Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-08T02:58:55.337Z Has data issue: false hasContentIssue false

5 - Some Generalities About Generality

from Part II - Structures in the Universe and the Structure of Modern Cosmology

Published online by Cambridge University Press:  18 April 2017

John D. Barrow
Affiliation:
Cambridge University
Khalil Chamcham
Affiliation:
University of Oxford
Joseph Silk
Affiliation:
University of Oxford
John D. Barrow
Affiliation:
University of Cambridge
Simon Saunders
Affiliation:
University of Oxford
Get access

Summary

Introduction

The equations of general relativity and its extensions are mathematically complicated and their general coordinate covariance offers special challenges to anyone seeking exact solutions or conducting numerical simulations. They are non-linear in a self-interacting (non-Abelian) way because the mediator of the gravitational interaction (the graviton) also feels the gravitational force. By contrast in an Abelian theory, like electromagnetism, the photon does not possess the electric charge that it mediates. As a result of this formidable complexity and non-linearity, the known exact solutions of general relativity have always possessed special properties. High symmetry, or some other simplifying mathematical property, is required if Einstein's equations are to be solved exactly. General solutions are out of reach.

This ‘generality’ problem has been a recurrent one in relativistic cosmology from the outset in 1916 when Einstein [1] first proposed a static spatially homogeneous and isotropic cosmological model with non-Euclidean spatial geometry in which gravitationally attractive matter is counter-balanced by a positive cosmological constant. This solution turned out to be unstable [2–6]. Subsequently, the appearance of an apparent ‘beginning’ and ‘end’ to simple expanding-universe solutions led to a long debate over whether these features were also unstable artefacts of high symmetry or special choices of matter in the known cosmological solutions, as Einstein thought possible. The quest to decide this issue culminated in a new definition of such ‘singularities’ which allowed precise theorems to be proved without the use of special symmetry assumptions. In fact, by using the geodesic equations, their proofs made no use of the Einstein equations [7, 8]. Special solutions of Einstein's equations, like the famous Gödel metric [9] with its closed timelike curves, also provoked a series of technical studies of whether its time-travelling paths are a general feature of solutions to Einstein's equations, or just isolated unstable examples. In the period 1967–1980 there was considerable interest in determining whether the observed isotropy of the microwave background radiation could be explained because it appeared to be an unstable property of expanding universes [10, 11].

