Skip to main content Accessibility help
×
  • Cited by 15
Publisher:
Cambridge University Press
Online publication date:
August 2017
Print publication year:
2017
Online ISBN:
9781316995846

Book description

This up-to-date introduction to Griffiths' theory of period maps and period domains focusses on algebraic, group-theoretic and differential geometric aspects. Starting with an explanation of Griffiths' basic theory, the authors go on to introduce spectral sequences and Koszul complexes that are used to derive results about cycles on higher-dimensional algebraic varieties such as the Noether–Lefschetz theorem and Nori's theorem. They explain differential geometric methods, leading up to proofs of Arakelov-type theorems, the theorem of the fixed part and the rigidity theorem. They also use Higgs bundles and harmonic maps to prove the striking result that not all compact quotients of period domains are Kähler. This thoroughly revised second edition includes a new third part covering important recent developments, in which the group-theoretic approach to Hodge structures is explained, leading to Mumford–Tate groups and their associated domains, the Mumford–Tate varieties and generalizations of Shimura varieties.

Reviews

Review of previous edition:‘This book, dedicated to Philip Griffiths, provides an excellent introduction to the study of periods of algebraic integrals and their applications to complex algebraic geometry. In addition to the clarity of the presentation and the wealth of information, this book also contains numerous problems which render it ideal for use in a graduate course in Hodge theory.'

Source: Mathematical Reviews

Review of previous edition:‘… generally more informal and differential-geometric in its approach, which will appeal to many readers … the book is a useful introduction to Carlos Simpson's deep analysis of the fundamental groups of compact Kähler manifolds using harmonic maps and Higgs bundles.'

Burt Totaro - University of Cambridge

'This monograph provides an excellent introduction to Hodge theory and its applications to complex algebraic geometry.'

Gregory Pearlstein Source: Nieuw Archief voor Weskunde

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents


Page 2 of 2



Page 2 of 2


References
Abdulali, S. 1994. Conjugates of strongly equivariant maps. Pac. J. Math., 165, 207–216.
Accola, R. 1979. On Castelnuovo's inequality for algebraic curves, I. Trans. Am. Math. Soc., 251, 357–373.
Addington, S. 1987. Equivariant holomorphic maps of symmetric domains. Duke Math. Journal, 55, 65–88.
Allcock, D., J., Carlson, and D., Toledo. 2002. The complex hyperbolic geometry of the moduli space of cubic surfaces. J. Algebraic Geom., 11, 659–724.
Allcock, D., J., Carlson, and D., Toledo. 2011. The Moduli Space of Cubic Threefolds as a Ball Quotient. Mem. Amer. Math. Soc., 209, A.M.S., Providence R.I.
Amerik, E. 1998. On a problem of Noether–Lefschetz type. Comp. Math., 112, 255–271.
del Angel, P. L. and S., Müller-Stach. 2002. The transcendental part of the regulator map for K1 on a mirror family of K3 surfaces. Duke Math. J., 112, 581–598.
André, Y. 1989. G-functions and Geometry. Vieweg Verlag, Braunschweig.
André, Y. 1992. Mumford-Tate groups of mixed Hodge structures and the theorem of the fixed part. Compositio Math., 82, 1–24.
Arakelov, A. 1971. Families of algebraic curves with fixed degeneracies. Izv. Akad. Nauk. SSSR, Ser. Math, 35, 1277–1302.
Asakura, M. 1999. Arithmetic Hodge structures and higher Abel–Jacobi maps. ArXiv;math/990819[math.AG].
Asakura, M. and S., Saito. 1998. Filtrations on Chow groups and higher Abel–Jacobi maps. Preprint.
Ash, A., D., Mumford, M., Rapoport, and Y., Tai. 1975. Smooth Compactification of Locally Symmetric Varieties. Math. Sci. Press, Boston. Second edition (2010) Cambridge University Press, Cambridge.
Atiyah, M. F. 1957. Complex analytic connections in fibre bundles. Trans. Am. Math. Soc., 85, 715–726.
Atiyah, M. F. and F., Hirzebruch. 1962. Analytic cycles on complex manifolds. Topology, 1, 25–45.
Atiyah, M. F. and W. V. D., Hodge. 1955. Integrals of the second kind on an algebraic variety. Ann. Math., 62, 56–91.
Baily, W. and A., Borel. 1966. Compactification of arithmetic quotients of bounded symmetric domains. Ann. Math,, 84, 442–528.
Bardelli, F. 1989. Curves of genus three on a general abelian threefold and the nonfinite generation of the Griffiths group. Arithmetic of Complex Manifolds, Erlangen 1988, Lect. Notes in Maths, 1399, Springer-Verlag, Berlin, 10–26.
Bardelli, F. and S., Müller-Stach. 1994. Algebraic cycles on certain Calabi–Yau 3-folds. Math. Z., 215, 569–582.
Barlet, D. 1975. Espace analytique réduit des cycles analytiques compacts d'un espace analytique complexe de dimension finie. Sém. Francois Norguet, Springer Lect. Notes Math., 482, Springer-Verlag, Berlin, 1–158.
