., Particle diffusion in a quasi-two-dimensional bacterial bath. Physical Review Letters 2000, 84 (13), 30173020.CrossRefGoogle Scholar
Waigh, T. A., Advances in the microrheology of complex fluids. Reports on Progress in Physics 2016, 79 (7), 074601.CrossRefGoogle ScholarPubMed
Waigh, T. A., Microrheology of complex fluids. Reports on Progress in Physics 2005, 68 (3), 685.CrossRefGoogle Scholar
Chen, D. T. N.; Lau, A. W. C.; Hough, L. A.; Islam, M. F.; Goulian, M.; Lubensky, T. C.; Yodh, A. G., Fluctuations and rheology in active bacterial suspensions. Physical Review Letters 2007, 99 (14), 148302.CrossRefGoogle ScholarPubMed
Lagarde, A.; Dages, N.; Nemoto, T.; Demery, V.; Bartolo, D.; Gibaud, T., Colloidal transport in bacteria suspensions: From bacteria collision to anomalous and enhanced diffusion. Soft Matter 2020, 16 (32), 7503.CrossRefGoogle ScholarPubMed
Mason, T. G.; Weitz, D. A., Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. Physical Review Letters 1995, 74 (7), 1250.CrossRefGoogle ScholarPubMed
Du, H.; Xu, Z.; Anyan, M.; Kim, O.; Leevy, W. M.; Shrout, J. D.; Alber, M., High density waves of the bacterium Pseudomonas aeruginosa in propagating swarms result in efficient colonization of surfaces. Biophysical Journal 2012, 103 (3), 601609.CrossRefGoogle ScholarPubMed
Dunkel, J.; Heidenreich, S.; Drescher, K.; Wensick, H. H.; Bar, M.; Goldstein, R. E., Fluid mechanics of bacterial turbulence. Physical Review Letters 2013, 110, 228102.CrossRefGoogle Scholar
Wolgemuth, C. W., Collective swimming and the dynamics of bacterial turbulence. Biophysical Journal 2008, 95 (4), 15641574.CrossRefGoogle ScholarPubMed
Peruani, F.; Starrus, J.; Jakovljevic, V.; Sogaard-Andersen, L.; Deutsch, A.; Baer, M., Collective motion and nonequilibrium cluster formation in colonies of gliding bacteria. Physical Review Letters 2012, 108 (9), 098102.CrossRefGoogle ScholarPubMed
Wensink, H. H.; Dunkel, J.; Heidenreich, S.; Drescher, K.; Goldstein, R. E.; Lowen, H.; Yeomans, J. M., Meso-scale turbulence in living fluids. PNAS 2012, 109 (36), 1430814313.CrossRefGoogle ScholarPubMed
Dunkel, J.; Heidenreich, S.; Bar, M.; Goldstein, R. E., Minimal continuum theories of structure formation in dense active fluids. New Journal of Physics 2013, 15 (4), 045016.CrossRefGoogle Scholar
Davidson, P., Turbulence: An Introduction for Scientists and Engineers. Oxford University Press: 2015.CrossRefGoogle Scholar
Secchi, E.; Rusconi, R.; Buzzaccaro, S.; Salek, M. M.; Smriga, S.; Piazza, R.; Stocker, R., Intermittent turbulence in flowing bacterial suspensions. Journal of Royal Society Interface 2016, 13 (119), 20160175.CrossRefGoogle ScholarPubMed
Simha, R. A.; Ramaswarmy, S., Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles. Physical Review Letters 2002, 89 (5), 058101.CrossRefGoogle Scholar
Goodwin, J. W.; Hughes, R. W., Rheology for Chemists: An Introduction. Royal Society of Chemistry: 2008.Google Scholar
Lauga, E., The Fluid Dynamics of Cell Moility. Cambridge University Press: 2020.CrossRefGoogle Scholar
Martinez, V. A.; Schwarz-Linek, J.; Reufer, M.; Wilson, L. G.; Morozov, A. N.; Poon, W. C. K., Flagellated bacterial motility in polymer solutions. PNAS 2014, 111 (50), 1777117776.CrossRefGoogle ScholarPubMed
Zottl, A.; Yeomans, J. M., Enhanced bacterial swimming speeds in macromolecular polymer solutions. Nature Physics 2019, 15 (6), 554558.CrossRefGoogle Scholar
Kamdar, S.; Shin, S.; Leishangthem, P.; Francis, L. F.; Xu, X.; Cheng, X., The colloidal nature of complex fluids enhances bacterial motility. Nature 2022, 603 (7903), 819823.CrossRefGoogle ScholarPubMed
Constantino, M. A.; Jabbarzadeh, M.; Fo, H. C.; Bansil, R., Helical and rod-shaped bacteria swim in helical trajectories with little additional population from helical shape. Science Advances 2016, 2 (11), e1601661.CrossRefGoogle Scholar
Linz, B.; et al., An African origin for the intimate association between humans and Helicobacter pylori. Nature 2007, 445 (7130), 915918.CrossRefGoogle ScholarPubMed
Georgiades, P.; Pudney, P. D. A.; Thornton, D. J.; Waigh, T. A., Particle tracking microrheology of purified gastrointestinal mucins. Biopolymers 2014, 101 (4), 366377.CrossRefGoogle ScholarPubMed
Hart, J. W.; Waigh, T. A.; Lu, J. R.; Roberts, I. S., Microrheology and spatial heterogeneity of Staphylococcus aureus biofilms modulated by hydrodynamic shear and biofilm-degrading enzymes. Langmuir 2019, 35 (9), 35533561.CrossRefGoogle ScholarPubMed
Rogers, S. S.; van der Walle, C.; Waigh, T. A., Microrheology of bacterial biofilms in vitro: Staphylococcus aureus and Pseudomonas aeruginosa. Langmuir 2008, 24 (23), 1354913555.CrossRefGoogle ScholarPubMed
Wucher, B. R.; Elsayed, M.; Adelman, J. S.; Kadouri, D. E.; Nadell, C. D., Bacterial predation transforms the landscape and community assembly of biofilms. Current Biology 2021, 31 (12), 26432651.CrossRefGoogle ScholarPubMed
Duffy, K. J.; Cummings, P. T.; Ford, R. M., Random walk calculations for bacterial migration in porous media. Biophysical Journal 1995, 68 (3), 800806.CrossRefGoogle ScholarPubMed
de Anna, P.; Pahlavau, A. A.; Yawata, Y.; Stocker, R.; Juones, R., Chemotaxis under flow disorder shapes microbial dispersion in porous media. Nature Physics 2021, 17, 6873CrossRefGoogle Scholar
Gomand, F.; Mitchell, W. H.; Burgain, J.; Petit, J.; Borges, F.; Spagnolie, S. E.; Gaiani, C., Shaving and breaking bacterial chains with a viscous flow. Soft Matter 2020, 16 (40), 9273.CrossRefGoogle ScholarPubMed
Mushenheim, P. C.; Trivedi, R. R.; Tuson, H. H.; Weibel, D. B.; Abbott, N. L., Dynamic self-assembly of motile bacteria in liquid crystals. Soft Matter 2014, 10 (1), 8895.CrossRefGoogle ScholarPubMed
Albersdorfer, A.; Sackmann, E., Swelling behaviour and viscoelasticity of ultrathin grafted hyaluronic acid films. European Physical Journal B 1999, 10 (4), 663672.CrossRefGoogle Scholar
Morris, E. R.; Nishinari, K.; Rinaudo, M., Gelation of gellan – a review. Food Hydrocolloids 2012, 28 (2), 373411.CrossRefGoogle Scholar
Ross Murphy, S. B., Structure-property relationships in food biopolymer gels and solutions. Journal of Rheology 1995, 39 (6), 14511463.CrossRefGoogle Scholar
Geisel, S.; Secchi, E.; Vermant, J., Experimental challenges in determining the rheological properties of bacterial biofilms. Interface Focus 2022, 12 (6), 20220032.CrossRefGoogle ScholarPubMed
Galy, O.; Latour-Lambert, P.; Zrelli, K.; Ghigo, J. M.; Beloin, C.; Henry, N., Mapping of bacterial biofilm local mechanics by magnetic microparticle actuation. Biophysical Journal 2012, 103 (6), 14001408.CrossRefGoogle ScholarPubMed
Picioreanu, C.; Blauert, F.; Horn, H.; Wagner, M., Determination of mechanical properties of biofilms by modelling the deformation measured using optical coherence tomography. Water Research 2018, 145, 588598.CrossRefGoogle ScholarPubMed
Hohne, D. N.; Younger, J. G.; Solomon, M. J., Flexible microfluidic device for mechanical property characterization of soft viscoelastic solids such as bacterial biofilms. Langmuir 2009, 25 (13), 77437751.CrossRefGoogle ScholarPubMed
Powell, L. C.; Abdulkarim, M.; Stokniene, J.; Yang, Q. E.; Walsh, T. R.; Hill, K. E.; Gumbleton, M.; Thomas, D. W., Quantifying the effects of antibiotic treatment on the extracellular polymer network of antimicrobial resistant and sensitive biofilms using multiple particle tracking. npj Biofilms and Microbiomes 2021, 7 (1), 13.CrossRefGoogle ScholarPubMed
Lieleg, O.; Caldara, M.; Baumgartel, R.; Ribbeck, K., Mechanical robustness of Pseudomonas aeruginosa biofilms. Soft Matter 2011, 7 (7), 33073314.CrossRefGoogle ScholarPubMed
Rusconi, R.; Lecuyer, S.; Autrusson, N.; Guglielmini, L.; Stone, H. A., Secondary flow as a mechanism for the formation of biofilm streamers. Biophysical Journal 2011, 100 (6), P1392–1399.CrossRefGoogle ScholarPubMed
Stoodley, P.; Cargo, R.; Rupp, C. J.; Wilson, S.; Klapper, I., Biofilm material properties as related to shear-induced deformation and detachment phenomena. Journal of Industrial Microbiology and Biotechnology 2002, 29 (6), 361367.CrossRefGoogle ScholarPubMed
Aravas, N.; Laspidou, C. S., On the calculation of the elastic modulus of a biofilm streamer. Biotechnology and Bioengineering 2008, 101 (1), 196.CrossRefGoogle ScholarPubMed
Jana, S.; Charlton, S. G. V.; Eland, L. E.; Burgess, J. G.; Wipat, A.; Curtis, T. P.; Chen, J., Nonlinear rheological characteristics of single species bacterial biofilms. npj Biofilms and Microbiomes 2020, 6 (10), 19.CrossRefGoogle ScholarPubMed

Suggested Reading

McNamara, J. M.; Leimar, O. Game Theory in Biology: Concepts and Frontiers. Oxford University Press: 2020. A wide ranging book on biological game theory, although there is a niche in the market for something with more emphasis on microorganisms e.g. a textbook on ‘Game theory with microorganisms’ needs to be written.CrossRefGoogle Scholar
Novak, M. A. Evolutionary Dynamics: Exploring the Equations of Life. Harvard University Press: 2006. Excellent intuitive introduction to game theory and evolutionary dynamics.Google Scholar
Otto, S. P., Day, T. A Biologist’s Guide to Mathematical Modelling in Ecology and Evolution. Princeton University Press: 2007.CrossRefGoogle Scholar