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] A., Einstein, S. -B., Preuss. Akad. Wiss.. 142 (1917).
[2] A. S., Eddington, Mon. Not Roy. Astron. Soc.. 90,668 (1930).
[3] E. R., Harrison, Rev. Mod. Phys.. 39,862 (1967).
[4] G. W., Gibbons, Nucl. Phys..B 292,784 (1987).
[5] Ibid., 310, 636 (1988).
[6] J. D., Barrow, G. F. R., Ellis, R., Maartens and C., Tsagas, Class. Quant. Grav.. 20, L155 (2003).
[7] S. W., Hawking and G. F. R., Ellis, The Large Scale Structure of Space-Time,.(Cambridge University Press, Cambridge, 1973).
[8] Hawking, S. W. and Penrose, R., Proc. R. Soc. London A. 314,529 (1970).
[9] K., Gödel, Rev. Mod. Phys.. 21,447 (1949).
[10] C. W., Misner, Phys. Rev. Letts.. 19,533 (1967).
[11] C. W., Misner, Ap. J.. 151, 431 (1968).
[12] A. H., Guth, Phys. Rev. D. 23,347 (1980).
[13] R. M., Wald, Phys. Rev. D. 28, 2118 (1982).
[14] J. D., Barrow, The Very Early Universe. ed. G. W., Gibbons, S. W., Hawking & S. T. C., Siklos,(Cambridge U. P., Cambridge,1983) pp. 267–72.
[15] W., Boucher and G. W., Gibbons, ibid.pp. 273–8.
[16] L., Jensen and J., Stein Schabes, Phys. Rev. D. 35, 1146 (1987).
[17] J. D., Barrow, Phys. Lett. B. 187,12 (1987).
[18] A. A., Starobinsky, Sov. Phys. JETP Lett.. 37,66 (1983).
[19] R., Earman, Bangs, Crunches, Whimpers and Shrieks: Singularities and acausalities in relativistic spacetimes,.(Oxford U.P., Oxford, 1995).
[20] S. W., Hawking, Gen. Rel. Gravitation. 1, 393 (1971).
[21] J. D., Barrow and F. J., Tipler, Phys. Reports. 56, 371 (1979).
[22] J. D., Barrow and G., Götz, Class. Quantum Gravity. 6, 1253 (1989).
[23] J. D., Norton, in The Expanding Worlds of General Relativity , eds. H., Goenner, J., Renn, J., Ritter, and T., Sauer, Einstein Studies. 7, 271–323 (1999).Google Scholar
[24] E. A., Milne and W. H., McCrea, Quart. J. Math. Oxford Ser.. 5, 73 (1934).
[25] D., Saari and Z., Xia, Hamiltonian Dynamics and Celestial Mechanics, (Amer. Math. Soc., Providence RI, 1996).
[26] G. F. R., Ellis, gr-qc/1107.3669.
[27] Z., Xia, Ann. Math.,. 135, 411 (1992).
[28] J. D., Barrow, The Infinite Book. (Jonathan Cape, London, 2005).
[29] J. D., Barrow and G. W., Gibbons, Mon. Not. Roy. Astron. Soc.. 446, 3874 (2014).
[30] G., Lemaître, Mon. Not. Roy. Astron. Soc.. 91, 483 (1931).
[31] R., Clark, Einstein: the life and times. (Avon Books, New York, 1972), p. 752.
[32] A., Friedmann, Zeit f. Phys.. 10, 377 (1922).
[33] G., Lemaître, Ann. Soc. Sc. Bruxelles. 53A, 51 (1933).
[34] S., Chandrasekhar and J. C., Miller, Mon. Not. Roy. Astron. Soc.. 167, 63 (1974).
[35] J. D., Barrow and F. J., Tipler, The Anthropic Cosmological Principle. (Oxford U.P., Oxford, 1986), p. 612.
[36] A., Borde and A., Vilenkin, Phys. Rev. Lett.. 72, 3305 (1994).
[37] E. M., Lifshitz and I. M., Khalatnikov, Adv. Phys.. 12, 185 (1963).
[38] J. D., Barrow, The Origin of the Universe, (Basic Books, New York, 1993), chapter 3.
[39] V. A., Belinskii, I. M., Khalatnikov and E. M., Lifshitz, Adv. Phys.. 19, 525 (1970).
[40] R. B., Partridge and D. T., Wilkinson, Phys. Rev. Lett.. 18, 557 (1967).
[41] J. D., Barrow and R. M., Matzner, Mon. Not. Roy. Astron. Soc.. 181, 719 (1977).
[42] C. W., Misner, Phys. Rev. Lett.. 22, 1071 (1969).
[43] A. G., Doroshkevich and I. D., Novikov, Sov. Astron.. 14, 763 (1971).
[44] C. B., Collins and J.M., Stewart, Mon. Not. Roy. Astron. Soc.. 153, 419 (1971).
[45] J. D., Barrow, Phys. Rev. D. 51, 3113 (1995).
[46] C. B., Collins and S.W., Hawking, Mon. Not. R. Astron. Soc.. 162, 307 (1972).
[47] J. D., Barrow and D. H., Sonoda, Phys. Reports. 139, 1 (1986).
[48] J. D., Barrow, Quart. J. Roy. Astron. Soc.. 23, 344 (1982).
[49] F., Hoyle and J. V., Narlikar, Proc. Roy. Soc..A 273, 1 (1963).
[50] L. A., Kofman, A. D., Linde and V. F., Mukhanov, JHEP0210, 057 (2002).
[51] G. W., Gibbons and N., Turok, Phys. Rev. D. 77, 063516 (2008).
[52] A., Corichi and D., Sloan, arXiv:1310.6399.
[53] M., Rowan Robinson, The Nine Numbers of the Cosmos. (Oxford U.P., Oxford, 1999).
[54] M. J., Rees, Just Six Numbers: The deep forces that shape the universe. (Phoenix, London, 2001).
[55] D. N., Spergel et al.,(WMAP), Ap. J. Supplt.. 148, 175, (2003).
[56] P. A. R., Ade et al.,(Planck Collaboration Paper XVI), arXiv:1303.5076.
[57] J. D., Barrow and D., Shaw, Phys. Rev. Lett.. 106, 101302 (2011).
[58] L., Landau and E. M., Lifshitz, The Classical Theory of Fields. 4th rev. edn. (Pergamon, Oxford, 1975).