Barth, W., K., Hulek, C., Peters, and A., Van de Ven. 1993. Compact Complex Surfaces (Second enlarged edition). Ergebnisse der Math., 3, Springer-Verlag, New York, Berlin.
Beauville, A. 1982. Les familles stables de courbes elliptiques sur P1 admettant quatre fibres singulières. C. R. Acad. Sci. Paris, Ser I Math., 294, 657–660.
Beauville, A. 1983. Variétés kähleriennes dont la première classe de Chern est nulle. J. Diff. Geom., 18, 755–782.
Beauville, A. 1986a. Sur l'anneau de Chow d'une variété abélienne. Math. Ann., 273, 647–651.
Beauville, A. 1986b. Le groupe de monodromie d'hypersurfaces et d'intersections complètes. Springer Lect. Notes Math., 1194, Springer-Verlag, Berlin, 1–18.
Bedulev, E. and E., Viehweg, 2000. On the Shafarevich conjecture for surfaces of general type over function fields. Invent. Math., 139, 603–615.
Bertin, J. and C., Peters. 2002. Variations of Hodge structure, Calabi–Yau manifolds and mirror symmetry. Introduction to Hodge Theory (translation of Introduction à la Théorie de Hodge), Am. Math. Soc., SMF/AMS Texts and Monographs, 8.
Bingener, J. 1987. Lokale Modulräume in der analytischen Geometrie I, II. Aspects of Mathematics, 1-2, Vieweg Verlag, Braunsweig.
Bloch, S. 1979. Some elementary theorems about algebraic cycles on Abelian varieties. Invent. Math., 37, 215–228.
Bloch, S. 1980. Lectures on Algebraic Cycles. Duke University Press. Second edition (2010), New Mathematical Monographs, 16, Cambridge University Press, Cambridge.
Bloch, S. 1986. Algebraic cycles and higher K-theory. Adv. Math., 61, 267– 304.
Borel, A. 1969. Introduction aux Groupes Arithmétiques. Pub. Inst. Math. University Strasbourg, XV, Act. Scient. et Industr. 1341, Hermann, Paris.
Borel, A. 1997. Linear Algebraic Groups. Graduate Texts in Mathematics, 126, 2nd enlarged edition, Springer-Verlag, New York, Berlin, Heidelberg.
Borel, A. and Harish-Chandra. 1962. Arithmetic Subgroups of Algebraic Groups. Ann. Math., 75, 485–535.
Borel, A. and T., Springer. 1968. Rationality properties of linear algebraic groups II. Tôhoku Math. J., 20, 443–497.
Bott, R. 1957. Homogeneous vector bundles. Ann. Math., 66, 203–248.
Bott, R. and L.W., Tu. 1982. Differential Forms in Algebraic Topology. Springer-Verlag, New York, Berlin.
Braun, R. and S., Müller-Stach. 1996. Effective bounds for Nori's connectivity theorem. Higher Dimensional Varieties, Proc. Int. Conf. in Trento, de Gruyter, 83–88.
Bryant, R. L. 1985. Lie groups and twistor spaces. Duke Math. J., 52, 223–261.
Burns, D. and M., Rapoport. 1975. On the Torelli problem for Kählerian K-3 surfaces. Ann. Sci. École Norm. Sup. (4), 8, 235–273.
Calabi, E. 1967. Minimal immersions of surfaces in Euclidean spheres. J. Diff. Geom., 1, 11–125.
Carlson, J. 1980. Extensions of mixed Hodge structures. Journées de Géométrie Algébriques d'Angers 1979, Sijthoff-Noordhoff, Alphen a/d Rijn, 107–127.
Carlson, J. 1986. Bounds on the dimension of a variation of Hodge structure. Trans. AMS., 294, 45–64.
Carlson, J., M., Green, P., Griffiths, and J., Harris. 1983. Infinitesimal variations of Hodge structure I. Comp. Math., 50, 109–205.
Carlson, J., A., Kasparian, and D., Toledo. 1989. Variation of Hodge structure of maximal dimension. Duke Math. J., 58, 669–694.
Carlson, J. and P., Griffiths. 1980. Infinitesimal variations of Hodge structure and the global Torelli problem. Journées de Géométrie Algébriques d'Angers 1979, Sijthoff-Noordhoff, Alphen a/d Rijn, 51–76.
Carlson, J. and C., Simpson. 1987. Shimura varieties of weight two Hodge structures. Hodge theory, Proceedings, Sant Cugat, Spain 1985, Springer Lect. Notes in Math., 1246, 1–15.
Carlson, J. and D., Toledo. 1989a. Variations of Hodge structure, Legendre submanifolds and accessibility. Trans. Am. Math. Soc., 312, 319–412.
Carlson, J. and D., Toledo. 1989b. Harmonic mappings of Kähler manifolds to locally symmetric spaces. Publ. Math. IHES, 69, 173–201.
Carlson, J. and D., Toledo. 1993. Rigidity of harmonic maps of maximum rank. J.Geom. Anal., 3, 99–140.
