[1] A., Cerezo, J.M., Hyde, M.K., Miller et al., Phil. Trans. Roy. Soc. London A 341, 313 (1992).
[2] W., Hume-Rothery and G.V., Raynor, The Structure of Metals and Alloys (Institute of Metals, London, 1962).
[3] A., Cottrell, Introduction to the Theory of Metals (Institute of Metals, London, 1988).
[4] L.S., Darken and R.W., Gurry, Physical Chemistry of Metals (McGraw-Hill, New York, 1953), p. 74.
[5] D.G., Pettifor, Bonding and Structure of Molecules and Solids (Clarendon Press, Oxford, 1995).
[6] A.R., Miedema, P.F., de Chatel, and F.R., de Boer, Physica B,C 100, 1 (1980).
[7] C., Kittel, Thermal Physics (John Wiley, New York, 1969), Chapter 2.
[8] J.W., Gibbs, Trans. Conn. Acad. 3, 108 (1876).
[9] H., Okamoto, Desk Handbook Phase Diagrams for Binary Alloys (ASM International, Materials Park, OH, 2000).
[10] P., Villars, Ed., with H., Okamoto and K., Cenzual, ASM Alloy Phase Diagram Database (ASM International, Materials Park, OH, 2006–2013).
[11] B.E., Warren, X-Ray Diffraction (Dover, Mineola, New York, 1990).
[12] W.L., Bragg and E.J., Williams, Proc. Roy. Soc. London A 145, 699 (1934).
[13] W.L., Bragg and E.J., Williams, Proc. Roy. Soc. London A 151, 540 (1935). Ibid. 152, 231.
[14] H.A., Bethe, Proc. Roy. Soc. London A 150, 552 (1935).
[15] D.R.F., West and N., Saunders, Ternary Phase Diagrams in Materials Science, Third Edn. (Institute of Materials, London, 2002).
[16] N., Saunders and A.P., Miodownik, CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide, Volume 1 (Pergamon Materials Series, 1998).
[17] P.E.A., Turchi, A., Gonis, and R.D., Shull, Eds., CALPHAD and Alloy Thermodynamics (TMS Publication, Warrendale, PA, 2002).
[18] P.E.A., Turchi, I.A., Abrikosov, B., Burton et al., CALPHAD 31, 4 (2007).
[19] P.M., Morse and H., Feshbach, Methods of Theoretical Physics (McGraw–Hill, New York, 1953), Chapters 5 and 10.
[20] J.K., Lee and H.I., Aaronson, Acta Metall., 23, 799 (1975).
[21] U., Dahmen, S., Hagège, F., Faudot, T., Radetic, and E., Johnson, Philos. Mag. 84, 2651 (2004).
[22] J.W., Gibbs, Trans. Conn. Acad. 11, 382 (1873).
[23] M., Volmer and A., Weber, Z. Phys. Chem. 119, 277 (1926).
[24] Z., Farkas, Z. Phys. Chem. A125, 236 (1927).
[25] R., Becker and W., Döring, Ann. Phys. 24, 1 (1935).
[26] J.B., Zeldovich, Acta Physicochim. 18, 1 (1943).
[27] K.F., Kelton and A.L., Greer, Nucleation in Condensed Matter: Applications in Materials and Biology (Pergamon Materials Series, Oxford, 2005).
[28] H., Trinkaus and M.H., Yoo, Philos. Mag. A55, 269 (1987).
[29] G., Shi, J.H., Seinfeld, and K., Okuyama, Phys Rev. A41, 2101 (1990).
[30] G.H., Gulliver, J. Inst. Met. 9, 120 (1913).
[31] E., Scheil, Z. Metallk. 34, 70 (1942).
[32] B., Chalmers, Physical Metallurgy (Wiley, New York, 1959).
[33] W.W., Mullins and R.F., Sekerka, J. Appl. Phys. 35, 444 (1964).
[34] W., Klement, R.H., Willens, and P., Duwez, Nature 187, 869 (1960).
[35] R.B., Schwarz and W.L., Johnson, Phys. Rev. Lett. 51,415 (1983).
[36] W.L., Johnson, Prog. Mater. Sci. 30, 81 (1986).
[37] P.J., Desré and A.R., Yavari, Phys. Rev. Lett. 64, 1533 (1990).
