Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T14:47:24.188Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2012

Élisabeth Guazzelli
Affiliation:
Centre National de la Recherche Scientifique (CNRS)
Jeffrey F. Morris
Affiliation:
City College, City University of New York
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerson, B. J. 1990. Shear induced order and shear processing of model hardsphere suspensions. J. Rheol., 34, 553–590.CrossRefGoogle Scholar
Aris, R. 1962. Vectors, Tensors and the Basic Equations of Fluid Mechanics. Prentice-Hall. Reprinted by Dover Publications, New York.Google Scholar
Asmolov, E. S. 1999. The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number. J. Fluid Mech., 381, 63–87.CrossRefGoogle Scholar
Baker, G. L. and Gollub, J. P. 1996. Chaotic Dynamics: An Introduction. 2nd ed. Cambridge University Press.CrossRefGoogle Scholar
Batchelor, G. K. 1967. An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Batchelor, G. K. 1970a. The stress system in a suspension of force-free particles. J. Fluid Mech., 41, 545–570.CrossRefGoogle Scholar
Batchelor, G. K. 1970b. Slender-body theory for particles of arbitrary cross-section in Stokes flow. J. Fluid Mech., 44, 419–440.CrossRefGoogle Scholar
Batchelor, G. K. 1972. Sedimentation in a dilute dispersion of spheres. J. Fluid Mech., 52, 245–268.CrossRefGoogle Scholar
Batchelor, G. K. 1977. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J. Fluid Mech., 83, 97–117.CrossRefGoogle Scholar
Batchelor, G. K. 1982. Sedimentation in a dilute polydisperse system of interacting spheres. Part 1. General theory. J. Fluid Mech., 119, 379–408. Corrigendum. 1983. J. Fluid Mech., 137, 467–469.CrossRefGoogle Scholar
Batchelor, G. K. and Green, J. T. 1972a. The hydrodynamic interactions of two small freely-moving spheres in a linear flow field. J. Fluid Mech., 56, 375–400.CrossRefGoogle Scholar
Batchelor, G. K. and Green, J. T. 1972b. The determination of the bulk stress in a suspension of spherical particles to order c2. J. Fluid Mech., 56, 401–427.CrossRefGoogle Scholar
Batchelor, G. K. and Janse Van Rensburg, R. W. 1986. Structure formation in bidisperse sedimentation. J. Fluid Mech., 166, 379–407.CrossRefGoogle Scholar
Batchelor, G. K. and Wen, C.-S. 1982. Sedimentation in a dilute polydisperse system of interacting spheres. Part 2. Numerical results. J. Fluid Mech., 124, 495–528. Corrigendum. 1983. J. Fluid Mech., 137, 467–469.CrossRefGoogle Scholar
Beenakker, C. W. J. and Mazur, P. 1985. Is sedimentation container-shape dependent? Phys. Fluids, 28, 3203–3206.CrossRefGoogle Scholar
Berg, H. C. 1983. Random Walks in Biology, New, expanded edition. Princeton University Press.Google Scholar
Bergenholtz, J., Brady, J. F., and Vicic, M. A. 2002. The non-Newtonian rheology of dilute colloidal suspensions. J. Fluid Mech., 456, 239–275.CrossRefGoogle Scholar
Bird, R. B., Armstrong, R. C., and Hassager, O. 1987. Dynamics of Polymeric Liquids, Vol 1, 2nd ed. John Wiley, New York.Google Scholar
Bracewell, R. N. 1986. The Fourier Transform and Its Applications, 2nd ed. (revised). McGraw-Hill, New York.Google Scholar
Brady, J. F. 1993. The rheological behaviour of concentrated colloidal dispersions. J. Chem. Phys., 99, 567–581.CrossRefGoogle Scholar
Brady, J. F. and Bossis, G. 1988. Stokesian Dynamics. Ann. Rev. Fluid Mech., 20, 111–157.CrossRefGoogle Scholar
Brady, J. F. and Morris, J. F. 1997. Microstructure of strongly sheared suspensions and its impact on rheology and diffusion. J. Fluid Mech., 348, 103–139.CrossRefGoogle Scholar
Brady, J. F. and Vicic, M. A. 1995. Normal stresses in colloidal dispersions. J. Rheol., 39, 545–566.CrossRefGoogle Scholar