Carlson, J. and D., Toledo. 1999. Discriminant complements and kernels of monodromy representations. Duke J. Math., 97, 621–648.
Carlson, J. and D., Toledo. 2014. Compact quotients of non-classical domains are not Kähler. Hodge Theory, Complex Geometry, and Representation Theory, Contemp. Math., 608, Amer. Math. Soc., Providence, RI, 1–57.
Cartan, H. 1957. Quotients d'un espace analytique par un groupe d'automorphismes. Algebraic Geometry and Topology, Princeton University Press, Princeton, NJ. 165–180.
Catanese, F. 1979. Surfaces with K2 = pg = 1 and their period mapping. Algebraic Geometry, Proc. Summer Meeting Copenhagen 1978, Springer Lect. Notes Math., 732, 1–29.
Catanese, F. 1980. The moduli and the global period mapping of surfaces with K2 = pg = 1: A counterexample to the global Torelli problem. Comp. Math., 41, 401–414.
Cattani, E., P., Deligne, and A., Kaplan. 1995. On the locus of Hodge classes. J. Am. Math. Soc., 8, 483–506.
Ceresa, G. 1983. C is not equivalent to C− in its Jacobian. Ann. of Math, 117, 285–291.
Chakiris, K. 1980. Counterexamples to global Torelli for certain simply connected surfaces. Bull. Am. Math. Soc., 2, 297–299.
Chen, K., X., Lu, and K., Zuo. 2015. On the Oort conjecture for Shimura varieties of unitary and orthogonal types. arxiv.org/abs/1410.5739.
Chern, S. 1967. Complex Manifolds Without Potential Theory. Van Nostrand Math. Studies, 15, Princeton.
Chowla, S. and A., Selberg. 1949. On Epstein's zeta function (I). Proc. N.A.S, 35, 371–374.
Ciliberto, C. and A., Lopez. 1991. On the existence of components of the Noether– Lefschetz locus with given codimension. Manuscr. Math., 73, 341–357.
Ciliberto, C., J., Harris, and R., Miranda. 1988. General components of the Noether– Lefschetz locus and their density in the space of all surfaces. Math. Ann., 282, 667–680.
Clemens, C. H. 1977. Degenerations of Kaehler manifolds. Duke Math. J., 44, 215–290.
Clemens, C. H. 1980. A Scrapbook of Complex Curve Theory. Plenum University Press, New York, London.
Clemens, C. H. and P., Griffiths. 1972. The intermediate jacobian of the cubic threefold. Ann. Math., 95, 218–356.
Coleman, R. 1987. Torsion points on curves. Galois Representations and Arithmetic Algebraic Geometry (Kyoto 1985/Tokyo 1986), Adv. Math. Stud. Pure Math., 12, North-Holland, Amsterdam, 235–247.
Collino, A. 1997. Griffiths' infinitesimal invariant and higher K-theory on hyperelliptic Jacobians. J. Alg. Geom., 6, 393–415.
Collino, A. and G. P., Pirola. 1995. Griffiths infinitesimal invariant for a curve in its Jacobian. Duke Math. J., 78, 59–88.
Corlette, K. 1988. Flat G-bundles with canonical metrics. J. Differential Geom., 28, 361–382.
Cox, D. 1990. The Noether–Lefschetz locus of regular elliptic surfaces with section and pg ≥ 2. Am. J. Math., 112, 289–329.
Cox, D. and R., Donagi. 1986. On the failure of variational Torelli for regular elliptic surfaces with a section. Math. Ann., 273, 673–683.
Cox, D., R., Donagi, and L.W., Tu. 1987. Variational Torelli implies generic Torelli. Inv. Math., 88, 439–446.
Debarre, O. and Y., Laszlo. 1990. Le lieu de Noether–Lefschetz pour les variétés abéliennes. C. R. Acad. Sci. Paris, Ser. I, 311, 337–340.
Deligne, P. 1970a. Équations Differentielles à Points Singuliers Réguliers. Springer Lect. Notes Math., 163, Springer-Verlag, Berlin.
Deligne, P. 1970b. Travaux de Griffiths. Exp. 376, Sém., Bourbaki (Juin 1970), Springer Lecture Notes Math., 180, Springer-Verlag, Berlin.
Deligne, P. 1971a. Théorie de Hodge I. Actes du Congrès International des Mathématiciens, (Nice, 1970), Tome 1, 425–430. Gauthier-Villars, Paris.
Deligne, P. 1971b. Théorie de Hodge II. Publ. Math. IHES, 40, 5–57.
Deligne, P. 1971c. Travaux de Shimura. Séminaire Bourbaki (1970/71), Exp. 389 123–165, Springer Lecture Notes in Math., 244, Springer, Berlin.
Deligne, P. 1974. Théorie de Hodge III. Publ. Math. IHES, 44, 5–77.
Deligne, P. 1979. Variétés de Shimura: interprétation modulaire, et techniques de construction de modèles canoniques. Automorphic Forms, Representations and L-functions (Oregon State University, Corvallis, Oregon, 1977), Part 2, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 247–289.