[38] U., Gösele and K.N., Tu, J. Appl. Phys. 53, 3252 (1982).
[39] M-A., Nicolet and S.S., Lau, in VLSI Electronics, Volume 6, N.G., Einspruch and G.B., Larrabee, Eds. (Academic, New York, 1983), p. 329.
[40] R., Walser and R., Bené, Appl. Phys. Lett. 28, 624 (1976).
[41] W., Kauzmann, Chem. Rev. 43, 219 (1948).
[42] C.A., Angell, K.L., Ngai, G.B., McKenna, P.F., McMillan, and S.W., Martin, J. Appl. Phys. 88, 3113 (2000).
[43] P.G., Debenedetti and F.H., Stillinger, Nature 410, 259 (2001).
[44] J.C., Phillips and J.A., Van Vechten, Phys. Rev. B 2, 2147 (1970).
[45] J.C., Phillips and J.A., Van Vechten, Phys. Rev. Lett. 22, 705 (1969).
[46] C., Kittel, Introduction to Solid State Physics Fourth Edn. (Wiley, New York, 1971), p. 143.
[47] The Fermi Surface Database http://www.phys.ufl.edu/fermisurface/
[48] T.S., Choy, J., Naset, J., Chen, S., Hershfield and C., Stanton, Bull. Am. Phys. Soc. 45, 42 (2000).
[49] J.D., Eshelby, J. Appl. Phys. 25, 255 (1954).
[50] J.D., Eshelby, Solid State Phys. 3, 79 (1956).
[51] R.V., Zucker, D., Chatain, U., Dahmen, S., Hagège, and W.C., Carter, J. Mater. Sci. 47, 8290 (2012).
[52] R., Kikuchi, Phys. Rev. 81, 988 (1951).
[53] R., Kikuchi, J. Chem. Phys. 60, 1071 (1974).
[54] D., de Fontaine, in Solid State Physics, Volume 34, H., Ehrenreich, F., Seitz, and D., Turnbull, Eds. (Academic Press, New York, 1979), p. 73.
[55] R.H., Fowler and E.A., Guggenheim, Proc. Roy. Soc. London A 174, 189 (1940).
[56] J.M., Sanchez, F., Ducastelle, and D., Gratias, Physica A 128, 334 (1984).
[57] J.W.D., Connolly and A.R., Williams, Phys. Rev. B 27, 5169 (1983).
[58] R., Kikuchi, Phys. Rev. 81, 988 (1951).
[59] C.M., Van Baal, Physica 64, 571 (1973).
[60] J.M., Sanchez and D., de Fontaine, Phys. Rev. B 21, 216 (1980).
[61] P., Cenedese and R., Kikuchi, Physica A 205, 747 (1994).
[62] L., Onsager, Phys. Rev. 65, 117 (1944).
[63] A.A., Maradudin, E.W., Montroll, G.H., Weiss, and I.P., Ipatova, Theory of Lattice Dynamics in the Harmonic Approximation (Academic Press, New York, 1971).
[64] M., Born and K., Wang, Dynamical Theory of Crystal Lattices (Oxford Classic Texts, Clarendon Press, Oxford, 1988).
[65] M.T., Dove, Introduction to Lattice Dynamics (Cambridge University Press, Cambridge, 1993).
[66] A., van de Walle and G., Ceder, Revs. Mod. Phys. 74, 11 (2002).
[67] G., Moraitis and F., Gautier, J. Phys. F: Metal Phys. 7, 1421 (1977).
[68] J.A.D., Matthew, R.E., Jones, and V.M., Dwyer, J. Phys. F: Metal Phys. 13, 581 (1983).
[69] A.A.H.J., Waegemaekers and H., Bakker, Mater. Res. Soc. Symp. Proc. 21, 343 (1984).
[70] G.D., Garbulsky and G., Ceder, Phys.Rev.B 53, 8993 (1996).
[71] S., Baer, J. Phys. C: Solid State Phys. 16, 4103 (1983).
[72] A., Einstein, Ann. Phys. 22, 180 (1907).
[73] J., Mahanty and M., Sachdev, J. Phys. C 3, 773 (1970).
[74] H., Bakker, Philos. Mag. A 45, 213 (1982).
[75] H., Bakker, Phys. Stat. Solidi B 109, 211 (1982).