Bretherton, F. P. 1962. The motion of rigid particles in a shear flow at low Reynolds number. J. Fluid Mech., 14, 284–304.CrossRefGoogle Scholar
Bruneau, D., Feuillebois, F., Anthore, R., and Hinch, E. J. 1996. Intrinsic convection in a settling suspension. Phys. Fluids, 8, 2236–2238.CrossRefGoogle Scholar
Caflisch, R.E. and Luke, J. H. C. 1985. Variance in the sedimenting speed of a suspension. Phys. Fluids, 28, 759–760.CrossRefGoogle Scholar
Chandler, D. 1987. Introduction to Modern Statistical Mechanics. Oxford University Press.Google Scholar
Cox, R. G. 1970. The motion of long slender bodies in a viscous fluid. Part 1 General theory. J. Fluid Mech., 44, 791–810.CrossRefGoogle Scholar
da Cunha, F. R. and Hinch, E. J. 1996. Shear-induced dispersion in a dilute suspension of rough spheres. J. Fluid Mech., 309, 211–223.CrossRefGoogle Scholar
Davis, R. H. and Acrivos, A. 1985. Sedimentation of noncolloidal particles at low Reynolds numbers. Ann. Rev. Fluid Mech., 17, 91–118.CrossRefGoogle Scholar
Di Carlo, D. 2009. Inertial microfluidics. Lab on a Chip, 9, 3038–3046.CrossRefGoogle ScholarPubMed
Doi, M. and Edwards, S. 1986. The Theory of Polymer Dynamics. Oxford Science Publications.Google Scholar
Drew, D. A. and R. T., Lahey. 1993. Analytical modeling of multiphase flow. In Particulate Two-Phase Flows, ed. M. C., Roco. Butterworth-Heinemann, Boston.Google Scholar
Eckstein, E. C., Bailey, D. G., and Shapiro, A. H. 1977. Self-diffusion of particles in shearflow of a suspension. J. Fluid Mech., 79, 191–208.CrossRefGoogle Scholar
Einstein, A. 1905. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik (4), 17, 549–560; 1956. Reprinted in Investigations on the Theory of Brownian Movement, Dover Publications, New York.CrossRefGoogle Scholar
Einstein, A. 1906. Eine neue Bestimmung der Moleküldimensionen. Annalen der Physik (4), 19, 289–306; 1956. reprinted in Investigations on the Theory of Brownian Movement, Dover Publications, New York.CrossRefGoogle Scholar
Feng, J., Hu, H. H., and Joseph, D. D. 1994. Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 1 Sedimentation. J. Fluid Mech., 261, 95–134.CrossRefGoogle Scholar
Fortes, A. F., Joseph, D. D., and Lundgren, T. S. 1987. Nonlinear mechanics of fluidization of beds of spherical particles. J. Fluid Mech., 177, 467–483.CrossRefGoogle Scholar
Foss, D. R. and Brady, J. F. 2000. Structure, diffusion and rheology of Brownian suspensions by Stokesian Dynamics simulation. J. Fluid. Mech., 407, 167–200.CrossRefGoogle Scholar
Frank, M., Anderson, D., Weeks, E. R., and Morris, J. F. 2003. Particle migration in pressure-driven flow of a Brownian suspension. J. Fluid Mech., 493, 363–378.CrossRefGoogle Scholar
Geigenmüller, U. and Mazur, P. 1988. Sedimentation of homogeneous suspensions in finite vessels. J. Statist. Phys., 53, 137–173.CrossRefGoogle Scholar
Geigenmüller, U. and Mazur, P. 1991. Intrinsic convection near a meniscus. Physica A, 171, 475–485.CrossRefGoogle Scholar
Guazzelli, É. and Hinch, E. J. 2011. Fluctuations and instability in sedimentation. Ann. Rev. Fluid Mech., 43, 87–116.CrossRefGoogle Scholar
Guyon, E., Hulin, J.-P., and Petit, L. 1991. Hydrodynamique Physique, Inter Editions/Éditions du CNRS; 2001. Republished by EDP Sciences/Éditions du CNRS; 2001. First edition available in English as Physical Hydrodynamics with a fourth author, Mitescu C. D., Oxford University Press.Google Scholar
Hadamard, J. S. 1911. Mouvement permanent lent d'une sphère liquide et visqueuse dans un liquide visqueux. C. R. Acad. Sci. (Paris), 152, 1735–1738.Google Scholar
Ham, J. M. and Homsy, G. M. 1988. Hindered settling and hydrodynamic dispersion in quiescent sedimenting suspensions. Int. J. Multiphase Flow, 14, 533–546.CrossRefGoogle Scholar