References

Otto, S.; Day, T., A Biologist’s Guide to Mathematical Modeling in Ecology and Evolution. Princeton University Press: 2007.CrossRefGoogle Scholar
Vynnycky, E.; White, R. G., An Introduction to Infectious Disease Modelling. Oxford University Press: 2010.Google Scholar
Drake, J. W., A constant rate of spontaneous mutation in DNA-based microbes. PNAS 1991, 88 (16), 71607164.CrossRefGoogle ScholarPubMed
Ochman, H.; Lawrence, J. G.; Groisman, E. A., Lateral gene transfer and the nature of bacterial innovation. Nature 2000, 405 (6784), 299304.CrossRefGoogle ScholarPubMed
Jones, C. J.; Lennon, J. T., Dormancy contributes to the maintenance of microbial diversity. PNAS 2010, 107 (13), 58815886.CrossRefGoogle Scholar
Ellner, S. P.; Guckenheimer, J., Dynamic Models in Biology. Princeton University Press: 2006.CrossRefGoogle Scholar
Koleva, K. Z.; Hellweger, F. L., From protein damage to cell aging to population fitness in E. coli: Insights from a multi-level agent-based model. Ecological Modelling 2015, 301, 6271.CrossRefGoogle Scholar
Wilson, M., Bacteriology of Humans: An Ecological Perspective. Blackwell: 2008.Google Scholar
Barb, J. J.; et al., The oral microbiome in alcohol use disorder. Journal of Oral Microbiology 2022, 14 (1), 2004790.CrossRefGoogle ScholarPubMed
Lambert, G.; Bergman, A.; Zhang, Q.; Bortz, D.; Austin, R., Physics of biofilms: The initial stages of biofilm formation and dynamics. New Journal of Physics 2014, 16 (4), 045005.CrossRefGoogle Scholar
Edelstein-Keshet, L., Mathematical Models in Biology. SIAM: 2005.CrossRefGoogle Scholar
Steinbach, G.; Crison, C.; Ng, S. L.; Hammer, B. K.; Yunker, P. J., Accumulation of dead cells from contact killing facilitates coexistence in bacterial biofilms. Journal of the Royal Society – Interface 2020, 17 (173), 20200486.CrossRefGoogle ScholarPubMed
Li, Y. Y.; Lachnit, T.; Fraune, S.; Bosch, T. C. G.; Traulsen, A.; Sieber, M., Temperate phages as self-replicating weapons in bacterial competition. Journal of the Royal Society – Interface 2017, 14 (137), 20170563.CrossRefGoogle ScholarPubMed
McNamara, J. M.; Leimar, O., Game Theory in Biology: Concepts and Frontiers. Oxford University Press: 2020.CrossRefGoogle Scholar
Li, X. Y.; Pietschke, C.; Fraune, S.; Altrock, P. M.; Bosch, T. C. G.; Traulsen, A., Which games are growing bacterial populations playing? Journal of Royal Society Interface 2015, 12 (108), 20150121.CrossRefGoogle ScholarPubMed
Kerr, B.; Riley, M. A.; Feldman, M. W.; Bohannan, J. M., Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature 2002, 418 (6894), 171174.CrossRefGoogle Scholar
Maisonneuve, E.; Gerdes, K., Molecular mechanisms underlying bacterial persisters. Cell 2014, 157 (3), 539548.CrossRefGoogle ScholarPubMed
Griffin, A. S.; West, S. A.; Buckling, A., Cooperation and competition in pathogenic bacteria. Nature 2004, 430 (7003), 10241027.CrossRefGoogle ScholarPubMed
Ignazio-Espinoza, J. C.; Ahlgren, N. A.; Fuhrman, J. A., Long-term stability and red queen-like strain dynamics in marine viruses. Nature Microbiology 2020, 5 (2), 265271.CrossRefGoogle Scholar
Heilmann, S.; Sneppen, K.; Krishnae, S., Coexistence of phage and bacteria on the boundary of self-organized refuges. PNAS 2012, 109 (31), 1282812833.CrossRefGoogle ScholarPubMed
Xavier, J. B.; Foaster, K. R., Cooperation and conflict in microbial biofilms. PNAS 2007, 104 (3), 876881.CrossRefGoogle ScholarPubMed
Veening, J. W.; Smits, W. K.; Kuipers, O. P., Bistability, epigenetics and bet-hedging in bacteria. Annual Review of Microbiology 2008, 62, 193210.CrossRefGoogle ScholarPubMed
Kreft, J. U., Biofilms promote altruism. Microbiology 2004, 150 (8), 27512760.CrossRefGoogle ScholarPubMed
Zapien-Campos, R.; Olmedo-Alvarez, G.; Santillan, M., Antagonistic interactions are sufficient to explain self-assemblage of bacterial communities in a homogeneous environment. Frontiers in Microbiology 2015, 6, 489.Google Scholar
Reichenbach, T.; Mobilia, M.; Frey, E., Mobility promotes and jeopardizes biodiversity in rock-paper-scissors games. Nature 2007, 448 (7157), 10461049.CrossRefGoogle ScholarPubMed
Solopova, A.; van Gestel, J.; Weissing, F. J.; Bachmann, H.; Teusink, B.; Kok, J.; Kuipers, O. P., Bet-hedging during bacterial diauxic shift. PNAS 2014, 111 (20), 74277432.CrossRefGoogle ScholarPubMed
Yong, E., I Contain Multitudes: The Microbes Within Us and A Grander View of Life. Vintage: 2017.Google Scholar
Lambert, G.; Vyawahare, S.; Austin, R. H., Bacteria and game theory: The rise and fall of cooperation in spatially heterogeneous environments. Interface Focus 2014, 4 (4), 0029.CrossRefGoogle ScholarPubMed
Whiteley, M.; Diggle, S. P.; Greenberg, E. P., Progress in and promise of bacterial quorum sensing research. Nature 2017, 551 (7680), 313320.CrossRefGoogle ScholarPubMed
Bolen, B. R.; Thoendel, M.; Singh, P. K., Self-generated diversity produces an insurance effect in biofilm communities. PNAS 2004, 101 (47), 1663016635.Google Scholar
Czirok, A.; Matsushita, M.; Vicsek, T., Theory of periodic swarming of bacteria: Application to Proteus mirabilis. Physical Review E 2001, 63 (3 Pt 1), 031915.CrossRefGoogle ScholarPubMed
Borner, U.; Deutsch, A.; Reichenbach, H.; Bar, M., Rippling patterns in aggregates of myxobacteria arise from cell-cell collisions. Physical Review Letters 2002, 89 (7), 078101.CrossRefGoogle ScholarPubMed
Ben-Jacob, E.; Levine, H., Self-engineering capabilities of bacteria. Journal of Royal Society Interface 2006, 3 (6), 197214.CrossRefGoogle ScholarPubMed
Ben-Jacob, E.; Cohen, I.; Levine, H., Cooperative self-organization of microorganisms. Advances in Physics 2010, 49 (4), 395554.CrossRefGoogle Scholar
Alon, U., An Introduction to Systems Biology: Design Principles of Biological Circuits. 2nd ed. CRC Press: 2020.Google Scholar
Farrell, F.; Hallatschek, O.; Marenduzzo, D.; Waclaw, B., Mechanically driven growth of quasi-two-dimensional microbial colonies. Physical Review Letters 2013, 111 (16), 168101.CrossRefGoogle ScholarPubMed
Tronnolone, H.; et al., Diffusion-limited growth of microbial colonies. Scientific Reports 2018, 8 (1), 5992.CrossRefGoogle ScholarPubMed
Mendez, V.; Fedotov, S.; Horsthemke, W., Reaction-transport Systems: Mesoscopic Foundations, Fronts and Spatial Instabilities. Springer: 2012.Google Scholar
Vicsek, T.; Czirok, A.; Ben-Jacob, E.; Cohen, I.; Shochet, O., Novel type of phase transition in a system of self-driven particles. Physical Review Letters 1995, 75 (6), 12261229.CrossRefGoogle Scholar
Ben-Jacob, E.; Cohen, I.; Shochet, O.; Tenenbaum, A.; Czirok, A.; Vicsek, T., Cooperative formation of chiral patterns during growth of bacterial colonies. Physical Review Letters 1995, 75 (15), 2899.CrossRefGoogle ScholarPubMed
Wakano, J. Y.; Maenosono, S.; Komoto, A.; Eiha, N.; Yamaguchi, Y., Self-organized pattern formation of a bacteria colony modeled by a reaction diffusion system and nucleation theory. Physical Review Letters 2003, 90 (25), 2581021.CrossRefGoogle ScholarPubMed
Cronenberg, T.; Welker, A.; Zollner, R.; Meel, C., Molecular motors govern liquid-like ordering and fusion dynamics of bacterial colonies. Physical Review Letters 2018, 121 (11), 118102.Google Scholar
Petroff, A. P.; Wu, X. L.; Libchaber, A., Fast moving bacteria can self-organize into active two-dimensional crystals of rotating cells. Physical Review Letters 2015, 114 (15), 158102.CrossRefGoogle ScholarPubMed
Guyon, E.; Hulin, J. P.; Petit, L.; Mitescu, C. D., Physical Hydrodynamics, 2nd ed. Oxford University Press: 2015.CrossRefGoogle Scholar
Hong, S. H.; Gorce, J. B.; Punzmann, H.; Francois, N.; Shats, M.; Xia, H., Surface waves control bacterial attachment and formation of biofilms in thin layers. Science Advances 2020, 6 (22), eaaz9386.CrossRefGoogle ScholarPubMed
Thomen, P.; Valentin, J. D. P.; Bitbol, A. F.; Henry, N., Spatiotemporal pattern formation in E. coli biofilms explained by a simple physical energy balance. Soft Matter 2020, 16 (2), 494504.CrossRefGoogle Scholar
Paul, R.; Ghosh, T.; Tang, T.; Kamar, A., Rivalry in Bacillus subtilis: Enemy or family? Soft Matter 2019, 15 (27), 54005411.CrossRefGoogle ScholarPubMed

Suggested Reading

Ben Jacob, E. et al., Cooperative self-organisation of microorganisms. Advances in Physics 2000, 49 (4), 395554.CrossRefGoogle Scholar
Lewandowski, Z.; Beyenal, H., Fundamentals of Biofilm Research, 2nd ed. CRC Press: 2013.CrossRefGoogle Scholar
Li, H. et al., Data driven quantitative modelling of bacterial active nematics. PNAS 2019 116 (3), 777.CrossRefGoogle ScholarPubMed
Mazza, M. G. The physics of biofilms – an introduction. Journal of Physics D 2016, 49 (20), 203001.CrossRefGoogle Scholar