Deligne, P. and A., Dimca. 1990. Filtrations de Hodge et par l'ordre du pôle pour les hypersurfaces singuliéres. Ann. Sci. E.N.S., 23, 645–656.
Deligne, P. and L., Illusie. 1987. Relèvements modulo p2 et décomposition du complexe de De Rham. Inv. Math., 89, 247–270.
Deligne, P., J. S., Milne, A., Ogus, and K., Shih. 1982. Hodge Cycles, Motives and Shimura Varieties. Springer Lecture Notes in Math. 900, Springer-Verlag, Berlin.
Deninger, Ch. and J., Murre. 1991. Motivic decomposition of abelian schemes and the Fourier transform. J. reine u. angew. Math., 422, 201–219.
Dieudonné, J. A. and J. B., Carrell.1971. Invariant Theory, Old and New. Academic Press, New York.
Donagi, R. 1983. Generic Torelli for projective hypersurfaces. Comp. Math., 50, 325–353.
Donagi, R. and M., Green. 1984. A new proof of the symmetrizer lemma and a stronger weak Torelli theorem for projective hypersurfaces. J. Diff. Geom, 20, 459–461.
Donagi, R. and L.W., Tu. 1987. Generic Torelli for weighted hypersurfaces. Math. Ann., 276, 399–413.
Donaldson, S. K. 2011. Riemann Surfaces. Oxford Graduate Texts in Mathematics 12, Oxford University Press, Oxford.
Donaldson, S. K. and P. B., Kronheimer. 1990. The Geometry of Four-Manifolds. Oxford Mathematical Monographs, Oxford University Press, Oxford.
Donin, I. F. 1978. On deformations of non-compact complex spaces. Russ. Math. Surv., 33, 181–182.
Douady, A. 1984/85. Le probleme de modules pour les variétés analytiques complexes. Sém. Bourbaki, Exp. 277.
Edixhoven, B. and A., Yafaev. 2003. Subvarieties of Shimura varieties. Ann. of Math., 157, 621–645.
Eells, J. and J. H., Sampson. 1964. Harmonic mappings of Riemannian manifolds. Am. J. Math., 86, 109–160.
Ehresmann, C. 1947. Sur les espaces fibrés différentiables. C. R. Acad. Sci. Paris, 224, 1611–1612.
Ein, L. 1985. An analogue of Max Noether's theorem. Duke Math. J., 52, 689–706.
Eisenbud, D. 1994. Commutative Algebra with a View Toward Algebraic Geometry. Springer-Verlag, New York, Berlin.
Enriques, F. 1914. Sulla classificazione delle superficie algebriche e particolarmente sulle superficie di genere p1 = 1 (2 notes). Atti Acc. Lincei V Ser., 231.
Esnault, H. and E., Viehweg. 1988. Deligne-Beilinson cohomology. Special Values of L-Functions, Arbeitsgemeinschaft Oberwolfach 1986, Perspectives in Math., 4, Academic Press, Boston, MA, 43–91.
Eyssidieux, Ph. 1997. La caracteristique d'Euler du complexe de Gauss-Manin. J. reine u. angew. Math., 490, 155–212.
Fakhruddin, N. 1996. Algebraic cycles on generic abelian varieties. Comp. Math., 100, 101–119.
Faltings, G. 1983. Arakelov's theorem for abelian varieties. Inv. Math., 73, 337–348.
Flenner, H. 1986. The infinitesimal Torelli problem for zero sections of vector bundles. Math. Z., 193, 307–322.
Forster, O. 1981. Lectures on Riemann Surfaces. Springer-Verlag, New York, Berlin.
Fujita, T. 1978. On Kähler fiber spaces over curves. J. Math. Soc. Japan, 30, 779–794.
Fulton, W. and J., Harris. 1991. Representation Theory, a First Course. Graduate Texts in Math., 129, Springer-Verlag, Berlin.
Gerkmann, R., M., Sheng, and K., Zuo. 2007. Disproof of modularity of the moduli space of CY 3-folds of double covers of P3 ramified along eight planes in general position. arXiv AG/07091051.
Gillet, H. 1984. Deligne homology and Abel–Jacobi maps. Bull. Am. Math. Soc., 10, 285–288.
Godement, R. 1964. Théorie des Faisceaux. Hermann, Paris.
Gordon, B. and J., Lewis. 1998. Indecomposable higher Chow cycles on products of elliptic curves. J. Alg. Geom., 8, 543–567.
Grauert, H. 1962. Über Modifikationen und exzeptionelle analytische Mengen. Math. Ann., 146, 331–368.
Grauert, H. 1972. Über Deformationen isolierter Singularitäten analytischer Mengen. Inv. Math., 15, 171–198.
Grauert, H. 1974. Der Satz von Kuranishi für kompakte komplexe Raüme. Inv. Math., 25, 107–142.
Grauert, H. and R., Remmert. 1977. Theorie der Steinschen Raüme. Grundl. Math., 227, Springer-Verlag, Berlin, Heidelberg.