Hansen, J. P. and McDonald, I. R. 2006. Theory of Simple Liquids, 3rd ed. Academic Press, New York.Google Scholar
Happel, J. and Brenner, H. 1965. Low Reynolds Number Hydrodynamics. Prentice-Hall; 1986. Republished by Martinus Nijhoff, Leiden.Google Scholar
Haw, M. 2007. Middle World. The Restless Heart of Matter and Life. Macmillan.Google Scholar
Hinch, E. J. 1988. Sedimentation of small particles. In: Disorder and Mixing. E., Guyon, J-P., Nadal, and Y., Pomeau, Pages 153–161 Kluwer Academic, Dordrecht.CrossRefGoogle Scholar
Hinch, E. J. 1991. Perturbation Methods. Cambridge University Press.CrossRefGoogle Scholar
Hinch, E. J. and Leal, L. G. 1972. The effect of Brownian motion on the rheological properties of a suspension of non-spherical particles. J. Fluid Mech., 52, 683–712.CrossRefGoogle Scholar
Ho, B. P. and Leal, L. G. 1974. Inertial migration of rigid spheres in 2-dimensional unidirectional flows. J. Fluid Mech., 65, 365–400.CrossRefGoogle Scholar
Hocking, L. M. 1964. The behaviour of clusters of spheres falling in a viscous fluid: Part 2. Slow motion theory. J. Fluid Mech., 20, 129–139.CrossRefGoogle Scholar
Homsy, G. M., et al. 2000. Multimedia Fluid Mechanics – DVD-ROM; 2008. Multilingual Version, Cambridge University Press.Google Scholar
Jackson, J. D. 1999. Classical Electrodynamics, 3rd ed. John Wiley, New York.Google Scholar
Jackson, R. 2000. The Dynamics of Fluidized Particles. Cambridge University Press.Google Scholar
Jánosi, I. M., Tamás, T., Wolf, D. E., and Gallas, J. A. C. 1997. Chaotic particle dynamics in viscous flows: The three-particle Stokeslet problem. Phys. Rev. E, 56, 2858–2868.CrossRefGoogle Scholar
Jayaweera, K. O. L. F., Mason, B. J., and Slack, G. W. 1964. The behaviour of clusters of spheres falling in a viscous fluid: Part 1. Experiment. J. Fluid Mech., 20, 121–128.CrossRefGoogle Scholar
Jeffery, G. B., 1922. The motion of ellipsoidal particles immersed in a viscous fluid. Proc. Royal Soc. London. Series A, 102, 161–179.CrossRefGoogle Scholar
Kim, S. and Karrila, S. J. 1989. Microhydrodynamics: Principles and Selected Applications. Butterworth-Heinemann; 2005. Reprinted by Dover Publications, New York.Google Scholar
Koch, D. L. and Hill, R. J. 2001. Inertial effects in suspension and porous media flows. Ann. Rev. Fluid Mech., 33, 619–647.CrossRefGoogle Scholar
Koch, D. L. and Shaqfeh, E. S. G. 1989. The instability of a dispersion of sedimenting spheroids. J. Fluid Mech., 209, 521–542.CrossRefGoogle Scholar
Koh, C. J., Hookham, P., and Leal, L. G. 1994. An experimental investigation of concentrated suspension flows in a rectangular channel. J. Fluid Mech., 266, 1–32.CrossRefGoogle Scholar
Krieger, I. M. 1972. Rheology of monodisperse lattices. Adv. Colloid Interface Sci. 2, 111–136.CrossRefGoogle Scholar
Kynch, G. J. 1952. A theory of sedimentation. Trans. Faraday Soc., 48, 166–176.CrossRefGoogle Scholar
Kulkarni, P. M. and Morris, J. F. 2008. Pair-sphere trajectories in finite Reynolds number shear flow. J. Fluid Mech., 596, 413–435.CrossRefGoogle Scholar
Kulkarni, S. D. and Morris, J. F. 2009. Ordering transition and structural evolution under shear in Brownian suspensionsJ. Rheol., 53, 417–439.CrossRefGoogle Scholar
Lamb, H. 1932. Fluid Mechanics, 6th ed. Dover Publications, New York.Google Scholar
Landau, L. and Lifshitz, E. 1959. Fluid Mechanics; 1987. Second ed. Butterworth-Heinemann, London.Google Scholar
Langevin, P. 1908. Sur la théorie du mouvement brownien. C. R. Acad. Sci. Paris, 146, 530–533.Google Scholar