[76] O., Delaire, T., Swan-Wood, and B., Fultz, Phys. Rev. Lett. 93, 185704 (2004).
[77] B., Fultz and J.M., Howe, Transmission Electron Microscopy and Diffractometry of Materials Fourth Edn. (Springer, Heidelberg, 2013).
[78] M.H.F., Sluiter, M., Weinert, and Y., Kawazoe, Phys. Rev. B 59, 4100 (1999).
[79] A., van de Walle and G., Ceder, Phys. Rev. B 61, 5972 (2000).
[80] E.J., Wu, G., Ceder, and A., van de Walle, Phys. Rev. B 67, 134103 (2003).
[81] J.C., Slater, Introduction to Chemical Physics (McGraw-Hill, New York, 1939), Chapter 13.
[82] M.L., Winterrose, M.S., Lucas, A. F., Yue et al., Phys. Rev. Lett. 102, 237202 (2009).
[83] J.R., Manning, Acta Metall. 15, 817 (1967).
[84] R., Kikuchi and H., Sato, J. Chem. Phys. 53, 2702 (1970).
[85] H., Sato and R., Kikuchi, Acta Metall. 24, 797 (1976).
[86] B., Fultz, J. Chem. Phys. 87, 1604 (1987).
[87] H., Bakker, Philos. Mag. 40, 525 (1979).
[88] A.D., Smigelskas and E.O., Kirkendall, Trans. AIME 171, 131 (1947).
[89] G., Martin, Phys. Rev. B 30, 1424 (1984).
[90] G., Martin and P., Bellon, Solid State Physics, Volume 50, H., Ehrenreich and F., Spaepen, Eds. (Academic Press, New York, 1996), p. 189.
[91] G., Vineyard, J. Phys. Chem. Solids 3, 121 (1957).
[92] S., Rice, Phys. Rev. 112, 804 (1958).
[93] A.C., Lawson, Philos. Mag. 89, 1757 (2009).
[94] J.H., Rose, J., Ferrante, and J.R., Smith, Phys. Rev. Lett. 47, 675 (1981).
[95] J.H., Rose, J.R., Smith, F., Guinea, and J., Ferrante, Phys. Rev. B 29, 2963 (1984).
[96] X., Tang, C.W., Li, and B., Fultz, Phys. Rev. B 82, 184301 (2010).
[97] M.H.G., Jacobs and R., Schmid-Fetzer, Phys. Chem. Minerals 37 721 (2010).
[98] P.J., Spencer and the Scientific Group Thermodata Europe (SGTE), Landolt–Börnstein / New Series Group IV: Physical Chemistry, Volume 19 (Springer, Heidelberg, 1999).
[99] SGTE Scientific Group Thermodata Europe http://www.met.kth.se/sgte/
[100] N., Bock, D., Coffey, and D.C., Wallace, Phys. Rev. B 72, 155120 (2005).
[101] N., Bock, D.C., Wallace, and D., Coffey, Phys. Rev. B 73, 075114 (2006).
[102] M. G., Kresch, M.S., Lucas, O., Delaire, J.Y.Y., Lin, and B., Fultz, Phys. Rev. B 77, 024301 (2008).
[103] F., Körmann, A., Dick, B., Grabowski, et al., Phys. Rev. B 78, 033102 (2008).
[104] F., Körmann, A., Dick, B., Grabowski, T., Hickel, and J., Neugebauer, Phys. Rev. B 85, 125104 (2012).
[105] M., Forsblum and G., Grimvall, Phys. Rev. B 72, 132204 (2005).
[106] D.C., Wallace, Statistical Physics of Crystals and Liquids: A Guide to Highly Accurate Equations of State (World Scientific, Singapore, 2003).
[107] F.A., Lindemann, Phys. Z. 11, 609 (1910).
[108] J.J., Gilvarry, Phys. Rev. 102, 308 (1956).
[109] M.D., Ediger, Ann. Rev. Phys. Chem. 51, 99 (2000).
[110] W.L., Johnson, M.D., Demetriou, J.S., Harmon, M.L., Lind, and K., Samwer, MRS Bull. 32, 644 (2007).
[111] K., Gschneidner Jr., Solid State Physics, Volume 16, F., Seitz and D., Tunbull, Eds. (Academic Press, New York, 1965), p. 275.