References

O’Toole, G. O.; Kaplan, H. B.; Kolter, R., Biofilm formation as microbial development. Annual Review of Microbiology 2000, 54, 4979.CrossRefGoogle ScholarPubMed
Blee, J. A.; Roberts, I. S.; Waigh, T. A., Membrane potentials, oxidative stress and the dispersal response of bacterial biofilms to 405 nm light. Physical Biology 2020, 17 (3), 036001.CrossRefGoogle ScholarPubMed
Yin, W.; Wang, Y.; Liu, L.; He, J., Biofilms: The microbial ‘protective clothing’ in extreme environments. International Journal of Molecular Sciences 2019, 20 (14), 3423.CrossRefGoogle ScholarPubMed
Flemming, H. C., EPS – then and now. Microorganisms 2016, 4 (4), 41.CrossRefGoogle ScholarPubMed
Hoiby, N.; Bjarnsholt, T.; Givskov, M.; Molin, S.; Ciofu, O., Antibiotic resistance of bacterial biofilms. International Journal of Antimicrobial Agents 2010, 35 (4), 322332.CrossRefGoogle ScholarPubMed
Mazza, M., The physics of biofilms – an introduction. Journal of Physics D: Applied Physics 2016, 49 (20), 203001.CrossRefGoogle Scholar
Pepper, I.; Gerba, C. P.; Gentry, T. J., Environmental Microbiology, 3rd ed. Academic Press: 2015.CrossRefGoogle Scholar
Flemming, H. C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S. A.; Kjelleberg, S., Biofilms: An emergent form of bacterial life. Nature Reviews Microbiology 2016, 14 (9), 563575.CrossRefGoogle ScholarPubMed
Vidakovic, L.; Singh, P. K.; Hartmann, R.; Nadell, C. D.; Drescher, K., Dynamic biofilm architecture confers individual and collective mechanisms of viral protection. Nature Microbiology 2018, 3 (1), 2631.CrossRefGoogle ScholarPubMed
Torok, E.; Moran, E.; Cooke, F., Oxford Handbook of Infectious Diseases and Microbiology. Oxford University Press: 2016.CrossRefGoogle Scholar
Jefferson, K. K., What drives bacteria to produce a biofilm? FEMS Microbiology Letters 2004, 236 (2), 163173.CrossRefGoogle ScholarPubMed
Yan, J.; Nadell, C. D.; Stone, H. A.; Wingreen, N. S.; Bassler, B. L., Extracellular-matrix mediated osmotic pressure drives Vibrio cholerae biofilm expansion and cheater exclusion. Nature Communications 2017, 8 (1), 327.CrossRefGoogle ScholarPubMed
Chua, S. L.; et al., Dispersed cells represent a distinct stage in the transition from bacterial biofilm to planktonic lifestyles. Nature Communications 2014, 5, 4462.CrossRefGoogle ScholarPubMed
Sauer, K.; Camper, A. K.; Ehrlich, G. D.; Costerton, J. W.; Davies, D. G., Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. Journal of Bacteriology 2002, 184 (4), 11401154.CrossRefGoogle ScholarPubMed
Dyer, B. D., A Field Guide to Bacteria. Comstock Publishing Associates: 2003.Google Scholar
Vlamakis, H.; Chai, Y.; Beauregard, P.; Losick, R.; Kolter, R., Sticking together: Building a biofilm the Bacillus subtilis way. Nature Reviews Microbiology 2013, 11 (3), 157168.CrossRefGoogle ScholarPubMed
Hall-Stoodley, L.; Costerton, J. W.; Stoodley, P., Bacterial biofilms: From the natural environment to infectious diseases. Nature Reviews Microbiology 2004, 2 (2), 95108.CrossRefGoogle ScholarPubMed
Stalder, T.; Top, E., Plasmid transfer in biofilms: A perspective on limitations and opportunities. npj Biofilms and Microbiomes 2016, 2, 16022.CrossRefGoogle ScholarPubMed
Lewandowki, Z.; Beyenal, H., Fundamentals of Biofilm Research. CRC Press: 2013.CrossRefGoogle Scholar
Holmes, S.; Huber, W., Modern Statistics for Modern Biology. Cambridge University Press: 2019.Google Scholar
Martinez, R.; Liu, J.; Suel, G. M.; Garcia-Ojalvo, J., Bistable emergence of oscillations in growing Bacillus subtilis biofilms. PNAS 2018, 115 (36), E8333–E8340.Google Scholar
Frankel, R. B.; Blakemore, R. P.; Wolfe, R. S., Magnetite in freshwater magnetotactic bacteria. Science 1979, 203 (4387), 13551356.CrossRefGoogle ScholarPubMed
Stewart, P. S.; Franklin, M. J., Physiological heterogeneity in biofilms. Nature Reviews Microbiology 2008, 6 (3), 199210.CrossRefGoogle ScholarPubMed
Billings, N.; Birjiniuk, A.; Samad, T. S.; Doyle, P. S.; Ribbeck, K., Material properties of biofilms – key methods for understanding permeability and mechanics. Reports on Progress in Physics 2015, 78 (3), 036601.CrossRefGoogle Scholar
Magalhaes, A. P.; Franca, A.; Pereira, M. O.; Cerca, N., RNA-based qPCR as a tool to quantify and to characterize dual-species biofilms. Scientific Reports 2019, 9 (1), 13639.CrossRefGoogle ScholarPubMed
Stewart, P. S.; Zhang, T.; Xu, R.; Pitts, B.; Walters, M. C.; Roe, F.; Kikhney, J.; Moter, A., Reaction-diffusion theory explains hypoxia and heterogeneous growth within microbial biofilms associated with chronic infections. npj Biofilms and Microbiomes 2016, 2, 16012.CrossRefGoogle ScholarPubMed
Heydorn, A.; Nielsen, A. T.; Hentzer, M.; Sternberg, C.; Givskov, M.; Ersboll, B. K.; Molin, S., Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 2000, 146 (10), 23952407.CrossRefGoogle ScholarPubMed
Limoli, D. H.; Jones, C. J.; Wozniak, D. J., Bacterial extracellular polysaccharides in biofilm formation and function. Microbiology spectrum 2015, 3 (3), 10.1128.CrossRefGoogle ScholarPubMed
Moradali, M. F.; Rehm, B. H. A., Bacterial biopolymers: From pathogenesis to advanced materials. Nature Reviews Microbiology 2020, 18 (4), 195210.CrossRefGoogle ScholarPubMed
Flemming, H. C.; Neu, T. R.; Wozniak, D. J., The EPS Matrix: The house of biofilm cells. Journal of Bacteriology 2007, 189 (22), 79457947.CrossRefGoogle ScholarPubMed
Mah, T. F.; O’Toole, G. A., Mechanisms of biofilm resistance to antimicrobial agents. Trends in Microbiology 2001, 9 (1), 3439.CrossRefGoogle ScholarPubMed
Hentzer, M.; Teitzel, G. M.; Balzer, G. I.; Heydorn, A.; Molin, S.; Givskov, M.; Parsek, M. R., Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. Journal of Bacteriology 2001, 183 (18), 53955401.CrossRefGoogle ScholarPubMed
Zaman, M.; Andreason, M., Cross-talk between individual phenol-soluble modulins in Staphylococcus aureus biofilm enables rapid and efficient amyloid formation. eLife 2020, 9, e59776.CrossRefGoogle ScholarPubMed
Taglialegna, A.; Matilla-Cuenca, L.; Dorado-Morales, P.; Navarro, S.; Ventura, S.; Garnett, J. A.; Lasa, I.; Valle, J., The biofilm-associated surface protein Esp of Enterococcus faecalis forms amyloid-like fibers. npj Biofilms and Microbiomes 2020, 6 (1), 15.CrossRefGoogle ScholarPubMed
Calvin, K. M., The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. Environmental Microbiology 2012, 14 (8), 19131928.CrossRefGoogle Scholar
Nizer, W. S.; Inkovskiy, V.; Versey, Z.; Strempel, N.; Cassol, E.; Overhage, J., Oxidative stress response in Pseudomonas aeruginosa. Pathogens 2021, 10 (9), 1187.CrossRefGoogle Scholar
Mah, T. F.; Pitts, B.; Pellock, B.; Walker, G. C.; Stewart, P. S.; O’Toole, G. A., A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 2003, 426 (6964), 306310.CrossRefGoogle ScholarPubMed
Ma, L.; Conover, M.; Lu, H.; Parsek, M. R.; Bayles, K.; Wozniak, D. J., Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLOS Pathogens 2009, 5 (3), e1000354.CrossRefGoogle ScholarPubMed
Horvat, M.; Pannuri, A.; Romero, T.; Dogsa, I.; Stopar, D., Viscoelastic response of Escherichia coli biofilms to genetically altered expression of extracellular matrix components. Soft Matter 2019, 15 (25), 5042.CrossRefGoogle ScholarPubMed
Teschler, J. K.; Zamorano-Sanchez, D.; Utada, A. S.; Warner, C. J. A.; Wong, G. C. L.; Linington, R. G.; Yildiz, F. H., Living in the matrix: Assembly and control of Vibrio cholerae biofilms. Nature Reviews Microbiology 2015, 13 (5), 255268.CrossRefGoogle ScholarPubMed
Thongsomboon, W.; Serra, D. O.; Possling, A.; Hadjineophytou, C.; Hengge, R.; Cegelski, L., Phosphoethanolamine cellulose: A naturally produced chemically modified cellulose. Science 2018, 359 (6373), 334338.CrossRefGoogle ScholarPubMed
Peschel, A.; Otto, M., Phenol-soluble modulins and staphylococcal infection. Nature Reviews Microbiology 2013, 11 (10), 667673.CrossRefGoogle ScholarPubMed
Mourer, T.; Ghalid, M. E.; d’Enfert, C.; Bachellier-Bassi, S., Involvement of amyloid proteins in the formation of biofilms in the pathogenic yeast Candida albicans. Research in Microbiology 2021, 172 (3), 103813.CrossRefGoogle ScholarPubMed
Alberts, B., Molecular Biology of the Cell, 6th ed. Garland Science: 2015.Google Scholar
Romero, D.; Aguilar, C.; Losick, R.; Kolter, R., Amyloid fibers provide structural integrity of Bacillus subtilis biofilms. PNAS 2010, 107 (5), 22302234.CrossRefGoogle ScholarPubMed
Gong, H.; et al., Aggregated amphiphilic antimicrobial peptides embedded in bacterial membranes. ACS Applied Materials and Interfaces 2020, 12 (40), 4442044432.CrossRefGoogle ScholarPubMed
Geiger, A.; Fardeau, M. L.; Falsen, E.; Ollivier, B.; Cuny, G., Serratia glossinae sp. nov., isolated from the midgut of the tsetse fly Glossina palpalis gambiensis. International Journal of Systematic and Evolutionary Microbiology 2009, 60 (Pt 6), 12611265.CrossRefGoogle ScholarPubMed
Labrenz, M.; et al., Formation of spalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 2000, 290 (5497), 17441747.CrossRefGoogle ScholarPubMed
Beuth, L.; Pfeiffer, C. P.; Schroder, U., Copper-bottomed: Electrochemically active bacteria exploit conductive sulphide networks for enhanced electrogeneity. Energy and Environmental Science 2020, 13 (9), 31023109.CrossRefGoogle Scholar
Henkel, J. S.; Baldwin, M. R.; Barbieri, J. T., Toxins from bacteria. EXS 2010, 100, 129.Google ScholarPubMed
Wilson, M., Bacteriology of Humans: An Ecological Perspective. Blackwell: 2008.Google Scholar
Lenz, D. H.; Mok, K. C.; Lilley, B. N.; Kulkarni, R. V.; Wingreen, N. S.; Bassler, B. L., The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 2004, 118 (1), 6982.CrossRefGoogle ScholarPubMed
Ongena, M.; Jacques, P., Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends in Microbiology 2008, 16 (3), 115125.CrossRefGoogle ScholarPubMed
Israelachvili, J. N., Intermolecular and Surface Forces. Academic Press: 2011.Google Scholar
Peyoux, F.; Bomatis, J. M.; Wallach, J., Recent trends in the biochemistry of surfactin. Applied Microbiology Biotechnology 1999, 51 (5), 553563.CrossRefGoogle Scholar
Raaijmakers, J. M.; de Bruijn, I.; Nybroe, O.; Ongena, M., Natural functions of lipopeptides from Bacillus and Pseudomonas: More than surfactants and antibiotics. FEMS Microbiology Reviews 2010, 34 (6), 10371062.CrossRefGoogle ScholarPubMed
de Gennes, P. G.; Brochard-Wyart, F.; Quere, D., Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls and Waves. Springer: 2003.Google Scholar
Waigh, T. A., The Physics of Living Processes. Wiley: 2014.CrossRefGoogle Scholar
Epstein, A. K.; Pokroy, B.; Seminara, A.; Aizenberg, J., Bacterial biofilm shows persistent resistance to liquid wetting and gas penetration. PNAS 2011, 108 (3), 9951000.CrossRefGoogle ScholarPubMed
Rooney, L. M.; Amos, W. B.; Hoskisson, P. A.; McConnell, G., Intra-colony channels in E. coli function as a nutrient uptake system. The ISME Journal 2020, 14 (10), 24612473.CrossRefGoogle Scholar
Wilking, J. N.; Zaburdaev, V.; De Volder, M.; Losick, R.; Brenner, M. P.; Weitz, D. A., Liquid transport facilitated by channels in Bacillus subtilis biofilms. PNAS 2013, 110 (3), 848852.CrossRefGoogle ScholarPubMed
Periasamy, S.; Joo, H. S.; Duong, A. C.; Bach, T. H. L.; Tan, V. Y.; Chatterjee, S. S.; Cheung, G. Y.; Otto, M., How Staphylococcus aureus biofilms develop their characteristic structure. PNAS 2012, 109 (4), 12811286.CrossRefGoogle ScholarPubMed
Douarche, C.; Allain, J. M.; Raspaud, E., Bacillus subtilis bacteria generate an internal mechanical force within a biofilm. Biophysical Journal 2015, 109 (10), 21952202.CrossRefGoogle ScholarPubMed
Asally, M.; et al., Localized cell death focuses mechanical forces during 3D patterning in a biofilm. PNAS 2012, 109 (46), 1889118896.CrossRefGoogle Scholar
Seminara, A.; Angelini, T. E.; Wilking, J. N.; Vlamakis, H.; Ebrahim, S.; Kolter, R.; Weitz, D. A.; Brenner, M. P., Osmotic spreading of Bacillus subtilis biofilms driven by an extracellular matrix. PNAS 2012, 109 (4), 11161121.CrossRefGoogle Scholar
Huang, J. D.; et al., Programmable and printable Bacillus subtilis biofilms as engineered living materials. Nature Chemical Biology 2019, 15 (1), 3441.CrossRefGoogle ScholarPubMed
Trejo, M.; Douarche, C.; Bailleux, V.; Poulard, C.; Mariot, S.; Regeard, C.; Raspaud, E., Elasticity and wrinkled morphology of Bacillus subtilis pellicles. PNAS 2013, 110 (6), 20112016.CrossRefGoogle ScholarPubMed
Zhang, C.; Li, B.; Tang, J. Y.; Qin, Z.; Feng, X. Q., Experimental and theoretical studies on the morphogenesis of bacterial biofilms. Soft Matter 2017, 13 (40), 73897397.CrossRefGoogle ScholarPubMed
Si, T.; Ma, Z.; Tang, J. X., Capillary flows and mechanical buckling in a growing annular bacterial colony. Soft Matter 2018, 14 (2), 301311.CrossRefGoogle Scholar
Orazi, G.; O’Toole, G. A., ‘It takes a village’: Mechanisms underlying antimicrobial recalcitrance of polymicrobial biofilms. Journal of Bacteriology 2019, 202 (1), e00530-19.CrossRefGoogle ScholarPubMed
Houry, A.; Gohar, M.; Deschamps, J.; Tischenko, E.; Aymerich, S.; Gruss, A.; Briandet, R., Bacterial swimmers that infiltrate and take over the biofilm matrix. PNAS 2012, 109 (32), 1308813093.CrossRefGoogle ScholarPubMed

Suggested Reading

McDonnell, G. E., Antisepsis, Disinfection and Sterilization: Types, Action and Resistance. ASM: 2017. Currently the definitive account of the action of antiseptics, including detergents, from an applied microbiology perspective.CrossRefGoogle Scholar
Walsh, C., Wencewicz, T., Antibiotics: Challenges, Mechanisms and Opportunities. ASM: 2016. Detailed approach to current developments in antibiotic chemistry.CrossRefGoogle Scholar