Leal, L. G. 2007. Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes, Cambridge Series in Chemical Engineering, Cambridge University Press.CrossRefGoogle Scholar
Leal, L. G. and Hinch, E. J. 1971. The effect of weak Brownian rotations on particles in shear flow. J. Fluid Mech., 46, 685–703.CrossRefGoogle Scholar
Leighton, D. T. and Acrivos, A. 1987a. Measurement of shear-induced self-diffusion in concentrated suspensions of spheresJ. Fluid Mech., 177, 109–131.CrossRefGoogle Scholar
Leighton, D. T. and Acrivos, A. 1987b. The shear-induced migration of particles in concentrated suspensionsJ. Fluid Mech., 181, 415–439.CrossRefGoogle Scholar
Lhuillier, D. 2009. Migration of rigid particles in non-Brownian viscous suspensions. Phys. Fluids 21, 023302.CrossRefGoogle Scholar
Lighthill, M. J. 1958. An Introduction to Fourier Analysis and Generalised Functions, Cambridge University Press.CrossRefGoogle Scholar
Lin, C. J., Peery, J. H., and Schowalter, W. R. 1970. Simple shear flow round a rigid sphere: inertial effects and suspension rheology. J. Fluid Mech., 44, 1–17.CrossRefGoogle Scholar
Machu, G., Meile, W., Nitsche, L. C., and Schaflinger, U. 2001. Coalescence, torus formation and breakup of sedimenting drops: Experiments and computer simulations. J. Fluid Mech., 447, 299–336.CrossRefGoogle Scholar
Matas, J.-P., Morris, J. F., and Guazzelli, É. 2004. Inertial migration of rigid spherical particles in Poiseuille flow. J. Fluid Mech., 515, 171–195.CrossRefGoogle Scholar
Matas, J.-P., Glezer, V., Guazzelli, É., and Morris, J. F. 2004. Trains of particles in finite-Reynolds-number pipe flow. Phys. Fluids, 16, 4192–4195.CrossRefGoogle Scholar
Matas, J.-P., Morris, J. F., and Guazzelli, É. 2009. Lateral force on a rigid sphere in large-inertia laminar pipe flow. J. Fluid Mech., 621, 59–67.CrossRefGoogle Scholar
McQuarrie, D. A. 2000. Statistical Mechanics, University Science Books, London.Google Scholar
Metzger, B., Nicolas, M., and Guazzelli, É. 2007. Falling clouds of particles in viscous fluids. J. Fluid Mech., 580, 283–301.CrossRefGoogle Scholar
Mikulencak, D. R. and Morris, J. F. 2004. Stationary shear flow around fixed and free bodies at finite Reynolds number. J. Fluid Mech., 520, 215–242.CrossRefGoogle Scholar
Morris, J. F. 2009. A review of microstructure in concentrated suspensions and its implications for rheology and bulk flow. Rheol. Acta., 48, 909–923.CrossRefGoogle Scholar
Morris, J. F. and Boulay, F. 1999. Curvilinear flows of noncolloidal suspensions: The role of normal stresses. J. Rheol., 43, 1213–1237.CrossRefGoogle Scholar
Morris, J. F. and Katyal, B. 2002. Microstructure from simulated Brownian suspension flows at large shear rate. Phys. Fluids, 14, 1920–1937.CrossRefGoogle Scholar
Nicolai, H., Herzhaft, B., Hinch, E. J., Oger, L., and Guazzelli, É. 1995. Particle velocity fluctuations and hydrodynamic self-diffusion of sedimenting non-Brownian spheres. Phys. Fluids, 7, 12–23.CrossRefGoogle Scholar
Nitsche, J. M. and Batchelor, G. K. 1997. Break-up of a falling drop containing dispersed particles. J. Fluid Mech., 340, 161–175.CrossRefGoogle Scholar
Nott, P. R. and Brady, J. F. 1994. Pressure-driven flow of suspensions: simulation and theory. J. Fluid Mech., 275, 157–199.CrossRefGoogle Scholar
Nott, P. R., Guazzelli, É., and Pouliquen, O. 2011. The suspension balance model revisited. Phys. Fluids, 23, 043304.CrossRefGoogle Scholar
Ockendon, H. and Ockendon, J. R. 1995. Viscous Flow. Cambridge University Press.CrossRefGoogle Scholar
Okagawa, A. and Mason, S. G. 1973. Suspensions: Fluids with fading memories. Science, 181, 159–161.CrossRefGoogle ScholarPubMed
O'Malley, R. E. 2010. Singular perturbation theory: A viscous flow out of Göttingen. Ann. Rev. Fluid Mech., 42, 1–17.CrossRefGoogle Scholar