[112] R., Bohmer, K.L., Ngai, C.A., Angell, and D.J., Plazek, J. Chem. Phys. 99, 4201 (1993).
[113] C.A., Angell, Science 267, 1924 (1995).
[114] J.M., Kosterlitz and D.J., Thouless, J. Phys. C: Solid State Phys. 6, 1181 (1973).
[115] G., Liu, G.J., Zhang, X.D., Ding, J., Sun, and K.H., Chen, Mater. Sci. Eng. A 344, 113, (2003).
[116] R., Banerjee, S., Nag, J., Stechschulte, and H.L., Fraser, Biomaterials 25, 3413 (2004).
[117] J.S., Langer and A.J., Schwartz, Phys. Rev. A21, 948 (1980).
[118] K., Binder and D., Stauffer, Adv. Phys. 25, 343 (1976).
[119] D.T., Wu, in Solid State Physics, Volume 50, H., Ehrenreich and F., Spaepen, Eds. (Academic Press, New York, 1997) p. 37.
[120] A.N., Kolmogorov, Akad. Nauk SSSR, Izv., Ser. Matem. 355, 1 (1937).
[121] W.A., Johnson and P.A., Mehl, Trans. AIME 135, 416 (1939).
[122] M., Avrami, J. Chem. Phys. 7, 1103 (1939).
[123] M., Avrami, J. Chem. Phys. 8, 212 (1940).
[124] M., Avrami, J. Chem. Phys. 9, 177 (1941).
[125] J.J., Hoyt, Phase Transformations (McMaster Innovation Press, Hamilton, ON, 2010).
[126] J.W., Cahn, Acta Metall. 4, 449 (1956).
[127] I.M., Lifshitz and V.V., Slyozov, J. Phys. Chem. Solids 19, 35 (1961).
[128] C., Wagner, Z. Electrochem. 65, 581 (1961).
[129] C.E., Krill and L.Q., Chen, Acta Mater. 50, 3057 (2002).
[130] J.W., Cahn, Acta Metall. 9, 795 (1961).
[131] J.W., Cahn and J.E., Hilliard, J. Chem. Phys. 28, 258 (1958).
[132] J.W., Cahn and J.E., Hilliard, J. Chem. Phys. 31, 688 (1959).
[133] J.W., Cahn, Acta Metall. 10, 179 (1962).
[134] A.G., Khachaturyan, Theory of Structural Transformations in Solids (Wiley-Interscience, New York, 1983).
[135] Wei, Xiong, P., Hedström, M., Selleby et al., CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry 35, 355 (2011).
[136] J.S., Langer, Rev. Mod. Phys. 52, 1 (1980).
[137] A., Karma and W.J., Rappel, Phys. Rev. E 57, 4323 (1998).
[138] W.J., Boettinger, J.A., Warren, C., Beckermann, and A., Karma, Ann. Rev. Mater. Res. 32, 163 (2002).
[139] J.A., Warren and W.J., Boettinger, Acta Metall. Mater. 43, 689 (1995).
[140] J.J., Hoyt, M., Asta, and A., Karma, Mater. Sci. Eng. Reports 41, 121 (2003).
[141] P.C., Hohenberg and B.I., Halperin, Rev. Mod. Phys. 49, 435 (1977)
[142] T., Mohri, in Alloy Physics, W., Pfeiler, Ed. (Wiley-VCH, Weinheim, 2007), Chapter 10.
[143] S.M., Allen and J.W., Cahn, Acta Metall. 27, 1085 (1979).
[144] D., Stauffer, Introduction to Percolation Theory (Taylor & Francis, London, 1985).
[145] A.G., Khachaturyan, Phys. Met. Metallog. 13, 493 (1962).
[146] A.G., Khachaturyan, Sov. Phys. Solid State 5, 16 (1963).
[147] A.G., Khachaturyan, Sov. Phys. Solid State 5, 548 (1963).
[148] A.G., Khachaturyan, Prog. Mater. Sci. 22, 1-150 (1978).
[149] L.D., LandauZh. Eksp. Teor. Fiz. 7, 19 (1937). Ibid 7, 627 (1937). Translated and reprinted in L.D. Landau, Collected Papers, Volume 1 (Nauka, Moscow, 1969) pp. 234-252.
[150] L.D., Landau and E.M., Lifshitz, Statistical Physics (Addison-Wesley, Reading, Massachusettts, 1969), Chapters 13, 14.