Green, M. 1984a. Koszul cohomology and the geometry of projective varieties. Appendix: The nonvanishing of certain Koszul cohomology groups (by Mark Green and Robert Lazarsfeld). J. Diff. Geom., 19, 125–167; 168–171.
Green, M. 1984b. The period map for hypersurface sections of high degree of an arbitrary variety. Comp. Math., 55, 135–171.
Green, M. 1988. A new proof of the explicit Noether–Lefschetz theorem. J. Diff. Geom., 27, 155–159.
Green, M. 1989a. Components of maximal dimension in the Noether–Lefschetz locus. J. Diff. Geom., 29, 295–302.
Green, M. 1989b. Griffiths' infinitesimal invariant and the Abel-Jacobi map. J. Diff. Geom., 29, 545–555.
Green, M. 1996. What comes after the Abel–Jacobi map? Unpublished manuscript.
Green, M. 1998. Higher Abel–Jacobi maps, Invited Lecture at the International Congress Berlin 1998. Documenta Math, II, 267–276.
Green, M. and S., Müller-Stach. 1996. Algebraic cycles on a general complete intersection of high multidegree of a smooth projective variety. Comp. Math., 100, 305–309.
Green, M., P. A., Griffiths, and M., Kerr. 2012. Mumford-Tate Groups and Domains: Their Geometry and Arithmetic. Princeton University Press, Princeton, NJ.
Green, M., J., Murre, and C., Voisin. 1994. Algebraic Cycles and Hodge theory (ed. A., Albano and F., Bardelli), Springer Lect. Notes Math., 1594.
Greenberg, M. J. 1967. Lectures on Algebraic Topology. W. A. Benjamin, Reading, MA.
Griffiths, P. 1968. Periods of integrals on algebraic manifolds, I, II. Am. J. Math., 90, 568–626; 805–865.
Griffiths, P. 1969. On the periods of certain rational integrals I, II. Ann. Math., 90, 460–495; 498–541.
Griffiths, P. 1970. Periods of integrals on algebraic manifolds, III. Publ. Math. IHÉS, 38, 125–180.
Griffiths, P. 1983. Infinitesimal variations of Hodge structure (III): determinantal varieties and the infinitesimal invariant of normal functions. Comp. Math., 50, 267–324.
Griffiths, P. and J., Harris. 1978. Principles of Algebraic Geometry. Wiley, New York.
Griffiths, P. and J., Harris. 1983. Infinitesimal variations of Hodge structure (II): an infinitesimal invariant of Hodge classes. Comp. Math., 50, 207–266.
Griffiths, P. and J., Harris. 1985. On the Noether–Lefschetz theorem and some remarks on codimension-two cycles. Math. Ann., 271, 31–51.
Griffiths, P. and W., Schmid. 1969. Locally homogenous complex manifolds. Acta Math., 123, 145–166.
Griffiths, P., C., Robles, and D., Toledo. 2015. Quotients of non-classical flag domains are not algebraic. http://arxiv.org/abs/1303.0252.
Gross, M., D., Huybrechts, and D., Joyce. 2003. Calabi–Yau Manifolds and Related Geometries (Lectures from the Summer School held in Nordfjordeid, June 2001.). Springer-Verlag, Berlin, Heidelberg.
Grothendieck, A. 1958. La théorie des classes de Chern. Bull. Soc. Math., France, 86, 137–154.
Guillemin, V. and A., Pollack. 1974. Differential Topology. Prentice-Hall, Englewood Cliffs, NJ.
Gunning, R. C. and H., Rossi. 1965. Analytic Functions of Several Complex Variables. Prentice-Hall, Englewood Cliffs, NJ.
Harris, J. 1992. Algebraic Geometry, a First Course. Grad. Texts in Math, 133, Springer-Verlag, Berlin, Heidelberg.
Hartshorne, R. 1975. Equivalence relations on algebraic cycles and subvarieties of small codimension. Proc. Symp. Pure Math., 29, Am. Math. Soc., Providence, RI. 129–164.
Hartshorne, R. 1987. Algebraic Geometry. Springer-Verlag, Berlin, Heidelberg.
Hatcher, A. 2002. Algebraic Topology. Cambridge University Press, Cambridge.
Helgason, S. 1962. Differential Geometry and Symmetric Spaces. Academic Press, New York, London.
Helgason, S. 1978. Differential Geometry, Lie Groups and Symmetric Spaces. Academic Press, New York, London.
Hironaka, H. 1964. Resolution of singularities of an algebraic variety of characteristic zero. Ann. Math., 79, 109–326.
Hirzebruch, F. 1966. Topological Methods in Algebraic Geometry. Grundl. Math. Wiss., 131 (dritte Ausgabe), Springer-Verlag, New York, Berlin.
Hirzebruch, F. 1976. Hilbert's modular group of the field Q(√ 5) and the cubic diagonal surface of Clebsch and Klein. Russ. Math. Surv., 31, 96–110.
Hitchin, N. 1987. The self-duality equations on a Riemann surface. Proc. London Math. Soc., 55, 59–126.