References

Walsh, C. T.; Wencewicz, T., Antibiotics: Challenges, Mechanisms, Opportunities. ASM Books: 2016.CrossRefGoogle Scholar
McDonnell, G. E., Antisepsis, Disinfection and Sterilization: Types, Action and Resistance, 2nd ed. ASM Press: 2017.CrossRefGoogle Scholar
Gong, H.; et al., Hydrophobic control of the bioactivity and cytotoxicity of de novo designed antimicrobial peptides. ACS Applied Materials and Interfaces 2019, 11 (38), 3460934620.CrossRefGoogle Scholar
Gong, H.; et al., Aggregated amphiphilic antimicrobial peptides embedded in bacterial membranes. ACS Applied Materials and Interfaces 2020, 12 (40), 4442044432.CrossRefGoogle ScholarPubMed
Fischbach, M. A.; Walsh, C. T., Antibiotics for emerging pathogens. Science 2009, 325 (5944), 10891093.CrossRefGoogle ScholarPubMed
D’Costa, V.; McGrann, K. M.; Hughes, D. W.; Wright, G. D., Sampling the antibiotic resistome. Science 2006, 311 (5759), 374377.CrossRefGoogle ScholarPubMed
Taubes, G., The bacteria fight back. Science 2008, 321 (5887), 356361.CrossRefGoogle ScholarPubMed
van Vranken, D.; Weiss, G. A., Introduction to Bioorganic Chemistry and Chemical Biology. Garland: 2012.Google Scholar
Costerton, J. W.; Lewandowki, Z.; Caldwell, D. E.; Korber, D. R.; Lappin-Scott, H. M., Microbial biofilms. Annual Review of Microbiology 1995, 49, 711745.CrossRefGoogle ScholarPubMed
Zhang, X. L.; Hansing, J.; Netz, R. R.; DeRouchey, J. E., Particle transport through hydrogels is charge asymmetric. Biophysical Journal 2015, 108 (3), 530539.CrossRefGoogle ScholarPubMed
White, O.; et al., Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 1999, 284 (5444), 15711577.CrossRefGoogle Scholar
Stewart, P. S., Theoretical aspects of antibiotic diffusion into microbial biofilm. Antimicrobial Agents and Chemotherapy 1996, 40 (11), 25172521.CrossRefGoogle Scholar
Stewart, P. S., Diffusion in biofilms. Journal of Bacteriology 2003, 185 (5), 14851491.CrossRefGoogle ScholarPubMed
Metzler, R.; Klafter, J., The restaurant at the end of the random walk. Journal of Physics A: General Physics 2004, 37 (31), R161–R208.CrossRefGoogle Scholar
15.Capuccino, J. G.; Welsh, C., Microbiology: A Laboratory Manual. Pearson: 2018.Google Scholar
Mah, T. F.; O’Toole, G. A., Mechanisms of biofilm resistance to antimicrobial agents. Trends in Microbiology 2001, 9 (1), 3439.CrossRefGoogle ScholarPubMed
Bansil, R.; Turner, B. S., Mucin structure, aggregation, physiological functions and biomedical applications. Current Opinion in Colloid and Interface Science 2006, 11 (2–3), 164170.CrossRefGoogle Scholar
Kosztolowicz, T.; Metzler, R.; Wasik, S.; Arabski, M., Modelling experimentally measured of ciprofloxacin antibiotic diffusion in Pseudomonas aeruginosa biofilm formed in artificial sputum medium. PLOS One 2020, 15 (12), e0243003.CrossRefGoogle ScholarPubMed
Kosztolowicz, T.; Metzler, R., Diffusion of antibiotics through a biofilm in the presence of diffusion and absorption barriers. Physical Review E 2020, 102 (3-1), 032408.CrossRefGoogle ScholarPubMed
Bonev, B.; Hooper, J.; Parisot, J., Principles of assessing bacterial susceptibility to antibiotics using the agar diffusion method. Journal of Antimicrobial Chemotherapy 2008, 61 (6), 12951301.CrossRefGoogle ScholarPubMed
Walsh, C., Molecular mechanisms that confer antibacterial drug resistance. Nature 2000, 406 (6797), 775781.CrossRefGoogle ScholarPubMed
Gullbert, E.; Cao, S.; Berg, O. G.; Ilback, C.; Sandegren, L.; Hughes, D.; Andersson, D. I., Selection of resistant bacteria at very low antibiotic concentrations. PLOS Pathogens 2011, 7 (7), e1002158.Google Scholar
Knoppel, A.; Nassall, J.; Andersson, D. I., Evolution of antibiotic resistance without antibiotic exposure. Antimicrobial Agents and Chemotherapy 2017, 61 (11), e01495.CrossRefGoogle ScholarPubMed
WaltersIII, C.; Roe, F.; Bugnicourt, A.; Franklin, M. J.; Stewart, P. S., Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrobial Agents and Chemotherapy 2003, 47 (1), 317323.CrossRefGoogle ScholarPubMed
Nguyen, D.; et al., Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science 2011, 334 (6058), 982986.CrossRefGoogle ScholarPubMed
Hentzer, M.; Teitzel, G. M.; Balzer, G. I.; Heydorn, A.; Molin, S.; Givskov, M.; Parsek, M. R., Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. Journal of Bacteriology 2001, 183 (18), 53955401.CrossRefGoogle ScholarPubMed
Andel, J. N.; Franklin, M. J.; Stewart, P. S., Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrobial Agents and Chemotherapy 2000, 44 (7), 18181824.CrossRefGoogle Scholar
Rani, S. A.; Pitts, B.; Stewart, P. S., Rapid diffusion of fluorescent tracers into Staphylococcus epidermis biofilms visualized by time lapse microscopy. Antimicrobial Agents and Chemotherapy 2005, 49 (2), 728732.CrossRefGoogle Scholar
Grobas, I.; Polin, M.; Asally, M., Swarming bacteria undergo localized dynamic phase transitions to form stress induced biofilms. eLife 2021, 10, e62632.CrossRefGoogle ScholarPubMed
Seifert, A.; Kashi, Y.; Livney, Y. D., Delivery to gut microbiota: A rapidly proliferating research field. Advances in Colloid and Interface Science 2019, 274, 102038.CrossRefGoogle ScholarPubMed
Fort, J.; Mendez, V., Time-delayed spread of viruses in growing plaques. Physical Review Letters 2002, 89 (17), 178101.CrossRefGoogle ScholarPubMed
Vijay, U.; Gupta, S.; Mathur, P.; Suravajhala, P.; Bhatnagar, P., Microbial mutagenicity assay: Ames test. Bio Protocols 2018, 8 (6), e2763.Google ScholarPubMed
Lewis, K., Persister cells, dormancy and infectious disease. Nature Reviews Microbiology 2007, 5 (1), 4856.CrossRefGoogle ScholarPubMed
Lewis, K., Multidrug tolerance of biofilm and persister cells. In Current Topics in Microbiology and Immunology, Romeo, T., Ed.; Springer: 2008; Vol. 322; pp. 107131.Google Scholar
Windels, E. M.; Michiels, J. E.; Fauvart, M.; Wenseleers, T.; Van den Bergh, B.; Michiels, J., Bacterial persistence promotes the evolution of antibiotic resistance by increasing survival and mutation rates. The ISME Journal 2019, 13 (5), 12391251.CrossRefGoogle ScholarPubMed
Orman, M. A.; Brynildsen, M. P., Inhibition of stationary phase respiration impairs persister formation in E. coli. Nature Communications 2015, 6, 7983.CrossRefGoogle Scholar
Zur Wiesch, P. A.; et al., Classic reaction kinetics can explain complex patterns of antibiotic action. Science Translational Medicine 2015, 7 (287), 287ra73.Google Scholar
Clarelli, F.; et al., Drug-target binding quantitatively predicts optimal antibiotic dose levels in quinolones. PLOS Computational Biology 2020, 16 (8), e1008106.CrossRefGoogle ScholarPubMed
Balaban, N. Q.; et al., Definitions and guidelines for research on antibiotic persistence. Nature Reviews Microbiology 2019, 17 (7), 441448.CrossRefGoogle ScholarPubMed
Denega, I.; D’Enfert, C.; Backellier-Bassi, S., Candida albicans biofilms are generally devoid of persister cells. Antimicrobial Agents and Chemotherapy 2019, 63 (5), e01979.CrossRefGoogle ScholarPubMed
Drescher, K.; Dunkel, J.; Cisneros, L. H.; Ganguly, S.; Goldstein, R. E., Fluid dynamics and noise in bacterial cell-cell and cell-surface scattering. PNAS 2011, 108 (27), 1094010945.CrossRefGoogle ScholarPubMed
Hwang, G.; et al., Catalytic antimicrobial robots for biofilm eradication. Science Robotics 2019, 4 (29), eaaw2388.CrossRefGoogle ScholarPubMed
Balaban, N. Q.; Merrin, J.; Chait, R.; Kowalik, L.; Leibler, S., Bacterial persistence as a phenotypic switch. Science 2004, 305 (5690), 16221625.CrossRefGoogle ScholarPubMed
Zasloff, M., Antimicrobial peptides of multicellular organisms. Nature 2002, 415 (6870), 389395.CrossRefGoogle ScholarPubMed
Fernandez-Lopez, S.; et al., Antibacterial agents based on the cyclic D,L alpha peptide architecture. Nature 2001, 412 (6845), 452455.CrossRefGoogle ScholarPubMed
Hancock, R. E.; Scott, M. G., The role of antimicrobial peptides in animal defenses. PNAS 2000, 97 (16), 88568861.CrossRefGoogle ScholarPubMed
Lazzaro, B. P.; Zasloff, M.; Rolff, J., Antimicrobial peptides: Application informed by evolution. Science 2020, 368 (6490), 487494.CrossRefGoogle ScholarPubMed
Bader, M. W.; et al., Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell 2005, 122 (3), 461472.CrossRefGoogle ScholarPubMed
Guo, K.; Lim, K. B.; Gunn, J. S.; Bainbridge, B.; Darveau, R. P.; Hackett, M.; Miller, S. L., Regulation of lipid A modifications by Salmonella typhimurium virulence genes phoP-phoQ. Science 1997, 276 (5310), 250253.CrossRefGoogle ScholarPubMed
di Somma, A.; Moretta, A.; Cane, C.; Cirillo, A.; Duilio, A., Antimicrobial and antibiofilm peptides. Biomolecules 2020, 10 (4), 652.CrossRefGoogle ScholarPubMed
Antimicrobial peptide database. http://aps.unmc.edu/AP.Google Scholar
Groot, R. D.; Rabone, K. L., Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants. Biophysical Journal 2001, 81 (2), 725736.CrossRefGoogle ScholarPubMed
Hwang, H.; Paracini, N.; Parks, J. M.; Lakey, J. H.; Gumbart, J. C., Distribution of mechanical stress in Escherichia coli cell envelope. Biochimica et Biophysica Acta 2018, 1860 (12), 25662575.CrossRefGoogle ScholarPubMed
Boal, D., Mechanics of the Cell. CUP: 2012.CrossRefGoogle Scholar
Parkin, J.; Chavert, M.; Khalil, S., Molecular simulations of Gram-negative bacterial membranes: A vignette of some recent successes. Biophysical Journal 2015, 109 (3), 461468.CrossRefGoogle ScholarPubMed
Arnoldi, M.; Fitz, M.; Bauerlein, E.; Fritz, M.; Radmacher, M.; Sackmann, E.; Boulbitch, A., Bacterial turgor pressure can be measured by atomic force microscopy. Physical Review E 2000, 62 (1 Pt B), 10341044.CrossRefGoogle ScholarPubMed
Mularski, A.; Wilksch, J. J.; Wang, H.; Hossain, M. A.; Wade, J. D.; Separovic, F.; Strugnell, R. A.; Gee, M. L., Atomic force microscopy reveals the mechanobiology of lytic peptide action on bacteria. Langmuir 2015, 31 (22), 61646171.CrossRefGoogle ScholarPubMed
Huffner, S. M.; Malmsten, M., Influence of self-assembly on the performance of antimicrobial peptides. Current Opinion in Colloid and Interface Science 2018, 38, 5679.Google Scholar
Ongena, M.; Jacques, P., Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends in Microbiology 2008, 16 (3), 115125.CrossRefGoogle ScholarPubMed
Huang, K. C.; Mukhopadhyay, R.; Wen, B.; Gitai, Z.; Wingreen, N. S., Cell shape and cell-wall organization in gram-negative bacteria. PNAS 2008, 105 (49), 1928219287.CrossRefGoogle ScholarPubMed
Wu, F.; Tau, C., Dead bacterial adsorption of antimicrobial peptides underlies collective tolerance. Journal of Royal Society Interface 2019, 16, 20180701.CrossRefGoogle Scholar
Rabea, E. I.; Badawy, E. T.; Stevens, C. V.; Smagghe, G.; Steurbaut, W., Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules 4 (6), 14571465.CrossRefGoogle Scholar
Tiller, J. C.; Liao, C. J.; Lewis, K.; Klibanov, A. M., Designing surfaces that kill bacteria on contact. PNAS 2001, 98 (11), 59815985.CrossRefGoogle ScholarPubMed
Delprato, A. M.; Samadani, A.; Kudrolli, A.; Tsimring, L. S., Swarming ring patterns in bacterial colonies exposed to ultraviolet radiation. Physical Review Letters 2001, 87 (15), 158102.CrossRefGoogle ScholarPubMed
Nelson, K. L.; et al., Sunlight-mediated inactivation of health-relevant microorganisms in water: A review of mechanisms and modelling approaches. Environmental Science Process Impacts 2018, 20 (8), 10891122.CrossRefGoogle Scholar
Yin, W.; Wang, Y.; Liu, L.; He, J., Biofilms: The microbial ‘protective clothing’ in extreme environments. International Journal of Molecular Sciences 2019, 20 (14), 3423.CrossRefGoogle ScholarPubMed
Zharov, V. P.; Mercer, K. E.; Galitovskaya, E. N.; Smeltzer, M. S., Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophysical Journal 2006, 90 (2), 619627.CrossRefGoogle ScholarPubMed
Peyer, K. E.; Zhang, L.; Nelson, B. J., Bioinspired magnetic swimming microrobots for biomedical applications. Nanoscale 2013, 5 (4), 1259.CrossRefGoogle ScholarPubMed
Wang, X.; et al., Microenvironment-responsive magnetic nanocomposites based on silver nanoparticles/gentamicin for enhanced biofilm disruption by magnetic field ACS Applied Materials and Interfaces 2018, 10 (41), 3490534915.CrossRefGoogle ScholarPubMed
Day, A. W.; Kumamoto, C. A., Gut microbiome dysbiosis in alcoholism. Frontier in Cellular Infectious Microbiology 2022, 12, 840164.CrossRefGoogle ScholarPubMed
Silver, S., Bacterial silver resistance: Molecular biology and uses and misuses of silver compounds. FEMS Microbiology Reviews 2003, 27 (2–3), 341353.CrossRefGoogle ScholarPubMed
de Beer, D.; Srinivasan, R.; Stewart, P. S., Direct measurement of chlorine penetration into biofilms during disinfection. Applied and Environmental Microbiology 1994, 60 (12), 43394344.CrossRefGoogle ScholarPubMed
Stewart, E. J.; Satorius, A. E.; Younger, J. G.; Solomon, M. J., Role of environmental and antibiotic stress on Staphylococcus epidermidis biofilm microstructure. Langmuir 2013, 29 (23), 70177024.CrossRefGoogle ScholarPubMed
Hoiby, N.; Bjarnsholt, T.; Givskov, M.; Molin, S.; Ciofu, O., Antibiotic resistance of bacterial biofilms. International Journal of Antimicrobial Agents 2010, 35 (4), 322332.CrossRefGoogle ScholarPubMed
Vaishnava, S.; et al., The antibacterial lectin RegIII-Gamma promotes the spatial segregation of microbiota and host in the intestine. Science 2011, 334 (6053), 255258.CrossRefGoogle Scholar
Singh, P. K.; Parsek, M. R.; Greenberg, E. P.; Welsh, M. J., A component of innate immunity presents bacterial biofilm development. Nature 2002, 417, 552555.CrossRefGoogle Scholar
Kolodkin-Gal, I.; Romero, D.; Cao, S.; Clardy, J.; Kolter, R.; Losick, R., D-Amino acids trigger biofilm disassembly. Science 2010, 328 (5978), 627629.CrossRefGoogle ScholarPubMed
Hentzer, M.; et al., Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO Journal 2003, 22 (15), 38033815.CrossRefGoogle ScholarPubMed

Suggested Reading

Gladwin, M.; Trattler, B., Clinical Microbiology Made Ridiculously Simple. Medmaster: 2011.Google Scholar
Goering, R. et al., MIMS Microbiology, 6th ed. Elsevier: 2018.Google Scholar
Moran, E.; Cooke, F.; Torok, E., Oxford Handbook of Infectious Diseases and Microbiology. Oxford University Press: 2017.Google Scholar
Murphy, K.; Weaver, C., Janeway’s Immunobiology, 9th ed. Garland Science: 2016.CrossRefGoogle Scholar
Parham, P., The Immune System. Garland Science: 2014.CrossRefGoogle Scholar
Smith, P. D.; Blumberg, R. S.; MacDonald, T.T., Principles of Mucosal Immunology. Garland Science: 2020.CrossRefGoogle Scholar
Strelkauvkas, A.; Edwards, A.; Fahnert, B.; Pryor, G.; Strelkauskas, J., Microbiology: A Clinical Approach, 2nd ed. Garland Science: 2016.Google Scholar
Wilson, B. A.; Salyers, A. A.; Whitt, D. D.; Winkler, M. E., Bacterial Pathogens: A Molecular Approach, 4th ed. ASM Press: 2019.Google Scholar
Wilson, M., Bacterial Disease Mechanisms: An Introduction to Cellular Microbiology. Cambridge University Press: 2010.Google Scholar