[151] E.Z., Kaminsky and G.V., Kurdjumov, Zh. Tekh. Fiz. 6, 984 (1936).
[152] G.V., Kurdjumov, V.I., Miretzskii, and T.I., Stelletskaya, Zh. Tekh. Fiz. 2, 1956 (1939).
[153] P.G., Shewmon, Transformations in Metals (McGraw-Hill, New York, 1969).
[154] G.V., Kurdjumov and G., Sachs, Z. Phys. 64, 325 (1930).
[155] Z., Nishiyama, Sci. Rep. Tohoku Univ. 23, 637 (1934).
[156] D.S., Lieberman, M.S., Weschler, and T.A., Read, J. Appl. Phys. 26, 473 (1955).
[157] G.V., Kurdjumov and G., Khandros, Dokl. Nauk. SSSR 66, 211 (1949).
[158] H.C., Tong and C.M., Wayman, Acta Metall. 23, 209 (1975).
[159] Z., Nishiyama, Martensitic Transformation (Academic Press, New York, 1978).
[160] A.J., Bogers and W.G., Burgers, Acta Metall. 12, 255 (1964).
[161] G.B., Olson and M., Cohen, J. Less-Common Metals 28, 107 (1972).
[162] L., Bracke, L., Kestens, and J., Penning, Scripta Metall. 57, 385 (2007).
[163] M.S., WechslerD.S., Lieberman, and T.A., Read, Trans. AIME 197, 1503 (1953).
[164] J.S., Bowles and J.K., Mackenzie, Acta Metall. 2, 129 (1954).
[165] J.K., Mackenzie and J.S., Bowles, Acta Metall. 2, 138 (1954).
[166] J.K., Mackenzie and J.S., Bowles, Acta Metall. 5, 137 (1957).
[167] J.W., Christian, J. Inst. Metals 84, 385 (1956).
[168] M., Born, Proc. Cambridge Philos. Soc. 36, 160 (1940).
[169] C., Zener, Elasticity and Anelasticity of Metals (University of Chicago Press, Chicago, 1948).
[170] E.S., Scheil, Anorg. Allg. Chem. 207, 21 (1932).
[171] P.C., ClappPhys. Stat. Sol. B 57, 561 (1973).
[172] J., Trampenau, W., Petry, and C., Herzig, Phys. Rev. B 47, 3132 (1993).
[173] W., Petry, Phase Trans. 31, 119 (1991).
[174] W., Petry, A., Heiming, J., Trampenau et al., Phys. Rev. B 43, 10933 (1991).
[175] W., Petry, J. Phys. IV 5 C2, 15 (1995).
[176] J., Friedel, J. Phys. Lett. (Paris) 35, 59 (1974).
[177] J.W., Cahn, Prog. Mater. Sci. 36, 149 (1992).
[178] L., Mañosa, A., Planes, J., Ortín, and B., Martínez, Phys. Rev. B 45, 7633 (1992).
[179] L., Mañosa, A., Planes, J., Ortín, and B., Martínez, Phys. Rev. B 48, 3611 (1993).
[180] E., Obradó, L., Mañsa, and A., Planes, Phys.Rev. B 56, 20 (1997).
[181] P., Bogdanoff and B., Fultz, Philos. Mag. B 81, 299 (2001).
[182] A., Tschöpe and R., Birringer, Acta Metall. Mater. 41, 2791 (1993).
[183] L.B., Hong and B., Fultz, J. Appl. Phys. 79, 3946 (1996).
[184] H.E., Schaefer, Nanoscience (Springer, Heidelberg, 2010).
[185] W.T., Read and W., Shockley, Phys. Rev. 78, 275 (1950).
[186] H., Van Swygenhoven, D., Farkas, and A., Caro, Phys. Rev. B 62, 831 (2000).
[187] M., Yuasa, T., Nakazawa, and M., Mabuchi, J. Phys.: Condens. Matter 24, 265703 (2012).
[188] D., Olmsted, S.M., Foiles, and E.A., Holm, Acta Mater. 57, 3694 (2009).
[189] W., Setyawan and R.J., Kurtz, Scripta Mater. 66, 558 (2012).
[190] B., Fultz, H., Kuwano, and H., Ouyang, J. Appl. Phys. 77, 3458 (1995).