Hodge, W. V. D. 1952. The topological invariants of algebraic varieties. Proc. Int. Congr. Math. (Cambridge 1950)., Am. Math. Soc., Providence, RI, 182–192.
Hodge, W. V. D. 1959. The Theory and Applications of Harmonic Integrals. Cambridge University Press, Cambridge, UK.
Holzapfel, R.-P. 1986a. Chern numbers of algebraic surfaces – Hirzebruch's examples are Picard modular surfaces. Math. Nachrichten, 126, 255–273.
Holzapfel, R.-P. 1986b. Geometry and Arithmetic Around Euler Partial Differential Equations. Reidel Publishing Company, Kluwer, Dordrecht.
Horikawa, E. 1976. Algebraic surfaces of general type with small c2 1, I. Ann. Math., 104, 357–387.
Huber, A. and S., Müller-Stach. 2017. Periods and Nori Motives. Ergebnisse Series 3rd series 65, Springer-Verlag, Berlin.
Humphreys, J. 1981. Linear Algebraic Groups. Graduate Texts in Mathematics, 21, Springer-Verlag, Berlin, Heidelberg, New York.
Husemoller, D. 1966. Fibre Bundles. MacGraw-Hill, New York.
Huybrechts, D. 1999. Compact hyperkahler manifolds: basic results. Invent. Math., 135, 63–113.
Huybrechts, D. 2012. A global Torelli theorem for hyperkähler manifolds (after Verbitsky). Séminaire Bourbaki: Vol. 2010/2011. Exposés 1027–1042, Astérisque, 348, 375-403. See also arxiv:1106.5573.
Huybrechts, D. 2016. Lectures on K3 Surfaces. Cambridge University Press.
Ihara, S-i. 1967. Holomorphic imbeddings of symmetric domains. J. Math. Soc. Japan, 19, 261–302.
Ince, E. L. 1956. Ordinary Differential Equations. Dover Publ., New York.
Ivinskis, K. 1993. A variational Torelli theorem for cyclic coverings of high degree. Comp. Math., 85, 201–228.
Jannsen, U. 2000. Equivalence relations on algebraic cycles. The Arithmetic and Geometry of Algebraic Cycles Proc. Banff 1998, Kluwer Acad. Publ., Dordrecht, Ser. C 548, 225–260.
Joshi, K. 1995. A Noether–Lefschetz theorem and applications. J. Alg. Geom., 4, 105–135.
Jost, J. and K., Zuo. 2002. Arakelov type inequalities for Hodge bundles over algebraic varieties, Part I: Hodge bundles over algebraic curves with unipotent monodromies around singularities. J. Alg. Geom., 11, 535–546.
van Kampen, E. R. 1933. On the fundamental group of an algebraic curve. Am. J. Math., 55, 255–260.
Katz, N. and T., Oda. 1968. On the differentiation of de Rham cohomology classes with respect to parameters. J. Math. Kyoto University, 8, 199–213.
Kempf, G., F., Knudsen, D., Mumford, and B., Saint-Donat. 1973. Toroidal Embeddings I. Springer Lect. Notes, 336, Springer-Verlag, Berlin.
Kiĭ, K. 1973. A local Torelli theorem for cyclic coverings of Pn with positive class. Math. Sb., 92, 142–151.
Kiĭ, K. 1978. The local Torelli theorem for varieties with divisible canonical class. Math. USSR Izv., 12, 53–67.
Kim, Sung-Ock. 1991. Noether–Lefschetz locus for surfaces. Trans. Am. Math. Soc., 324, 369–384.
Klingler, B. and A., Yafaev. 2014. The André–Oort conjecture. Ann. Math., 180, 867–925.
Knapp, A. 2005. Lie Groups Beyond an Introduction(second edition). Progress in Maths., 140, Birkhäuser, Boston, Basel, Berlin.
Kobayashi, S. 1987. Differential Geometry of Complex Vector Bundles. Princeton University Press, Princeton, NJ.
Kodaira, K. and D., Spencer. 1953. Divisor class groups on algebraic varieties. Proc. Natl. Acad. Sci. USA, 39, 872–877.
Kodaira, K. and D., Spencer. 1962. A theorem of completeness for complex analytic fibre spaces. Acta Math., 100, 43–76.
Kodaira, K., L., Nirenberg, and D., Spencer. 1958. On the existence of deformations of complex structures. Ann. Math., 90, 450–459.
Konno, K. 1985. On deformations and the local Torelli problem for cyclic branched coverings. Math. Ann., 271, 601–618.
Konno, K. 1986. Infinitesimal Torelli theorems for complete intersections in certain homogeneous Kähler manifolds. Tôhoku Math. J., 38, 609–624.
Konno, K. 1991. On the variational Torelli problem for complete intersections. Comp. Math., 78, 271–296.
Koszul, J.-L. and B., Malgrange. 1958. Sur certaines structures fibrées complexes. Arch. Math., 9, 102–109.
Kronecker, L. 1857. Zwei Sätze über Gleichungen mit ganzzahligen Coeffizienten. J. reine u. angew. Math., 53, 173–175.