Oseen, C. W. 1910. Über die Stokessche Formel und über eine Verwandte Aufgabe in der Hydrodynamik. Ark. Mat. Astron. Fys., 6, No. 29.Google Scholar
Oseen, C. W. 1913. Über den Goltigkeitsbereich der Stokesschen Widerstandsformel. Ark. Mat. Astron. Fys., 9, No. 16.Google Scholar
Parsi, F. and Gadala-Maria, F. 1987. Fore-and-aft asymmetry in a concentrated suspension of solid spheres. J. Rheol. 31, 725–732.CrossRefGoogle Scholar
Patankar, N. A. and Hu, H. H. 2002. Finite Reynolds number effect on the rheology of a dilute suspension of neutrally buoyant circular particles in a Newtonian fluid. Intl. J. Multiphase Flow, 28, 409–425.CrossRefGoogle Scholar
Petrie, C. J. S. 1999. The rheology of fibre suspensions. J. Non-Newtonian Fluid Mech., 87, 369–402.CrossRefGoogle Scholar
Peysson, Y. and Guazzelli, É. 1998. An experimental investigation of the intrinsic convection in a sedimenting suspension. Phys. Fluids, 10, 44–54.CrossRefGoogle Scholar
Perrin, J. 1914. Les Atomes, Alcan Paris; 1991.; 1916. Atoms. translated by D. A. Hammick. Van Nostrand, New York.Google Scholar
Phillips, R. J., Armstrong, R. C., Brown, R. A., Graham, A., and Abbott, J. R. 1992. A constitutive model for concentrated suspensions that accounts for shear-induced particle migration. Phys. Fluids A 4, 30–40.CrossRefGoogle Scholar
Phung, T. N., Brady, J. F., and Bossis, G. 1996. Stokesian Dynamics simulation of Brownian suspensions. J. Fluid Mech., 313, 181–207.CrossRefGoogle Scholar
Pignatel, F., Nicolas, M., and Guazzelli, É. 2011. A falling cloud of particles at a small but finite Reynolds number. J. Fluid Mech. 671, 34–51.CrossRefGoogle Scholar
Pine, D. J., Gollub, J. P., Brady, J. F., and Leshansky, A. M. 2005. Chaos and threshold for irreversibility in sheared suspensions. Nature, 438, 997–1000.CrossRefGoogle ScholarPubMed
Pozrikidis, C. 1992. Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Pres.CrossRefGoogle Scholar
Proudman, I. and Pearson, J. R. A. 1957. Expansion at small Reynolds number for the flow past a sphere and a circular cylinder. J. Fluid Mech., 2, 237–262.CrossRefGoogle Scholar
Ramachandran, A. and Leighton, D. T. 2008. The influence of secondary flows induced by normal stress differences on the shear-induced migration of particles in concentrated suspensions. J. Fluid Mech. 603, 207–243.CrossRefGoogle Scholar
Reif, F. 1965. Fundamentals of Statistical Mechanics. McGraw-Hill, New York.Google Scholar
Reynolds, O. 1886. On the theory of lubrication and its application to Mr. Beauchamp Tower's experiments, including an experimental determination of the viscosity of olive oil. Phil. Trans. R. Soc. Lond., 177, 157–234.CrossRefGoogle Scholar
Richardson, J. F. and Zaki, W. N. 1954. Sedimentation and fluidization: Part ITrans. Inst. Chem. Engrs., 32, 35–53.Google Scholar
Rybczyński, W. 1911. Über die fortschreitende Bewegung einer flüssigen Kugel in einem zähen Medium. Bull. Acad. Sci. Cracovie, A, 40–46.Google Scholar
Rubinow, S. I. and Keller, J. B. 1961. The transverse force on a spinning sphere moving in a viscous fluid. J. Fluid Mech., 11, 447–459.CrossRefGoogle Scholar
Russel, W. B., Saville, D. A., and Schowalter, W. R. 1989. Colloidal Dispersion. Cambridge University Press.CrossRefGoogle Scholar
Saffman, P. G. 1965. The lift on a small sphere in a slow shear flow. J. Fluid Mech., 22, 385–400.CrossRefGoogle Scholar
Saffman, P. G. 1973. On the settling speeds of free and fixed suspensions. Stud. Appl. Math., 52, 115–127.CrossRefGoogle Scholar
Schonberg, J. A. and Hinch, E. J. 1989. Inertial migration of a sphere in Poiseuille flow. J. Fluid Mech, 203. 517–524.CrossRefGoogle Scholar