[191] D., Udler and D.N., Seidman, Phys. Rev. B 54, R 11133 (1996).
[192] S.M., Foiles, Scripta Mater 62, 231 (2010).
[193] P., Keblinski, S.R., Phillpot, D., Wolf, and H., Gleiter, Phys. Rev. Lett. 77, 2965 (1996).
[194] K., Yamada and C.C., KochJ. Mater. Res. 8, 1317 (1993).
[195] K., Suzuki and K., Sumiyama, Mater. Trans. JIM 36, 188 (1995).
[196] J., Trampenau, K., Bauszuz, W., Petry, and U., Herr, Nanostruct. Mater. 6, 551 (1995).
[197] B., Fultz, J.L., Robertson, T.A., Stephens, L.J., Nagel, and S., Spooner, J. Appl. Phys. 79, 8318 (1996).
[198] H.N., Frase, L.J., Nagel, J.L., Robertson, and B., Fultz, Philos. Mag. B 75, 335 (1997).
[199] H.N., Frase, B., Fultz, and J.L., Robertson, Phys. Rev. B 57, 898 (1998).
[200] A.B., Papandrew, A.F., Yue, B., Fultz et al., Phys. Rev. B 69, 144301 (2004).
[201] B., Fultz, C.C., Ahn, E.E., Alp, W., Sturhahn, and T.S., Toellner, Phys. Rev. Lett. 79, 937 (1997).
[202] E., Bonetti, L., Pasquini, E., Sampaolesi, A., Deriu, and G., Cicognani, J. Appl. Phys. 88, 4571 (2000).
[203] H.N., Frase, L.J., Nagel, J.L., Robertson, and B., Fultz, in Chemistry and Physics of Nanostructures and Related Non-Equilibrium Materials, E., Ma, B., Fultz, R., Shull, J., Morral, and P., Nash, Eds. (TMS, Warrendale, PA, 1997), p. 125.
[204] B.R., Cuenya, A., Naitabdi, J., Croy et al., Phys. Rev. B 76, 195422 (2007).
[205] B.R., Cuenya, W., Keune, R., Peters et al., Phys. Rev. B 77, 165410 (2008).
[206] A., Tamura, H., Higeta, and T., Ichinokawa, J. Phys. C 15, 4975 (1982).
[207] A., Tamura and T., Ichinokawa, J. Phys. C 16, 4779 (1983).
[208] A., Tamura, H., Higeta, and T., Ichinokawa, J. Phys. C 16, 1585 (1983).
[209] J., Purewal, unpublished Ph.D. thesis in materials science, California Institute of Technology (2010).
[210] M.F., Hansen, C.B., Koch, and S., Mørup, Phys. Rev. B 62, 1124 (2000).
[211] S., Bedanta, SubhankarW., and Kleemann, J. Phys. D Appl. Phys. 42, 013001 (2009).
[212] S., Mørup, M.F., Hansen, and C., Frandsen, Beilstein J. Nanotechnol. 1, 182 (2010).
[213] L.J., Nagel, B., Fultz, J.L., Robertson, and S., Spooner, Phys. Rev. B 55, 2903 (1997).
[214] M.E., Manley, B., Fultz, and L.J., Nagel, Philos. Mag. B 80, 1167 (2000).
[215] L.J., Nagel, unpublished Ph.D. thesis in materials science, California Institute of Technology (1996).
[216] J., Hubbard, Proc. Roy. Soc. London A 276, 238 (1963). Ibid 281, 401 (1964).
[217] U., Rössler, Solid State Theory (Springer, Berlin, 2004), Chapter 7.
[218] K., Yosida, Theory of Magnetism (Springer, Berlin, 1998).
[219] T., Holstein, Ann. Phys. 8, 325 (1959). Ibid 8, 342 (1959).
[220] D., Emin and T., Holstein, Ann. Phys. 53, 439 (1969).
[221] I.G., Austin and N.F., Mott, Adv. Phys. 18, 41 (1969).
[222] J.B., Goodenough, J. Phys. Chem. Solids 6, 287 (1958).
[223] J., Kanamori, J. Phys. Chem. Solids 10, 87 (1959).
[224] P.W., Anderson, Solid State Physics, Volume 14, F., Seitz and D., Turnbull, Eds. (Academic Press, New York 1963), p. 99.