References

Torok, E.; Moran, E.; Cooke, F., Oxford Handbook of Infectious Diseases and Microbiology. Oxford University Press: 2016.CrossRefGoogle Scholar
Gladwin, M. T.; Trattler, W.; Mahan, C. S., Clinical Microbiology Made Ridiculously Simple. 7th ed. MedMaster: 2019.Google Scholar
Parham, P., The Immune System. Garland Science: 2014.CrossRefGoogle Scholar
Hooper, L. V.; Littman, D. R.; MacPherson, A. J., Interactions between the microbiota and the immune system. Science 2012, 336 (6086), 12681273.CrossRefGoogle ScholarPubMed
Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D. S.; Weinrauch, Y.; Zychlinky, A., Neutrophil extracellular traps kill bacteria. Science 2004, 303 (5663), 15321535.CrossRefGoogle ScholarPubMed
Finlay, B. B.; Cossart, P., Exploitation of mammalian host cell functions by bacterial pathogens. Science 1997, 276 (5313), 718725.CrossRefGoogle ScholarPubMed
Hetrick, E. M.; Schoenfisch, M. H., Reducing implant-related infections: Active release strategies. Chemical Society Reviews 2006, 35 (9), 780789.CrossRefGoogle ScholarPubMed
Faustino, C. M. C.; Lemor, S. M. C.; Monge, N.; Ribeiro, I. A. C., A scope at antifouling strategies to prevent catheter-associated infection. Advances in Colloid and Interface Science 2020, 284, 102230.CrossRefGoogle Scholar
Filipovic, U.; Dahmane, R. G.; Ghannouchi, S.; Zore, A.; Bohinc, K., Bacterial adhesion on orthopedic implants. Advances in Colloid and Interface Science 2020, 2020 (283), 10228.Google Scholar
Cossart, P.; Sansonetti, P. J., Bacterial invasion: The paradigms of enteroinvasive pathogens. Science 2004, 304 (5668), 242248.CrossRefGoogle ScholarPubMed
Ogawa, M.; Yoshimori, T.; Suzuki, T.; Sagara, H.; Mizushima, N.; Sasakawa, C., Escape of intracellular Shigella from autophagy. Science 2005, 307 (5710), 727731.CrossRefGoogle ScholarPubMed
Costerton, J. W.; Stewart, P. S.; Greenberg, E. P., Bacterial biofilms: A common cause of persistent infections. Science 1999, 284 (5418), 13181322.CrossRefGoogle ScholarPubMed
Marcy, Y.; et al., Dissecting biological ‘dark matter’ with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. PNAS 2007, 104 (29), 1188911894.CrossRefGoogle ScholarPubMed
Cugini, C.; Shanmugam, M.; Landge, N.; Ramasubbu, N., The role of exopolysaccharides in oral biofilms. Journal of Dental Research 2019, 98 (7), 739.CrossRefGoogle ScholarPubMed
Mah, T. F.; O’Toole, G. A., Mechanisms of biofilm resistance to antimicrobial agents. Trends in Microbiology 2001, 9 (1), 3439.CrossRefGoogle ScholarPubMed
Kim, D.; et al., Spatial mapping of polymicrobial communities reveals a precise biogeography associated with human dental caries. PNAS 2020, 117 (22), 1237512386.CrossRefGoogle ScholarPubMed
Li, Z. R.; et al., Mutanofactin promotes adhesion and biofilm formation of cariogenic Streptococcus mutans. Nature Chemical Biology 2021, 17 (5), 576584.CrossRefGoogle ScholarPubMed
Smith, E. E.; et al., Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. PNAS 2006, 103 (22), 84878492.CrossRefGoogle Scholar
Kovach, K.; et al., Evolutionary adaptations of biofilms infecting cystic fibrosis lungs promote mechanical toughness by adjusting polysaccharide production. npj Biofilms and Microbiomes 2017, 3, 1.CrossRefGoogle ScholarPubMed
Singh, P. K.; Schaefer, A. L.; Parsek, M. R.; Moninger, T. O.; Welsh, M. J.; Greenberg, E. P., Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 2000, 407 (6805), 762764.CrossRefGoogle ScholarPubMed
Gog, J. R.; et al., Dynamics of Salmonella infection of macrophages at the single cell level. Journal of Royal Society Interface 2012, 9 (75), 26962707.CrossRefGoogle ScholarPubMed
Mock, M.; Fouet, A., Anthrax. Annual Review of Microbiology 2001, 55, 647671.CrossRefGoogle ScholarPubMed
Flores-Mireles, A. L.; Walker, J. N.; Caparon, M.; Hultgren, S. J., Urinary tract infections: Epidemiology, mechanism of infection and treatment options. Nature Reviews Microbiology 2015, 13 (5), 269284.CrossRefGoogle ScholarPubMed
Johnson, J. R., Virulence factors in Escherichia coli urinary tract infection. Clinical Microbiology Reviews 1991, 4 (1), 80128.CrossRefGoogle ScholarPubMed
Mulvey, M. A.; Lopez-Boado, Y. S.; Wilson, C. L.; Roth, R.; Parks, W. C.; Heuser, J.; Hultgren, S. J., Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science 1998, 282 (5393), 1494.CrossRefGoogle ScholarPubMed
Connell, I.; Agace, W.; Klemm, P.; Schembri, M.; Marild, S.; Svanborg, C., Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. PNAS 1996, 93 (18), 98279832.CrossRefGoogle ScholarPubMed
Anderson, G. G.; Palermo, J. J.; Schilling, J. D.; Roth, R.; Heuser, J.; Hultgren, S. J., Intracellular bacterial biofilm-like pods in urinary tract infections. Science 2003, 301 (5629), 105107.CrossRefGoogle ScholarPubMed
King, J. E.; Roberts, I. S., Bacterial surfaces: Front lines in host-pathogen cell-surface interactions. In Biophysics of Infection, Leake, M. C., Ed. Springer: 2016; pp. 129156.CrossRefGoogle Scholar
Wu, C.; Lim, J. Y.; Fuller, G. G.; Cegelski, L., Quantitative analysis of amyloid-integrated biofilms formed by uropathogenic Escherichia coli at the air-liquid interface. Biophysical Journal 2012, 103 (3), 464471.CrossRefGoogle ScholarPubMed
Voyich, J. M.; et al., Insights into mechanisms used by Staphylococcus aureus to avoid destruction by human neutrophils. Journal of Immunology 2005, 175 (6), 39073919.CrossRefGoogle ScholarPubMed
Otto, M., Staphylococcal infections: Mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity. Annual Review of Medicine 2013, 64 (1), 175188.CrossRefGoogle ScholarPubMed
Segovia-Juarez, J. L.; Ganguli, S.; Kirschner, D., Identifying control mechanisms of granuloma formation during M. tuberculosis infection using an agent-based model. Journal of Theoretical Biology 2004, 231 (3), 357376.CrossRefGoogle Scholar
Stenger, S.; et al., An antimicrobial activity of cytolytic T cells mediated by granulysin. Science 1998, 282 (5386), 121.CrossRefGoogle ScholarPubMed
Cohen, I., The immunogenesis of sepsis. Nature 2002, 420 (6917), 885891.CrossRefGoogle Scholar

Suggested Reading

Alon, U., An Introduction to Systems Biology. Chapman and Hall: 2019.CrossRefGoogle Scholar
Forger, D. B., Biological Clocks, Rhythms and Oscillations, the Theory of Biological Time Keeping. MIT Press: 2017.Google Scholar
Golding, I.; Cox, E.C., Physical nature of bacterial cytoplasm. Physical Review Letters 2006, 96 (9), 098102. Evidence for sub-diffusion in bacteria. Many other studies indicate this is a common phenomenon.CrossRefGoogle ScholarPubMed
Ingalls, B. P. Mathematical Modelling in Systems Biology. MIT Press: 2013.Google Scholar

References

Danino, T.; Mandragon-Palomino, O.; Tsimring, L.; Hasley, J., A synchronised quorum of genetic clocks. Nature 2010, 463 (7279), 326330.CrossRefGoogle ScholarPubMed
Basu, S.; Gerchman, Y.; Collins, C. H.; Arnold, F. H.; Weiss, R., A synthetic multicellular system for programmed pattern formation. Nature 2005, 434 (7037), 11301134.CrossRefGoogle ScholarPubMed
Gardner, T. S.; Cantor, C. R.; Collins, J., Construction of a genetic toggle switch in Escherichia coli. Nature 2000, 403 (6767), 339342.CrossRefGoogle ScholarPubMed
Elowitz, M. B.; Leibler, S., A synthetic oscillatory network of transcriptional regulators. Nature 2000, 403 (6767), 335338.CrossRefGoogle ScholarPubMed
Alon, U., An Introduction to Systems Biology: Design Principles of Biological Circuits, 2nd ed. CRC Press: 2020.Google Scholar
Moradali, M. F.; Rehan, B. H. A., Bacterial biopolymers: From pathogenesis to advanced materials. Nature Reviews Microbiology 2020, 18 (4), 195210.CrossRefGoogle ScholarPubMed
Hofling, F.; Franosch, T., Anomalous transport in the crowded world of biological cells. Reports on Progress in Physics 2013, 76 (4), 046602.CrossRefGoogle ScholarPubMed
Mendez, V.; Fedotov, S.; Horsthemke, W., Reaction-transport Systems: Mesoscopic Foundations, Fronts and Spatial Instabilities. Springer: 2012.Google Scholar
Golding, I.; Cox, E. C., Physical nature of bacterial cytoplasm. Physical Review Letters 2006, 96 (9), 098102.CrossRefGoogle ScholarPubMed
Ramos-Leon, F.; Ramamurthi, K. S., Cytoskeletal proteins: Lessons learned from bacteria. Physical Biology 2022, 19 (2), 021005.CrossRefGoogle ScholarPubMed
Patel, K.; Rodriguez, C.; Stabb, E. V.; Hagen, S. J., Spatially propagating activation of quorum sensing in Vibrio fischeri and the transition to low population density. Physical Review E 2020, 101 (6-1), 062421.CrossRefGoogle ScholarPubMed
James, S.; Nilsson, P.; James, G.; Kjelleberg, S.; Fagerstrom, T., Luminescence control in the marine bacterium Vibrio fischeri: An analysis of the dynamics of lux regulation. Journal of Molecular Biology 2000, 296 (4), 11271137.CrossRefGoogle ScholarPubMed
Ingalls, B. P., Mathematical Modeling in Systems Biology: An Introduction. MIT Press: 2013.Google Scholar
Chen, A. Y.; Deng, Z.; Billings, A. N.; Seker, U. O. S.; Lu, M. Y.; Citorik, R. J.; Zakeri, B.; Lu, T. K., Synthesis and patterning of tunable multiscale materials with engineered cells. Nature Materials 2014, 13 (5), 515523.CrossRefGoogle ScholarPubMed
Morris, E. R.; Nishinari, K.; Rinaudo, M., Gelation of gellan – a review. Food Hydrocolloids 2012, 28 (2), 373411.CrossRefGoogle Scholar
Eelderink-Chen, Z.; Bosman, J.; Sartor, F.; Dodd, A. N.; Kovacs, A. T.; Merrow, M., A circadian clock in a nonphotosynthetic prokaryote. Science Advances 2021, 7 (2), eabe2086.CrossRefGoogle Scholar
Cai, L.; Friedman, N.; Xie, S., Stochastic protein expression in individual cells at the single molecule level. Nature 2006, 440 (7082), 358362.CrossRefGoogle ScholarPubMed
Gillespie, D. T., Exact stochastic simulation of coupled chemical reactions with delays. The Journal of Physical Chemistry 1977, 25 (12), 23402361.CrossRefGoogle Scholar

Suggested Reading

It is reasonably straightforward to start simulating a biofilm using an ABM. It only requires a couple of hours to download some freeware and to run some simple simulations from scratch on a standard pc.