Kunnemann, K. 1994. On the Chow motive of an abelian scheme. Motives Seattle WA 1991, Proc. Symp. Pure Math., 55 (1), Amer. Math. Soc., Providence RI, 189–205.
Kuranishi, M. 1965. New proof for the existence of locally complete families of complex analytic structures. Proc. Conf. Complex Analysis, Minneapolis, 1964, Springer-Verlag New York, Berlin, 142–154.
Kynev, V. 1977. An example of a simply connected surface for which the local Torelli theorem does not hold (Russian). C.R.Ac. Bulg. Sc., 30, 323–325.
Lamotke, K. 1981. The topology of complex projective varieties after S. Lefschetz. Topology, 20, 15–52.
Landman, A. 1973. On the Picard–Lefschetz transformation for algebraic manifolds acquiring general singularities. Trans. Am. Math. Soc., 181, 89–126.
Lang, S. 1985. Introduction to Differentiable Manifolds (second edition 2002). Springer-Verlag, New York, Berlin.
Lawson, H. B., Jr. 1980. Lectures on Minimal Submanifolds, Volume I. Mathematics Lecture Series, 9, Publish or Perish, Inc.
Lefschetz, S. 1924. L'Analysis Situs et la Géométrie Algébrique. Gauthiers-Villars Paris.
Lelong, P. 1957. Intégration sur un ensemble analytique complexe. Bull. Soc. Math. France, 85, 239–262.
Leray, J. 1959. Le calcul différentiel et intégral sur une variété analytique complexe (Problème de Cauchy III). Bull. Soc. Math. France, 87, 81–180.
Levine, M. 1998. Mixed Motives. Mathematical Surveys and Monographs, 57, AMS, Providence, RI.
Lewis, J. D. 1991. A Survey of the Hodge Conjecture. Publications C.R.M., Montreal.
Libgober, A. and I., Dolgachev. 1981. On the fundamental group of the complement to a discriminant variety. Algebraic Geometry, Springer Lect. Notes Math., 862, 1–25.
Lieberman, D. 1978. Compactness of the Chow scheme: applications to automorphisms and deformations of Kähler manifolds. Sém. Norguet 1976, Springer Lect. Notes Math., 670, (1978), 140–186.
Lieberman, D., C., Peters, and R., Wilsker. 1977. A theorem of Torelli type. Math. Ann., 231, 39–45.
Liu, K., A., Todorov, S.-T., Yau, and K., Zuo. 2011. Finiteness of subfamilies of Calabi-Yau N-folds over curves with maximal length of Yukawa-coupling. Pure and Applied Mathematics Quarterly, 7 (Special Issue: In honor of EckartViehweg), 1585–1598.
Looijenga, E. and R., Swierstra. 2007. The period map for cubic threefolds. Compos. Math., 143, 1037–1049.
Lopez, A. 1991. Noether–Lefschetz Theory and the Picard group of Projective Surfaces. Mem. Am. Math. Soc. monograph, 438.
Lu, X. and K., Zuo. 2014. On Shimura curves in the Torelli locus of curves. arxiv.org/abs/1311.5858.
Lu, X. and K., Zuo. 2015. The Oort conjecture on Shimura curves in the Torelli locus of curves. arxiv.org/abs/1405.4751.
Lu, X., S.-L., Tan and K., Zuo 2016. Singular fibers and Kodaira dimensions. arxiv.org/abs/arXiv:1610.07756.
Macaulay, F. S. 1916. The Algebraic Theory of Modular Systems. Revised 1994 reprint of the 1916 original, with an introduction by Paul, Roberts, Cambridge Mathematical Library, Cambridge University Press, Cambridge.
Malgrange, B. 1974. Intégrales asymptotiques et monodromie. Ann. Sci. École Norm. Sup., ser. 4, 7, 405–430.
Margulis, G. 1991. Discrete Subgroups of Semisimple Lie Groups. Ergebnisse der Math. und ihrer Grenzgebiete, 17, Springer-Verlag, Berlin.
Matsumura, H. 1989. Commutative Ring Theory. Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, Cambridge.
Mazza, C., V., Voevodsky, and C., Weibel. 2006. Lecture Notes on Motivic Cohomology. CMI/AMS, Claymath Publ., 7.
Miller, A., S., Müller-Stach, S., Wortmann, Y.-H., Yang, and K., Zuo. 2007. Chow-Kunneth decomposition for universal families over Picard modular surfaces. Algebraic Cycles and Motives Part II (eds. J., Nagel and Ch. Peters), London Math. Soc. Lecture Notes, 344, Cambridge University Press.
Milne, J. 2004. Introduction to Shimura Varieties. http://www.jmilne.org/math/xnotes/svi.pdf
Milnor, J. 1963. Morse Theory. Princeton University Press, Princeton, NJ.
Milnor, J. and J., Stasheff. 1974. Characteristic Classes. Ann. Math. Studies, 76, Princeton University Press, Princeton, NJ.
Mohajer, A., S., Müller-Stach, and K., Zuo. 2016. Special subvarieties in Mumford-Tate varieties. arXiv:1410.4654 [math.AG].