[225] J.B., Goodenough, Scholarpedia 3, 7382 (2008).
[226] M.A., Ruderman and C., Kittel, Phys. Rev. 96, 99 (1954).
[227] T., Kasuya, Prog. Theor. Phys. 16, 45 (1956).
[228] K., Yosida, Phys. Rev. 106, 893 (1957).
[229] I., Dzyaloshinskii, J. Phys. Chem. Solids 4, 241 (1958).
[230] T., Moriya, Phys. Rev. Lett. 4, 228 (1960).
[231] T., Moriya, Phys. Rev. 120, 91 (1960).
[232] M., Woloszyn, D., Stauffer, and K., Kulakowski, Eur. Phys. J. B 57, 331 (2007).
[233] M.H., Anderson, J.R., Ensher, M.R., Matthews, C.E., Wieman, and E.A., Cornell, Science 269, 198 (1995).
[234] The Nobel Prize in Physics 2001 http://www.nobelprize.org/nobel_prizes/physics/laureates/
[235] B.D., Josephson, Phys. Lett. 1, 251 (1962).
[236] B.D., Josephson, Adv. Phys. 14, 419 (1965).
[237] D.R., Tilley and J., Tilley, Superfluidity and Superconductivity (Institute of Physics Publishing, London, 1994).
[238] M., Tinkham, Introduction to Superconductivity, Second Edn. (Dover, Mineola, 1996).
[239] H., Kamerlingh Onnes, Leiden Comm. 120b, 122b, 124c (1911).
[240] L.N., Cooper, Phys. Rev. 104, 1189 (1956).
[241] J., Bardeen, L.N., Cooper, and J.R., Schrieffer, Phys. Rev. 108, 1175 (1957).
[242] W.L., McMillan, Phys. Rev. 167, 331 (1968).
[243] P.B., Allen and R., Dynes, Phys. Rev. B 12, 905 (1975).
[244] A.A., Abrikosov, Zh. Eksperim. Teor. Fiz. 32, 1442 (1957).
[245] V.L., Ginzburg and L.D., Landau, Zh. Eksperim. Teor. Fiz. 20, 1064 (1950).
[246] G., Bednorz and K.A., Müller, Z. Phys. B 64, 189 (1986).
[247] A., Tonomura, J. Electron Microsc. 52, 11 (2003).
[248] I.I., Mazin, Nature 464, 183 (2010).
[249] J.A., Hertz, Phys. Rev. B 14, 1165 (1976).
[250] S., Sachdev, Science 288, 5465 (2000).
[251] S., Sachdev and B., Keimer, Phys. Today 64, 29 (2011).
[252] I.S., Lyubutin, V.V., Struzhkin, A.A., Mironovich et al., Proc. Natl Acad. Sci. USA 110, 7142 (2013).
[253] M.J., Richards and J.W., Cahn, Acta Metall. 19, 1263 (1971).
[254] S.M., Allen and J.W., Cahn, Acta Metall. 20, 423 (1972).
[255] J., Kanamori, Prog. Theor. Phys. 35, 16 (1966).
[256] M., Kaburagi and J., Kanamori, Prog. Theor. Phys. 54, 30 (1975).
[257] G., Ceder, G.D., Garbulsky, D., Avis, and K., Fukuda, Phys. Rev. B 49, 1 (1994).
[258] M., Sluiter, P., Turchi, Z., Fu, and D., de Fontaine, Physica A 148, 61 (1988).
[259] L.B., Hong and B., Fultz, Phys. Rev. B 52, 6230 (1995).
[260] M.R., Collins and H.C., Teh, Phys. Rev. Lett. 30, 781 (1973).
[261] M., Suzuki, M., Katori, and X., Hu, J. Phys. Soc. Jpn. 56, 3092 (1987).
[262] D.L., Goodstein, States of Matter (Dover, New York, 1985), Chapter 6.
[263] H.J., Maris and L., Kadanoff, Am. J. Phys. 46, 652 (1978).
[264] D., Chandler, Introduction to Modern Statistical Mechanics (Oxford Univ. Press, Oxford/New York, 1987), Chapter 5.
[265] L-Q., Chen and A.G., Khachaturyan, Acta Met. Mater. 39, 2533 (1991).