Mounfield, C. C., The Handbook of Agent Based Modelling. Independent Publishing: 2020. Useful collection of models discussed from a physics perspective.Google Scholar
O’Sullivan, D.; Perry, G. L. W., Spatial Simulation: Exploring Patterns and Processes, 1st ed. Wiley: 2013. Useful introductory approach for the development of agent based models to solve physics problems.CrossRefGoogle Scholar
Wilensky, U.; Rand, W., An Introduction to Agent Based Modelling: Modelling Natural, Social and Engineered Complex Systems with NetLogo. MIT Press: 2015. Focuses on NetLogo. Has the advantage that it is in three dimensions and is mathematically simple. It is accessible to non-scientists.Google Scholar

References

Dzianach, P. A.; Dykes, G. A.; Strachan, N. J. C.; Forbes, K. J.; Perez-Reche, F. J., Challenges of biofilm control and utilisation: Lessons from mathematical modelling. Journal of the Royal Society – Interface 2019, 16 (155), 20190042.CrossRefGoogle ScholarPubMed
Jensen, H. J., Complexity Science: The Study of Emergence. Cambridge University Press: 2023.Google Scholar
Li, B.; et al., NUFEB: A massively parallel simulator for individual-based modelling of microbial communities. PLOS One 2019, 15 (12), e1007125.Google ScholarPubMed
Karplus, M.; McCammon, J. A., Molecular dynamics simulations of biomolecules. Nature Structural Biology 2002, 9 (9), 646652.CrossRefGoogle ScholarPubMed
Frenkel, D.; Smit, B., Understanding Molecular Simulation: From Algorithms to Applications. Academic Press: 2001.Google Scholar
Mounfield, C. C., The Handbook of Agent Based Modelling. Independent Publishing: 2020.Google Scholar
Kreft, J. U.; Booth, G.; Wimpenny, J. W. T., BacSim, a simulator for individual-based modelling of bacterial colony growth. Microbiology 1998, 144 (12), 32753287.CrossRefGoogle ScholarPubMed
Kreft, J. U.; Picioreanu, C.; Wimpenny, J. W. T.; van Loosdrecht, M. C. M., Individual-based modelling of biofilms. Microbiology 2001, 147 (11), 2897.CrossRefGoogle ScholarPubMed
Grimm, V., Individual-based Modeling and Ecology. Princeton University Press: 2005.CrossRefGoogle Scholar
Mattei, M. R.; Frunzo, L.; D’Acunto, B.; Pechaud, Y.; Pirozzi, F.; Esposito, G., Continuum and discrete approach in modeling biofilm development and structure: A review. Journal of Mathematical Biology 2018, 76 (4), 9451003.CrossRefGoogle ScholarPubMed
Allen, M. P.; Tildesley, D. J., Computer Simulation of Liquids. Oxford University Press: 2017.CrossRefGoogle Scholar
Marchetti, M. C.; Joanny, J. F.; Ramaswamy, S.; Liverpool, T. B.; Prost, J.; Rao, M.; Simha, R. A., Hydrodynamics of soft active matter. Review of Modern Physics 2013, 85 (3), 1143.CrossRefGoogle Scholar
Pismen, L., Active Matter Within and Around Us: From Self-propelled Particles to Flocks and Living Forms. Springer: 2021.CrossRefGoogle Scholar
LatifJr, M.; May, E. E., A multiscale agent-based model for the investigation of E. coli K12 metabolic response during biofilm formation. Bulletin of Mathematical Biology 2018, 80 (11), 29172956.CrossRefGoogle ScholarPubMed
Wilensky, U.; Rand, W., An Introduction to Agent-based Modeling: Modeling Natural, Social and Engineered Complex Systems with NETLogo. MIT Press: 2015.Google Scholar
Picioreanu, C.; Van Loosdrecht, M. C. M.; Heijnen, J. J., Mathematical modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach. Biotechnology and Bioengineering 1998, 58 (1), 101116.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Kreft, J. U.; Wimpenny, J. W. T., Effect of EPS on biofilm structure and function as revealed by an individual-based model of biofilm growth. Water Science and Technology 2001, 43 (6), 135141.CrossRefGoogle Scholar
Ardre, M.; Henry, H.; Douarche, C.; Plapp, M., An individual-based model for biofilm formation at liquid surfaces. Physical Biology 2015, 12 (6), 66015.CrossRefGoogle ScholarPubMed
WItten, T. A.; Sander, L. M., Diffusion-limited aggregates, a kinetic critical phenomenon. Physical Review Letters 1981, 47 (19), 1400.CrossRefGoogle Scholar
Wang, Q.; Zhang, T., Review of mathematical models for biofilms. Solid State Communications 2010, 150 (21), 10091022.CrossRefGoogle Scholar
Vicsek, T.; Czirok, A.; Ben-Jacob, E.; Cohen, I.; Shochet, O., Novel type of phase transition in a system of self-driven particles. Physical Review Letters 1995, 75 (6), 12261229.CrossRefGoogle Scholar
Nadell, C. D.; Xavier, J. B.; Levin, S. A.; Foster, K. R., The evolution of quorum sensing in bacterial biofilms. PLOS Biology 2008, 6 (1), e14.CrossRefGoogle ScholarPubMed
Xavier, J. B.; Foaster, K. R., Cooperation and conflict in microbial biofilms. PNAS 2007, 104 (3), 876881.CrossRefGoogle ScholarPubMed
Fozard, J. A.; Lees, M.; King, J. R.; Logan, B. S., Inhibition of quorum sensing in a computational biofilm simulation. Biosystems 2012, 109 (2), 105114.CrossRefGoogle Scholar
Head, D. A., Linear surface roughness growth and flow smoothening in a three-dimensional biofilm model. Physical Review E 2013, 88 (2), 032702.CrossRefGoogle Scholar
Jayathilake, P. G.; et al., A mechanistic individual-based model of microbial communities. PLOS One 2017, 12 (8), e0181965.CrossRefGoogle ScholarPubMed
Farrell, F.; Hallatschek, O.; Marenduzzo, D.; Waclaw, B., Mechanically driven growth of quasi-two-dimensional microbial colonies. Physical Review Letters 2013, 111 (16), 168101.CrossRefGoogle ScholarPubMed
Mabrouk, N.; Deffuant, G.; Tolker-Nielsen, T.; Lobry, C., Bacteria can form interconnected microcolonies when a self-excreted product reduces their surface motility: Evidence from individual-based model simulations. Theory Biosciences 2010, 129 (1), 113.CrossRefGoogle Scholar
Johnson, L. R., Microcolony and biofilm formation as a survival strategy for bacteria. Journal of Theoretical Biology 2008, 251 (1), 2434.CrossRefGoogle ScholarPubMed
Jang, S. S.; Oishi, K. T.; Egbert, R. G.; Klavins, E., Specification and simulation of synthetic multicelled behaviors. ACS Synthetic Biology 2012, 1 (8), 365374.CrossRefGoogle ScholarPubMed
Blee, J. A.; Roberts, I. S.; Waigh, T. A., Spatial propagation of electrical signals in circular biofilms: A combined experimental and agent-based fire-diffuse-fire study. Physical Review E 2019, 100 (5-1), 052401.CrossRefGoogle ScholarPubMed
Naylor, J.; Fellermann, H.; Ding, Y.; Mohammed, W. K.; Jakubovics, N. S.; Mukherjee, J.; Biggs, C. A.; Wright, P. C.; Krasnogor, N., Simbiotics: A multiscale integrative platform for 3D modeling of bacterial populations. ACS Synthetic Biology 2017, 6 (7), 11941210.CrossRefGoogle ScholarPubMed
Akabuogu, E. U.; Martorelli, V.; Krasovec, R.; Roberts, I. S.; Waigh, T. A., Emergence of ion-channel mediated electrical oscillations in Escherichia coli biofilms. eLife 2023, to appear.Google Scholar
Zhang, Z.; Igorshin, O. A.; Cotter, C. R.; Shimkets, L. J., Agent-based modeling reveals possible mechanisms for observed aggregation cell behaviors. Biophysical Journal 2018, 115 (12), 24992511.CrossRefGoogle ScholarPubMed
Melaugh, G.; Hutchison, J.; Kragh, K. N.; Irie, Y.; Roberts, A.; Bjarnsholt, T.; Diggle, S. P.; Gordon, V. D.; Allen, R. J., Shaping the growth behaviour of biofilms initiated from bacterial aggregates. PLOS One 2016, 91 (3), e0149683.Google Scholar
Korabel, N.; Clemente, G. D.; Han, D.; Feldman, F.; Millard, T. H.; Waigh, T. A., Hemocytes in Drosophila melanogaster embryos move via heterogeneous anomalous diffusion. Communications Physics 2022, 5 (1), 269.CrossRefGoogle Scholar
Lardon, L. A.; Merkey, B. V.; Martins, S.; Dotsch, A.; Picioreanu, C.; Kreft, J. U.; Smets, B. F., iDynoMiCS: Next-generation individual-based modelling of biofilms. Environmental Microbiology 2011, 13 (9), 24162434.CrossRefGoogle ScholarPubMed
Bauerle, E.; Zimmermann, J.; Baldini, F.; Thiele, I.; Kaleta, C., BacArena: Individual-based metabolic modeling of heterogeneous microbes in complex communities. PLOS Computational Biology 2017, 13 (5), e1005544.Google Scholar
Rana, N.; Ghosh, P.; Perlekar, P., Spreading of nonmotile bacteria on a hard agar plate: Comparison between agent-based and stochastic simulations. Physical Review E 2017, 96 (5-1), 52403.CrossRefGoogle ScholarPubMed

Suggested Reading

Forger, D. B., Biological Clocks, Rhythms and Oscillations: The Theory of Biological Timekeeping. MIT Press: 2017.Google ScholarPubMed
Strogatz, S. H. Non-linear Dynamics and Chaos with Applications to Physics, Biology, Chemistry and Engineering, 2nd ed. Westview Press: 2015. Coupling of non-linear oscillators is considered in detail.Google Scholar

References

Grandclement, C.; Tannieres, M.; Morera, S.; Dessaux, Y.; Faure, D., Quorum quenching: Role in nature and applied developments. FEMS Microbiology Reviews 2016, 40 (1), 86116.CrossRefGoogle ScholarPubMed
Camilli, A.; Bassler, B. L., Bacterial small-molecule signaling pathways. Science 2006, 311 (5764), 11131116.CrossRefGoogle ScholarPubMed
Miller, S. D.; Haddock, S. H. D.; StrakaIII, W. C.; Seaman, C. J.; Combs, C. L.; Wang, M.; Shi, W.; Nam, S., Honing in on bioluminescent milky seas from space. Scientific Reports 2021, 11 (1), 15443.CrossRefGoogle Scholar
Paluch, E.; Rewak-Soroczynska, J.; Jedrusik, I.; Mazurkiewi, E.; Jermakow, K., Prevention of biofilm formation by quorum quenching. Applied Microbiology Biotechnology 2020, 104 (5), 18711881.CrossRefGoogle ScholarPubMed
Hou, Q.; Keren-Paz, A.; Korenblum, E.; Oved, R.; Malitsky, S.; Kolodkin-Gal, I., Weaponizing volatiles to inhibit competitor biofilms from a distance. npj Biofilms and Microbiomes 2021, 7 (1), 2.CrossRefGoogle ScholarPubMed
Hengge, R., Principles of c-di-GMP signalling in bacteria. Nature Reviews Microbiology 2009, 7 (4), 263273.CrossRefGoogle ScholarPubMed
Lenz, D. H.; Mok, K. C.; Lilley, B. N.; Kulkarni, R. V.; Wingreen, N. S.; Bassler, B. L., The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 2004, 118 (1), 6982.CrossRefGoogle ScholarPubMed
Munoz-Dorado, J.; Marcos-Torres, F. J.; Garcia-Bravo, E.; Moraleda-Munoz, A.; Perez, J., Myxobacteria: Moving, killing, feeding, and surviving together. Frontiers in Microbiology 2016, 7, 781.CrossRefGoogle ScholarPubMed
Lindner, F.; Diepold, A., Optogenetics in bacteria – applications and opportunities. FEMS Microbiology Reviews 2022, 46 (2), 117.CrossRefGoogle ScholarPubMed
Ben-Jacob, E.; Levine, H., Self-engineering capabilities of bacteria. 2006, 3 (6), 197214.Google Scholar
Gill, S.; Catchpole, R.; Forterre, P., Extracellular membrane vesicles in the three domains of life and beyond. FEMS Microbiology Reviews 2019, 43 (3), 273303.CrossRefGoogle ScholarPubMed
Baker, B.; Zambryski, P.; Staskawicz, B.; Dinesh-Kumar, S. P., Signaling in plant-microbe interactions. Science 1997, 276 (5313), 726733.CrossRefGoogle ScholarPubMed
Sperandio, V.; Torres, A. G.; Jarvis, B.; Nataro, J. P.; Kaper, I. B., Bacteria-host communication: The language of hormones. PNAS 2003, 100 (15), 89518956.CrossRefGoogle ScholarPubMed
Fuqua, W. C.; Winons, S. C.; Greenberg, E. P., Quorum-sensing in bacteria the luxr-luxi family of cell density-responsive transcriptional regulations. Journal of Bacteriology 1994, 176 (2), 269271.CrossRefGoogle Scholar
Miller, M. B.; Bassler, B. L., Quorum sensing in bacteria. Annual Review of Microbiology 2001, 55, 165199.CrossRefGoogle ScholarPubMed
Padder, S. A.; Prasad, R.; Shah, A. H., Quorum sensing: A less known mode of communication among fungi. Microbiological Research 2018, 210, 5158.CrossRefGoogle ScholarPubMed
Erez, Z.; et al., Communication between viruses guides lysis-lysogeny decisions. Nature 2017, 541 (7638), 488493.CrossRefGoogle ScholarPubMed
Whiteley, M.; Diggle, S. P.; Greenberg, E. P., Progress in and promise of bacterial quorum sensing research. Nature 2017, 551 (7680), 313320.CrossRefGoogle ScholarPubMed
Mony, B. M.; Matthews, K. R., Assembling the components of the quorum sensing pathway in African trypanosomes. Molecular Microbiology 2015, 96 (2), 220232.CrossRefGoogle ScholarPubMed
Waters, C. M.; Bassler, B. L., Quorum sensing: Cell to cell communication in bacteria. Annual Review in Cellular Developmental Biology 2005, 21, 319346.CrossRefGoogle ScholarPubMed
Kolodkin-Gal, I.; Romero, D.; Cao, S.; Clardy, J.; Kolter, R.; Losick, R., D-Amino acids trigger biofilm disassembly. Science 2010, 328 (5978), 627629.CrossRefGoogle ScholarPubMed
Popat, R.; Cornforth, D. M.; McNally, L.; Brown, S. P., Collective sensing and collective responses in quorum-sensing bacteria. Journal of the Royal Society – Interface 2015, 12 (103), 20140882.CrossRefGoogle ScholarPubMed
Davey, M. E.; O’Toole, G. A., Microbial biofilms: From ecology to molecular genetics. Microbiology and Molecular Biology Reviews 2000, 64 (4), 847867.CrossRefGoogle ScholarPubMed
Oziat, J.; Cohu, T.; Elsen, S.; Gougis, M.; Malliaras, G. G.; Mailley, P., Electrochemical detection of redox molecules secreted by Pseudomonas aeruginosa – Part 1: Electrochemical signatures of different strains. Bioelectrochemistry 2021, 140, 107747.CrossRefGoogle ScholarPubMed