[59] J. D., Barrow, Gravitation and Hot Big Bang Cosmology, In The Physical Universe: The Interface Between Cosmology, Astrophysics and Particle Physics. eds. J. D., Barrow, A., Henriques, M., Lago & M., Longair, pp. 1–20, (Springer-Verlag, Berlin, 1991).
[60] J. D., Barrow, Class. Quant. Grav.. 21, L79 (2004).
[61] J. D., Barrow and A. A. H., Graham, arXiv: 1501.04090.
[62] J. D., Barrow, S., Cotsakis and A., Tsokaros, Class. Quant. Grav.. 27, 165017 (2010).
[63] M., Heinzle and P., Sandin, Comm. Math. Phys.. 313, 385 (2012).
[64] J. D., Barrow, Phys. Rev. D. 89, 064022 (2014).
[65] J. D., Barrow, Phys. Rev. Lett.. 46, 963 (1981) and Phys. Reports 85, 1 (1982).
[66] D., Chernoff and J. D., Barrow, Phys. Rev. Lett.. 50, 134 (1983).
[67] J., Demaret, M., Henneaux and P., Spindel, Phys. Lett.. 164, 27 (1985).
[68] A., Einstein, The Meaning of Relativity. Appendix II, p. 136, 6th rev. edn. (Methuen, London and NY, 1956).
[69] B., Schutz, J. Math. Phys.. 16, 855 (1975).
[70] K. H., Mariwalla, J. Math. Phys.. 15, 468 (1974).
[71] J. D., Barrow and A. C., Ottewill, J. Phys. A. 16, 2757 (1983).
[72] V., Faraoni and T., Sotiriou, Rev. Mod. Phys.. 82, 451 (2010).
[73] T., Clifton, P. G., Ferreira, A., Padilla, C., Skordis, Phys. Reports. 513, 1 (2012).
[74] T., Clifton and J. D., Barrow, Phys. Rev. D. 72, 123003 (2005).
[75] D., Lovelock, J. Math. Phys.. 12, 498 (1971).
[76] L., Bianchi, Mem. Matematica Fis. d. Soc. Ital. delle Scienza,.er. Terza 11, 267 (1898) reprinted in Gen. Rel. Grav. 33, 2171 (2001).
[77] A. H., Taub, Ann. Math.. 53, 472 (1951).
[78] M. A. H., MacCallum, in General Relativity: An Einstein Centenary Survey. eds. S. W., Hawking and W., Israel, (Cambridge UP, Cambridge, 1979), pp. 533–76.
[79] G. F. R., Ellis, S. T. C., Siklos and J., Wainwright, in Dynamical Systems in Cosmology. eds. J. Wainwright and G. F. R., Ellis (Cambridge UP, Cambridge, 1997), pp. 11–42.
[80] R., Kantowski and R. K., Sachs, J. Math. Phys.. 7, 443 (1966).
[81] A. S., Kompaneets and A. S., Chernov, Sov. Phys. JETP. 20, 1303 (1964).
[82] A. E., Fischer, J.E., Marsden and V., Moncrief, Ann. Inst. H. Poincaré. 33, 147 (1980).
[83] G. F. R., Ellis and M. A. H., MacCallum, Comm. Math. Phys.. 12, 108 (1969).
[84] P. T., Saunders, Mon. Not. R. Astron. Soc.. 142, 213 (1969).
[85] A. G., Doroshkevich, V., Lukash and I. D., Novikov, Sov. Phys. JETP. 37, 739 (1973).
[86] J. D., Barrow, Mon. Not. R. Astron. Soc.. 175, 359 (1976).
[87] J. D., Barrow, R., Juszkiewicz and D. N., Sonoda, Mon. Not. R. Astron. Soc.. 213, 917 (1985).
[88] J. D., Barrow, Phys. Rev. D. 55, 7451 (1997).
[89] G. F. R., Ellis, Gen. Rel. Gravn.. 2, 7 (1971).
[90] R., Aurich, S., Lustig, F., Steiner and H., Then, Class. Quant. Grav.. 21, 4901 (2004).
[91] P. A. R., Ade et al.,(Planck Collaboration Paper XXVI), arXiv:1303.5086.
[92] A., Ashtekar and J., Samuel, Class. Quant. Grav.. 8, 2191 (1991).
[93] H. V., Fagundes, Gen. Rel. Gravn.. 24, 199 (1992).
[94] J. D., Barrow and H., Kodama, Int. J. Mod. Phys. D. 10, 785 (2001).
[95] J. D., Barrow and H., Kodama, Class. Quant. Grav.. 18, 1753 (2001).
[96] H., Kodama, Prog. Theor. Phys.. 107, 305 (2002).
[97] J. D., Barrow, Phys. Rev. D. 89, 064022 (2014).
[98] P., A. R.|Ade et al.,(Planck Collaboration Paper XXIV), arXiv:1303.5084.
[99] R., Maartens, Phil. Trans. R. Soc. A. 369, 5115 (2011).
[100] W. C., Lim, U. S., Nilsson and J., Wainwright, Class. Quant. Grav.. 18, 5583 (2001).
[101] W., Stoeger, M., Araujo, T., Gebbie, Ap. J.. 476, 435 (1997).
[102] U. S., Nilsson, C., Uggla, J., Wainwright and W. C., Lim, Ap. J.. 522, L1 (1999).
[103] G. F. R., Ellis, S. D., Nell, R., Maartens, W. R., Stoeger and A. P., Whitman, Phys., Rep.. 124, 315 (1985).
[104] W. H., McCrea, Zeit. Astrophys.. 9, 290 (1934). W. H. McCrea, Zeit. Astrophys. 18, 98 (1939), reprinted in Gen. Rel. Grav. 30, 315 (1998).
[105] J., Kristian and R. K., Sachs, Ap. J.. 143, 379 (1966).
[106] A., Guth, Phys. Rev. D. 23, 347 (1981).
[107] J. D., Barrow, Nature. 272, 211 (1978).
[108] R., Penrose, Cycles of Time. (Bodley Head, London, 2010).
[109] P., Tod, arXiv:1309.7248.
[110] J., Hartle and S. W., Hawking, Phys. Rev. D. 28, 2960 (1983).
[111] J. D., Barrow, in Seeing Further: The Story of Science and the Royal Society. Royal Society 350th Anniversary Volume, ed. B. Bryson, (Harper Collins, London, 2010), pp. 361–84.

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×