[266] Y., Wang, L-Q., Chen, and A.G., Khachaturyan, Acta Met. Mater. 41, 279 (1993).
[267] Y., Wang and A.G., Khachaturyan, Acta Mater. 45, 759 (1997).
[268] N.G., Van Kampen, Stochastic Processes in Physics and Chemistry, Second Edn. (Elsevier, Amsterdam, 2004).
[269] B., Fultz, Acta Metall. 37, 823 (1989). Ibid. 37, 2841 (1989).
[270] B., Fultz, J. Mater. Res. 5, 1419 (1990).
[271] K., Gschwend, H., Sato, and R., Kikuchi, J. Chem. Phys. 69, 5006 (1978).
[272] K., Gschwend, H., Sato, R., Kikuchi, H., Iwasaki, and H., Maniwa, J. Chem. Phys. 71, 2844 (1979).
[273] B., Fultz, J. Less-Common Metals 168, 145 (1991).
[274] B., Fultz, J. Mater. Res. 7, 946 (1992).
[275] Z-Q., Gao and B., Fultz, Philos. Mag. 67, 787 (1993).
[276] M., Becker and W., Schweika, Scripta Mater. 35, 1259 (1996).
[277] L., Anthony and B., Fultz, J. Mater. Res. 9, 348 (1994).
[278] B., Fultz, Philos. Mag. B 67, 253 (1993).
[279] S.W., Lovesey, Theory of Neutron Scattering from Condensed Matter, Volume 1 (Clarendon, Oxford, 1984).
[280] G.L., Squires, Introduction to the Theory of Thermal Neutron Scattering(Cambridge Univ. Press, Cambridge, 1978), reprinted by Dover, Mineola, NY, 1996.
[281] L., Van Hove, Phys. Rev. 95, 249 (1954).
[282] G.A., Samara and P.S., Peercy, Phys. Rev. B 7, 1131 (1973).
[283] N.W., Ashcroft and N.D., Mermin, Solid State Physics (Holt, Rinehart and Winston, New York, 1976), Appendix L.
[284] C.W., Li, M.M., McKerns, and B., Fultz, J. Am. Ceramic Soc. 94, 125 (2011).
[285] C.W., Li, M.M., McKerns, and B., Fultz, Phys. Rev. B 80, 054304 (2009).
[286] A.M., Zagoskin, Quantum Theory of Many-Body Systems (Springer, New York, 1998).
[287] A.A., Maradudin and A.E., Fein, Phys. Rev. 128, 2589 (1962).
[288] D.C., Wallace, Thermodynamics of Crystals (Dover, Mineola, New York, 1998).
[289] R.C., Shukla and E.R., Cowley, Phys. Rev. B 3, 4055 (1971). Ibid. 58, 2596 (1998). Ibid. 62, 3232 (2000).
[290] P.D., Bogdanoff, B., Fultz, J.L., Robertson, and L., Crow, Phys. Rev. B 65, 014303 (2002).
[291] M.E., Manley, R.J., McQueeney, B., Fultz et al., Phys. Rev. B 65, 144111 (2002).
[292] O., Delaire, M.S., Lucas, J.A., Muñoz, M., Kresch, and B., Fultz, Phys. Rev. Lett. 101, 105504 (2008).
[293] J.A., Muñoz, M.S., Lucas, O., Delaire et al., Phys. Rev. Lett. 107, 115501 (2011).
[294] T., Lan, X., Tang, and B., Fultz, Phys. Rev. B 85, 094305 (2012).
[295] T., Lan, C-W., Li, and B., Fultz, Phys. Rev. B 86, 134302 (2012).
[296] C.W., Li, X., Tang, J.A., Muñoz et al., Phys. Rev. Lett. 107, 195504 (2011).
[297] M.S., Lucas, J.A., Muñoz, O., Delaire et al., Phys. Rev. B 82, 144306 (2010).
[298] J.M., Wills and W.A., Harrison, Phys. Rev. B 28, 4363 (1983).
[299] J.A., Muñoz, M.S., Lucas, L., Mauger et al., Phys. Rev. B 87, 014301 (2013).
[300] O., Delaire, M., Kresch, J.A., Muñoz et al., Phys. Rev. B 77, 214112 (2008).
[301] O., Delaire, K., Marty, M.B., Stone et al., Proc. Natl Acad. Sci. USA 108,4725 (2011).