Suggested Reading

Benarroch, J. M.; Asally, M., The microbiologists guide to membrane potential dynamics. Trends in Microbiology 2020, 28 (4), 304314.CrossRefGoogle ScholarPubMed
Beyend, H.; Bubaute, J. Biofilms in Bioelectrochemical Systems: From Lab Practice to Data Interpretation. Wiley, 2015.Google Scholar
Blee, J. A.; Roberts, I. S.; Waigh, T. A., Spatial propagation of electrical signals in circular biofilms: A combined experimental and agent-based fire-diffuse-fire study. Physical Review E 2019, 100, 052401.CrossRefGoogle ScholarPubMed
Blee, J. A.; Roberts, I. S.; Waigh, T. A., Membrane potentials, oxidative stress and the dispersal response of bacterial biofilms to 405 nm light. Physical Biology 2020, 17, 036001.CrossRefGoogle ScholarPubMed
Grimner, S.; Martinsen, O. G. Bioimpedance and Bioelectricity, 3rd ed. Academic Press: 2015.Google Scholar
Leung, K. M. et al., Shewanella oneidensis MR-1 bacterial nanowires exhibit p-type, tunable electronic behaviour. Nanoletters 2013, 13(6), 24072411.CrossRefGoogle Scholar

References

Prindle, A.; Liu, J.; Asally, M.; Ly, S.; Garcia-Ojalvo, J.; Sudel, G. M., Ion channels enable electrical communication in bacterial communities. Nature 2015, 527 (7576), 5963.CrossRefGoogle ScholarPubMed
Kralj, J. M.; Hochbaum, D. R.; Douglass, A. D.; Cohen, A. E., Electrical spiking in Escherichia coli probed with a fluorescent voltage-indicating protein. Science 2011, 333 (6040), 345348.CrossRefGoogle ScholarPubMed
Akabuogu, E. U.; Martorelli, V.; Krasovec, R.; Roberts, I. S.; Waigh, T. A., Emergence of ion-channel mediated electrical oscillations in Escherichia coli biofilms. eLife 2023, to appear.Google Scholar
Blee, J. A.; Roberts, I. S.; Waigh, T. A., Membrane potentials, oxidative stress and the dispersal response of bacterial biofilms to 405 nm light. Physical Biology 2020, 17 (3), 036001.CrossRefGoogle ScholarPubMed
MacKinnon, R., Potassium channels and the atomic basis of selective ion conduction (Nobel Lecture). Angewandte Chemie International ed. in English 2004, 43 (33), 42654277.CrossRefGoogle ScholarPubMed
Madigan, M. T.; Bender, K. S.; Buckley, D. H.; Sattley, W. M.; Stahl, D. A., Brock Biology of Microorganisms, 15th ed. Pearson: 2018.Google Scholar
Kim, B. H.; Gadd, G. M., Prokaryotic Metabolism and Physiology, 2nd ed. CUP: 2019.CrossRefGoogle Scholar
Logan, B. E., Exoelectrogenic bacteria that power microbial fuel cells. Nature Reviews. Microbiology 2009, 7 (5), 375381.CrossRefGoogle ScholarPubMed
Weiss, G. L.; Kieninger, A.-K.; Maldener, I.; Forchhammer, K.; Pilhofer, M., Structure and function of a bacterial gap junction analog. Cell 2019, 178 (2), 374384.CrossRefGoogle ScholarPubMed
Kopronski, P.; Kubalski, A., Bacterial ion channels and their eukaryotic homologues. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology 2001, 23 (12), 11481158.CrossRefGoogle Scholar
Martinac, B.; Saimi, Y.; Kung, C., Ion channels in microbes. Physiological Reviews 2008, 88 (4), 14491490.CrossRefGoogle ScholarPubMed
Kirchoff, C.; Cypianka, H., Propidium ion enters viable cells with high membrane potential during live-dead staining. Journal of Microbiological Methods 2017, 142, 7982.CrossRefGoogle Scholar
Reeves, E. P.; et al., Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature 2002, 416 (6878), 291297.CrossRefGoogle ScholarPubMed
Sukharev, S., Purification of the small mechanosensitive channel of Escherichia coli (MscS): The subunit structure, conduction, and gating characteristics in liposomes. Biophysical Journal 2002, 83 (1), 290298.CrossRefGoogle ScholarPubMed
Sotomayor, M.; Vasquez, V.; Perozo, E.; Schulten, K., Ion conduction through MscS as determined by electrophysiology and simulation. Biophysical Journal 2007, 92 (3), 886902.CrossRefGoogle ScholarPubMed
Markin, V. S.; Martinac, B., Mechanosensitive ion channels as reporters of bilayer expansion: A theoretical model. Biophysical Journal 1991, 60 (5), 11201127.CrossRefGoogle ScholarPubMed
Cohen, A. E.; Venkatachalam, V., Bringing bioelectricity to light. Annual Review of Biophysics 2014, 43, 211232.CrossRefGoogle ScholarPubMed
Bruni, G. N.; Weekley, R. A.; Dodd, B. J. T.; Kralj, J. M., Voltage-gated calcium flux mediates Escherichia coli mechanosensation. PNAS 2017, 114 (35), 94459450.CrossRefGoogle ScholarPubMed
Bruni, G. N.; Kralj, J. M., Membrane voltage dysregulation driven by metabolic dysfunction underlies bactericidal activity of aminoglycosides. eLife 2020, 9, e58706.CrossRefGoogle ScholarPubMed
Jin, X.; et al., Sensitive bacterial Vm sensors revealed the excitability of bacterial Vm and its role in antibiotic tolerance. Proceedings of the National Academy of Sciences of the United States of America 2023, 120 (3), e2208348120.Google ScholarPubMed
Masi, E.; Ciszak, M.; Santopolo, L.; Frascella, A.; Giovannetti, L.; Marchi, E.; Viti, C.; Mancuso, S., Electrical spiking in bacterial biofilms. Journal of the Royal Society, Interface 2015, 12 (102), 20141036.CrossRefGoogle ScholarPubMed
Bellin, D. L.; Sakhtah, H.; Zhang, Y.; Price-Whelan, A.; Dietrich, L. E. P.; Shepard, K. L., Electrochemical camera chip for simultaneous imaging of multiple metabolites in biofilms. Nature Communications 2016, 7, 10535.CrossRefGoogle ScholarPubMed
Tseng, T. Y., Electroporation of cell membranes. Biophysical Journal 1991, 60 (2), 297306.CrossRefGoogle Scholar
Stratford, J. P.; Edwards, C. L. A.; Ghanshyam, J.; Malyshev, D.; Delise, M. A.; Hayashi, Y.; Asally, M., Electrically induced bacterial membrane-potential dynamics correspond to cellular proliferation capacity. PNAS 2019, 116 (19), 95529557.CrossRefGoogle ScholarPubMed
Marszalek, P.; Liu, D. S.; Tsong, T. Y., Schwan equation and transmembrane potential. Biophysical Journal 1990, 58 (4), 10531058.CrossRefGoogle ScholarPubMed
Weaver, J. C.; Chizmadzhev, Y. A., Theory of electroporation: A review. Bioelectrochemistry and Bioenergetics 1996, 41 (2), 135160.CrossRefGoogle Scholar
Keener, J.; Sneyd, J., Mathematical Physiology. Springer: 2009.CrossRefGoogle Scholar
Gerstner, W., Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition. CUP: 2014.CrossRefGoogle Scholar
Blee, J. A.; Roberts, I. S.; Waigh, T. A., Spatial propagation of electrical signals in circular biofilms. Physical Review E 2019, 100 (5–1), 052401.CrossRefGoogle ScholarPubMed
Hennes, M.; Bender, N.; Cronenberg, T.; Welker, A.; Maier, B., Collective polarization dynamics in bacterial colonies signify the occurrence of distinct subpopulations. PLOS Biology 2023, 21 (1), e3001960.CrossRefGoogle ScholarPubMed
Izhikevich, E. M., Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. MIT: 2010.Google Scholar
Stern, S.; Rotem, A.; Burnishev, Y.; Weinreb, E.; Moses, E., External excitation of neurons using electric and magnetic fields in one- and two-dimensional cells. Journal of Visualized Experiments 2017, 123, e54357.Google Scholar
Humphries, J.; Xiong, L.; Liu, J.; Prindle, A.; Yuan, F.; Arjes, H. A.; Tsimring, L.; Suel, G. M., Species-independent attraction to biofilms through electrical signalling. Cell 2017, 168 (1–2), 200209.CrossRefGoogle Scholar
Palsson, E.; Lee, K. J.; Goldstein, R. E.; Franke, J.; Kessin, R. H.; Cox, E. C., Selection for spiral waves in the social amoebae Dictyostelium. PNAS 1997, 94 (25), 1371913723.CrossRefGoogle ScholarPubMed
Martinez, R.; Liu, J.; Suel, G. M.; Garcia-Ojalvo, J., Bistable emergence of oscillations in growing Bacillus subtilis biofilms. PNAS 2018, 115 (36), E8333–E8340.Google Scholar
Liu, J.; et al., Coupling between distant biofilms and emergence of nutrient time-sharing. Science 2017, 356 (6338), 628642.CrossRefGoogle ScholarPubMed
Strogatz, S. H., Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering, 2nd ed. Westview Press: 2014.Google Scholar
Grimnes, S. J.; Martinsen, O. G., Bioimpedance and Bioelectricity. Academic Press: 2014.Google Scholar
Beyend, H.; Bubaute, J., Biofilms in Bioelectrochemical Systems: From Lab Practice to Data Interpretation. Wiley: 2015.Google Scholar
Wang, F.; et al., Structure of microbial nanowires reveals stacked hemes that transport electrons over micrometers. Cell 2019, 177 (2), 361369.CrossRefGoogle ScholarPubMed
Beuth, L.; Pfeiffer, C. P.; Schroder, U., Copper-bottomed, electrochemically active bacteria exploit conductive sulphide networks for enhanced electrogeneity. Energy & Environmental Science 2020, 13 (9), 3102.CrossRefGoogle Scholar
Gorby, Y. A.; et al., Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. PNAS 2006, 103 (30), 1135811363.CrossRefGoogle ScholarPubMed
Marsili, E.; Baron, D. B.; Shikhare, I. D.; Coursolle, D.; Gralnick, J. A.; Bond, D. R., Shewanella secretes flavins that mediate extracellular electron transfer. PNAS 2008, 105 (10), 39683973.CrossRefGoogle ScholarPubMed
Leung, K. M.; Wanger, G.; Guo, Q.; Gorby, Y.; Southam, G.; Lau, W. M.; Yang, J., Bacterial nanowires: Conductive as silicon, soft as polymer. Soft Matter 2011, 7 (14), 66176621.CrossRefGoogle Scholar
El-Naggar, M. Y.; Gorby, Y. A.; Xia, A.; Nealson, K. H., Molecular density of states in bacterial nanowires. Biophysical Journal Letters 2008, 95 (1), L10–L12.Google ScholarPubMed
Lovley, D. R., Electromicrobiology. Annual Review of Microbiology 2012, 66, 391409.CrossRefGoogle ScholarPubMed
Jiang, X.; et al., Probing single-to multi-cell level charge transport in Geobacter sulfurreducens DL-1. Nature Communications 2013, 4, 2751.CrossRefGoogle ScholarPubMed
Zhang, L.; Lu, J. R.; Waigh, T. A., Electronics of peptide- and protein-based materials. Advances in Colloid and Interface Science 2021, 287, 102319.CrossRefGoogle Scholar
Xiao, Y.; Zhang, E.; Zhang, J.; Dai, Y.; Yang, Z.; Christensen, H. E. M.; Ulstrup, J.; Zhao, F., Extracellular polymeric substances are transient media for microbial extracellular electron transfer. Science Advances 2017, 3 (7), e1700623.CrossRefGoogle ScholarPubMed
Yates, M. D.; Strycharz-Glaven, S. M.; Golden, J. P.; Roy, J.; Tsoi, S.; Erickson, J. S.; El-Naggar, M. Y.; Barton, S. C.; Tender, L. M., Measuring conductivity of living Geobacter sulfurreducens biofilms. Nature Nanotechnology 2016, 11 (11), 910913.CrossRefGoogle ScholarPubMed
Yates, M. D.; Eddie, B. J.; Kotloski, N. J.; Lebedev, N.; Malanoski, A. P.; Lin, B.; Strycharz-Glaven, S. M.; Tender, L. M., Toward understanding long-distance extracellular electron transport in an electroautotrophic microbial community. Energy & Environmental Science 2016, 9 (11), 35443558.CrossRefGoogle Scholar
Pfeffer, C.; et al., Filamentous bacteria transport electrons over centimetre distance. Nature 2012, 491 (7423), 218221.CrossRefGoogle Scholar
Risgaard-Petersen, N.; et al., Cable bacteria in freshwater sediments. Applied and Environmental Microbiology 2015, 152, 122142.Google Scholar
Nielsen, L. P.; Risgaard-Petersen, N., Rethinking sediment biogeochemistry after the discovery of electric currents. Annual Review of Marine Science 2015, 7, 425442.CrossRefGoogle ScholarPubMed
Bjerg, J. T.; et al., Long-distance electron transport in individual living cable bacteria. PNAS 2018, 115 (22), 57865791.CrossRefGoogle ScholarPubMed
Bjerg, J. T.; Damgaard, L. R.; Holm, S. A.; Schramm, A.; Nielsen, L. P., Motility of electric cable bacteria. Applied and Environmental Microbiology 2016, 82 (13), 3816.CrossRefGoogle ScholarPubMed
Cornelissen, R.; et al., The cell envelope structure of cable bacteria. Frontiers in Microbiology 2018, 9, 3044.CrossRefGoogle ScholarPubMed
Boschker, H. T. S.; et al., Efficient long-range conduction in cable bacteria through nickel protein wire. Nature Communications 2021, 12 (1), 3996.CrossRefGoogle Scholar
Powell, L. C.; Abdulkarim, M.; Stokniene, J.; Yang, Q. E.; Walsh, T. R.; Hill, K. E.; Gumbleton, M.; Thomas, D. W., Quantifying the effects of antibiotic treatment on the extracellular polymer network of antimicrobial resistant and sensitive biofilms using multiple particle tracking. npj Biofilms and Microbiomes 2021, 7 (1), 13.CrossRefGoogle ScholarPubMed
Wang, Q.; JonesIII, A. A. D.; Gralnick, J. A.; Lin, L.; Buie, C. R., Microfluidic dielectrophoresis illuminates the relationship between microbial cell envelope polarisability and electrochemical activity. Science Advances 2019, 5 (1), eaat5664.Google ScholarPubMed
Newman, D. K.; Kolter, R., A role of excreted quinones in extracellular electron transfer. Nature 2000, 405 (6782), 9497.CrossRefGoogle Scholar
Shrestha, P. M.; Rotaru, A. E., Plugging in or going wireless: Strategies for interspecies electron transfer. Frontiers in Microbiology 2014, 5 (237), 237.CrossRefGoogle ScholarPubMed
Bond, D. R.; Holmes, D. E.; Tender, L. M.; Lovley, D. R., Electrode-reducing microorganisms that harvest energy from marine sediments. Science 2002, 295 (5554), 483485.CrossRefGoogle ScholarPubMed
Sultana, S. T.; Babauta, J. T.; Beyenal, H., Electrochemical biofilm control: A review. Biofouling 2015, 31 (9–10), 745758.CrossRefGoogle ScholarPubMed
Roy, S.; et al., Disposable patterned electroceutical dressing is safe for treatment of open clinical chronic wounds. Advances in Wound Care 2019, 8 (4), 149159.CrossRefGoogle ScholarPubMed
Kim, Y. W.; et al., Effect of electrical energy on the efficacy of biofilm treatment using the bioelectric effect. npj Biofilms and Microbiomes 2015, 1, 15016.CrossRefGoogle ScholarPubMed
Schmidt-Malan, S. M.; Karau, M. J.; Cede, J.; Greenwood-Quaintance, K. E.; Brinckman, C. L.; Mandrekar, J. N.; Patel, R., Antibiofilm activity of low-amperage continuous and intermittent direct electrical current. Antimicrobial Agents and Chemotherapy 2015, 59 (8), 46104615.CrossRefGoogle ScholarPubMed
Fung, D. C.; Berg, H. C., Powering the flagellar motor of E. coli with an external voltage source. Nature 1995, 375 (6534), 809812.CrossRefGoogle ScholarPubMed
Mancini, L.; Tian, T.; Guillaume, T.; Pu, Y.; Li, Y.; Lo, C. J.; Bai, F.; Pilizota, T., A general workflow for characterization of Nernstian dyes and their effects on bacterial physiology. Biophysical Journal 2020, 118 (1), 414.CrossRefGoogle ScholarPubMed
Blair, K. M.; Turner, L.; Winkelman, J. T.; Berg, H. C.; Kearns, D. B., A molecular clutch disables flagella in the Bacillus subtilis biofilm. Science 2008, 320 (5883), 16361638.CrossRefGoogle ScholarPubMed
Gall, I.; Herzberg, M.; Oren, Y., The effect of electric field on bacterial attachment to conductive surfaces. Soft Matter 2013, 9 (8), 24432452.CrossRefGoogle Scholar
Buzid, A.; et al., Molecular signature of Pseudomonas aeruginosa with simultaneous nanomolar detection of quorum sensing signally molecules at a boron-doped diamond electrode. Scientific Reports 2016, 6, 30001.CrossRefGoogle Scholar
Goluch, E. D., Microbial identification using electrochemical detection of metabolites. Trends in Biotechnology 2017, 35 (12), 11251128.CrossRefGoogle ScholarPubMed
Bao, M. M.; Igwe, I. E.; Chen, K.; Zhang, T. H., Modulated collective motions and condensation of bacteria. Chinese Physics Letters 2022, 39 (10), 108702.CrossRefGoogle Scholar
Chen, C.; Smye, S. W.; Robinson, M. P.; Evans, J. A., Membrane electroporation theories: A review. Medical and Biological Engineering and Computing 2006, 44 (1–2), 514.CrossRefGoogle ScholarPubMed
Akabuogu, E. U.; Zhang, L.; Krasovec, R.; Roberts, I. S.; Waigh, T. A., Electrical impedance spectroscopy with bacterial biofilms: Neuronal-like behaviour. ACS Nanoletters 2024, 24 (7), 22342241.CrossRefGoogle Scholar
Bou, A.; Bisquert, J., Impedance spectroscopy dynamics of biological neural elements: From memristors to neurons and synapses. The Journal of Physical Chemistry B 2021, 125, 99349949.CrossRefGoogle ScholarPubMed
Cole, K. S., Rectification and inductance in the squid giant axon. The Journal of General Physiology 1941, 25 (1), 2951.CrossRefGoogle ScholarPubMed
Cole, K. S., Membranes, Ions and Impulses. University of California Press: 1968.CrossRefGoogle Scholar