Segré, G. and Silberberg, A. 1962. Behaviour of macroscopic rigid spheres in Poiseuille flow. Part 2. Experimental results and interpretation. J. Fluid Mech., 14, 136–157.CrossRefGoogle Scholar
Shao, X., Yu, Z., and Sun, B. 2008. Inertial migration of spherical particles in circular Poiseuille flow at moderately high Reynolds numbers. Phys. Fluids, 20, 103307.CrossRefGoogle Scholar
Sierou, A. and Brady, J. F. 2002. Rheology and microstructure in concentrated noncolloidal suspensionsJ. Rheol., 46, 1031–1056.CrossRefGoogle Scholar
Smoluchowski, M. 1906. Zur kinetischen Theorie der Brownschen Molekular-bewegung und der Suspensionen. Annalen der Physik, 21, 756–780.CrossRefGoogle Scholar
Smoluchowski, M. 1911. Über die Wechselwirkung von Kugeln, die sich in einer zähen Flüssigkeit bewegen. Bull. Acad. Sci. Cracow, 1A, 28.Google Scholar
Stickel, J. J. and Powell, R. L. 2005. Fluid mechanics and rheology of dense suspensions. Ann. Rev. Fluid Mech., 37, 129–149.CrossRefGoogle Scholar
Stokes, G. G. 1851. On the effect of the internal friction of fluids on the motion of pendulums. Trans. Cambridge Phil. Soc., IX, 8. Reprinted in Mathematical and Physical Papers, Sir George Gabriel Stokes and Sir J. Larmor, 3, 1880–1905.Google Scholar
Subramanian, G. and Brady, J. F. 2006. Trajectory analysis for non-Brownian inertial suspensions in simple shear flow. J. Fluid Mech., 559, 151–203.CrossRefGoogle Scholar
Subramanian, G. and Koch, D. L. 2006. Centrifugal forces alter streamline topology and greatly enhance the rate of heat and mass transfer from neutrally buoyant particles to a shear flow. Phys. Rev. Lett., 96, 134503.CrossRefGoogle ScholarPubMed
Subramanian, G. and Koch, D.L. 2008. Evolution of clusters of sedimenting low-Reynolds-number particles with Oseen interactions. J. Fluid Mech., 603, 63–100.CrossRefGoogle Scholar
Sutherland, W. 1905. A dynamical theory of diffusion for non-electrolytes and the molecular mass of Albumin. Phil. Mag., 9, 781–785.CrossRefGoogle Scholar
Taylor, G. I. 1966. Low Reynolds Number Flows, The U.S. National Committee for Fluid Mechanics Films.Google Scholar
Van Dyke, M. 1964. Perturbation Methods in Fluid Dynamics, Academic Press, New York. 1975. Annotated edition, Parabolic Press, Stanford.Google Scholar
Vasseur, P. and Cox, R. G. 1976. The lateral migration of a spherical particle in two-dimensional shear flows. J. Fluid Mech., 78, 385–413.CrossRefGoogle Scholar
Wagner, N. J. and Brady, J. F. 2009. Shear thickening in colloidal dispersions. Phys. Today, 62, 27–32.CrossRefGoogle Scholar
Whitehead, A. N. 1889. Second approximations to viscous fluid motion. Quart. J. Math., 23, 143–150.Google Scholar
Whitham, G. B. 1974. Linear and Nonlinear Waves. Wiley-Interscience, New York.Google Scholar
Wilson, H. J. 2005. An analytic form for the pair distribution function and rheology of a dilute suspension of rough spheres in plane strain flow. J. Fluid Mech., 534, 97–114.CrossRefGoogle Scholar
Yin, X. and Koch, D. L. 2007. Hindered settling velocity and microstructure in suspensions of solid spheres with moderate Reynolds numbers. Phys. Fluids, 19, 093302.CrossRefGoogle Scholar
Yurkovetsky, Y. and Morris, J. F. 2008. Particle pressure in a sheared Brownian suspension. J. Rheol., 52, 141–165.CrossRefGoogle Scholar
Zarraga, I. E., Hill, D. A., and Leighton, D. T. 2000. The characterization of the total stress of concentrated suspensions of noncolloidal spheres in Newtonian fluids. J. Rheol., 44, 185–220.CrossRefGoogle Scholar
Zirnsak, M. A., Hur, D. U., and Boger, D. V. 1994. Normal stresses in fiber suspensions. J. Non-Newtonian Fluid Mech., 54, 153–193.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×