Suggested Reading

Tripathy, A., et al., Natural and bioinspired nanostructural bactericidal surfaces. Advances in Colloid and Interface Science 2017, 248, 85104.CrossRefGoogle ScholarPubMed

References

Ofek, I.; Bayer, E. A.; Abraham, S. N., Bacterial adhesion. In The Prokaryotes, Rosenberg, E., DeLong, E. F., Lory, S., Stackebrandt, E., Thompson, F., Eds., Springer: 2013; pp. 107123.CrossRefGoogle Scholar
Hetrick, E. M.; Schoenfisch, M. H., Reducing implant-related infections: Active release strategies. Chemical Society Reviews 2006, 35 (9), 780789.CrossRefGoogle ScholarPubMed
Pogodin, S.; et al., Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces. Biophysical Journal 2013, 104 (4), 835840.CrossRefGoogle ScholarPubMed
Tripathy, A.; Sen, P.; Su, B.; Briscoe, W. H., Natural and bioinspired nanostructured bactericidal surfaces. Advances in Colloid and Interface Science 2017, 248, 85104.CrossRefGoogle ScholarPubMed
Linklater, D. P.; Baulin, V. A.; Juodkazis, S.; Crawford, R. J.; Stoodley, P.; Ivanova, E. P., Mechano-bactericidal actions of nanostructured surfaces. Nature Reviews Microbiology 2021, 19 (1), 822.CrossRefGoogle ScholarPubMed
Yang, K. H.; Lim, H. S.; Kwon, S. J., Effective bio-slime coating technique for concrete surfaces under sulfate attach. Material 2020, 13 (7), 1512.CrossRefGoogle Scholar
Sharma, S.; Lavender, S.; Woo, J.; Guo, L. H.; Shi, W. Y.; Kilpatrick-Liverman, L.; Gimzewski, J. K., Nanoscale characterization of effect of L-arginine on S. mutans biofilm adhesion by atomic force microscopy. Microbiology-SGM 2014, 160 (7), 14661473.CrossRefGoogle Scholar
Sharon, N., Carbohydrates as future anti-adhesion drugs for infectious diseases. Biochimica et Biophysica Acta 2006, 1760 (4), 527537.CrossRefGoogle ScholarPubMed
Rupel, K.; et al., Blue laser light inhibits biofilm formation in vitro and in vivo by inducing oxidative stress. npj Biofilms and Microbiomes 2019, 5 (1), 29.CrossRefGoogle ScholarPubMed
Blee, J. A.; Roberts, I. S.; Waigh, T. A., Membrane potentials, oxidative stress and the dispersal response of bacterial biofilms to 405 nm light. Physical Biology 2020, 17 (3), 036001.CrossRefGoogle ScholarPubMed
Zharov, V. P.; Mercer, K. E.; Galitovskaya, E. N.; Smeltzer, M. S., Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophysical Journal 2006, 90 (2), 619627.CrossRefGoogle ScholarPubMed
Hwang, G.; et al., Catalytic antimicrobial robots for biofilm eradication. Science Robotics 2019, 4 (29), eaaw2388.CrossRefGoogle ScholarPubMed
Li, J.; Nickel, R.; Wu, J.; Lin, F.; Lierop, J. V.; Liu, S., A new tool to attack biofilms: Driving magnetic iron-oxide nanoparticles to disrupt the matrix. Nanoscale 2019, 11 (14), 69056915.CrossRefGoogle ScholarPubMed
Gu, H.; Lee, S. W.; Carnicelli, J.; Zhang, T.; Ren, D., Magnetically driven active topography for long-term biofilm control. Nature Communications 2020, 11 (1), 2211.CrossRefGoogle ScholarPubMed
Murata, H.; Koepsel, R. R.; Matyjaszewski, K.; Russell, A. J., Permanent, non-leaching antibacterial surfaces-2: How high density cationic surfaces kill bacterial cells. Biomaterials 2007, 28 (32), 48704879.CrossRefGoogle Scholar
Banerjee, I.; Pangule, R. C.; Kane, R. S., Antifouling coatings: Recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Advanced Materials 2011, 23 (6), 690718.CrossRefGoogle ScholarPubMed
Balagadde, F. K.; You, L.; Hansen, C. L.; Arnold, F. H.; Quake, S. R., Long-term monitoring of bacteria undergoing programmed population control in a microchemostat. Science 2005, 309 (5731), 137140.CrossRefGoogle Scholar

Suggested Reading

Flanagan, M., ed. Wound Healing and Skin Integrity: Principles and Practice. Wiley: 2013.Google Scholar
Pepper, I. L.; Gerba, C. P.; Gentry, T. J. Environmental Microbiology. Academic Press: 2014.Google Scholar
Ray, B.; Bhunia, A. Fundamental Food Microbiology. CRC Press: 2014.Google Scholar

References

Camara, M.; et al., Economic significance of biofilms: A multidisciplinary and cross-sectoral challenge. npj Biofilms and Microbiomes 2022, 8 (1), 42.CrossRefGoogle ScholarPubMed
McLandsborough, L.; Rodriguez, A.; Perez-Conesa, D.; Weiss, J., Biofilms: At the interface between biophysics and microbiology. FOBI 2006, 1 (2), 94114.Google Scholar
McGee, H., McGee on Food and Cooking. Hodder and Stoughton: 2004.Google Scholar
de Vuyst, L.; de Vin, F.; Vaningelgem, F.; Degeest, B., Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. International Dairy Journal 2001, 11 (9), 687707.CrossRefGoogle Scholar
Riedl, R.; Dunzer, N.; Michel, M.; Jacob, F.; Hutzler, M., Beer enemy number one: Genetic diversity, physiology and biofilm formation of Lactobacillus brevis. Journal of the Institute of Brewing 2019, 125 (2), 250260.CrossRefGoogle Scholar
Bollinger, R. R.; Barbas, A. S.; Bush, E. L.; Lin, S. S.; Parker, W., Biofilm formation in the gut. Journal of Theoretical Biology 2007, 249 (4), 826831.Google Scholar
Donaldson, G. P.; Lee, S. M.; Mazmanian, S. K., Gut biogeography of the bacterial microbiota. Nature Reviews Microbiology 2016, 14 (1), 20.CrossRefGoogle ScholarPubMed
Cheng, Y.; et al., Microbial sulfate reduction and perchlorate inhibition in a novel mesoscale tank experiment. Energy Fuels 2018, 32 (12), 1204912065.CrossRefGoogle Scholar
Seymour, J. D.; Gage, J. P.; Codd, S. L.; Gerlach, R., Anomalous fluid transport in porous media induced by biofilm growth. Physical Review Letters 2004, 93 (19), 198103.CrossRefGoogle ScholarPubMed
Prince, R. C., Petroleum spill bioremediation in marine environments. Critical Reviews in Microbiology 1993, 19 (4), 217242.CrossRefGoogle ScholarPubMed
Prasad, M.; et al., Alcanivorax borkumensis biofilms enhance oil degradation by interfacial tubulation. Science 2023, 381 (6659), 748753.CrossRefGoogle ScholarPubMed
Roeselers, G.; Van Loosdrecht, M. C. M.; Muyzer, G., Phototrophic biofilms and their potential applications. Journal of Applied Phycology 2008, 20 (3), 227235.CrossRefGoogle ScholarPubMed
Parkash, J.; Robblee, J. H.; Agnew, J.; Gibbs, E.; Collings, P.; Pasternack, R. F.; de Paula, J. C., Depolarized resonance light scattering by porphyrin and chlorophyll a aggregates. Biophysical Journal 1998, 74 (4), 20892099.CrossRefGoogle ScholarPubMed
van Oijen, A. M.; Ketelaars, M.; Kohler, J.; Aartsma, T. J.; Schmidt, J., Unraveling the electronic structure of individual photosynthetic pigment-protein complexes. Science 1999, 285 (5426), 400402.CrossRefGoogle Scholar
Herek, J. L.; Wohlleben, W.; Cogdell, R. J.; Zeidler, D.; Motzkus, M., Quantum control of energy flow in light harvesting. Nature 2002, 417 (6888), 533535.CrossRefGoogle ScholarPubMed
Engel, G. S.; Calhoun, T. R.; Read, E. L.; Ahn, T. K.; Mancal, T.; Cheng, Y. C.; Blankenship, R. E.; Fleming, G. R., Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 2007, 446 (7137), 782786.CrossRefGoogle ScholarPubMed
Cao, J.; et al., Quantum biology revisited. Science Advances 2020, 6 (14).CrossRefGoogle ScholarPubMed
Sarovar, M.; Ishizaki, A.; Fleming, G. R.; Whaley, K. B., Quantum entanglement in photosynthetic light-harvesting complexes. Nature Physics 2010, 6, 462467.CrossRefGoogle Scholar
Fleming, H. C., Biofouling and me: My Stockholm syndrome with biofilms. Water Research 2020, 173 (1), 5576.CrossRefGoogle Scholar
Wall, J. D.; Krumholz, L. R., Uranium sequestration. Annual Review of Microbiology 2006, 60, 149166.CrossRefGoogle Scholar
Falkowski, P. G.; Fenchel, T.; Delong, E. F., The microbial engines that drive Earth’s biogeochemical cycles. Science 2008, 320 (5879), 10341039.CrossRefGoogle ScholarPubMed
Stewart, P. S.; Zhang, T.; Xu, R.; Pitts, B.; Walters, M. C.; Roe, F.; Kikhney, J.; Moter, A., Reaction-diffusion theory explains hypoxia and heterogeneous growth within microbial biofilms associated with chronic infections. npj Biofilms and Microbiomes 2016, 2, 16012.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×