Möller, M., E., Viehweg, and K., Zuo. 2006. Special families of curves, of Abelian varieties and of certain minimal manifolds over curves, Global Aspects of Complex Geometry, Springer-Verlag, Berlin, 417–450.
Moonen, B. 1998. Linearity properties of Shimura varieties, I. J. Alg. Geom, 7, 539–567.
Moonen, B. 1999. Notes on Mumford–Tate groups www.math.ru.nl/∼bmoonen/Lecturenotes/CEBnotesMT.pdf.
Moonen, B. 2016. Notes on Mumford-Tate groups and Galois representations. Forthcoming.
Morrison, D. 1988. On the moduli of Todorov surfaces. Algebraic Geometry and Commutative Algebra in Honor of Masayoshi Nagata 1987, Kinokuniya, Tokyo, 313–355.
Mostow, G. and T., Tamagawa. 1962. On the compactness of arithmetically defined homogeneous spaces. Ann. of Math., 76, 440–463.
Müller-Stach, S. 1992. On the non-triviality of the Griffiths group. J. reine u. angew. Math., 427, 209–218.
Müller-Stach, S. 1994. Syzygies and the Abel–Jacobi map for cyclic coverings. Manuscr. Math., 82, 433–443.
Müller-Stach, S. 1997. Constructing indecomposable motivic cohomology classes on algebraic surfaces. J. Alg. Geom., 6, 513–543.
Müller-Stach, S. and K., Zuo. 2011. A characterization of special subvarieties in orthogonal Shimura varieties, Pure and Applied Mathematics Quarterly, 7 (Special Issue: In honor of Eckart Viehweg), 1599–1630.
Müller-Stach, S., C., Peters, and V., Srinivas. 2012a. Abelian varieties and theta functions as invariants for compact Riemannian manifolds; constructions inspired by superstring theory. J. Math. Pures et Appliquées, 97.
Müller-Stach, S., M., Sheng, X., Ye, and K., Zuo. 2011. On the cohomology groups of local systems over Hilbert modular varieties via Higgs bundles. math.AG 1009.2011.
Müller-Stach, S., E., Viehweg, and K., Zuo. 2009. Relative proportionality for subvarieties of moduli spaces of K3 and abelian surfaces. Pure and Applied Mathematics Quarterly, 5 (Special Issue: In honor of Friedrich Hirzebruch), 1161–1199.
Müller-Stach, S., X., Ye, and K., Zuo. 2012b. Mixed Hodge complexes and L2- cohomology for local systems on ball quotients. To appear in Documenta Mathematica.
Mumford, D. 1963. Curves on Algebraic Surfaces. Princeton University Press, Princeton, NJ.
Mumford, D. 1965. Geometric Invariant Theory. Springer-Verlag, Berlin, New York.
Mumford, D. 1966. Families of abelian varieties. Algebraic Groups and Discontinuous Subgroups (Boulder, Colorado, 1965). Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, R.I., 347–351.
Mumford, D. 1969a. A note on Shimura's paper “Discontinuous groups and abelian varieties”. Math. Annalen, 181, 345–351.
Mumford, D. 1969b. Rational equivalence of zero-cycles on surfaces. J. Math. Kyoto University, 9, 195–204.
Mumford, D. 1970. Varieties defined by quadratic equations. Questions on Algebraic Varieties (C.I.M.E., III Ciclo, Varenna, 1969), Edizioni Cremonese, Rome, 29–100.
Mumford, D. 1976. Algebraic Geometry I, Complex Projective Varieties. Grundl. Math. Wissensch., 221, Springer-Verlag, Berlin, New York.
Murre, J. 1993. On a conjectural filtration on the Chow groups of an algebraic variety. Indag. Math., 4, 177–188.
Murre, J., J., Nagel, and C., Peters. 2013. Lectures on the Theory of Pure Motives. University Lecture Series, 61, AMS, Providence RI.
Nagel, J. 1997. The Image of the Abel-Jacobi Map for Complete Intersections. Proefschrift (Thesis), Rijksuniversiteit Leiden.
Nagel, J. 2002. Effective bounds for Hodge theoretic connectivity. J. Alg. Geom., 11, 1–32.
Newstead, P. E. 1978. Introduction to Moduli Problems and Orbit Spaces. Springer- Verlag, Berlin, New York.
Nori, M. 1989. Cycles on the generic abelian threefold. Proc. Indian Acad. Sci. Math. Sci, 99, 191–196.
Nori, M. 1993. Algebraic cycles and Hodge theoretic connectivity. Inv. Math., 111, 349–373.
Oguiso, K. and E., Viehweg. 2001. On the isotriviality of families of elliptic surfaces. J. Alg. Geom., 10, 569–598.
Oort, F. 1997. Canonical liftings and dense sets of CM points. Arithmetic Geometry (Cortona 1994), Symp. Math., XXXVII, Cambridge University Press, Cambridge, 228–234.
Palamodov, V. 1976. Deformations of complex spaces. Russ. Math. Surv., 31, 129–197.
Paranjape, K. 1991. Curves on threefolds with trivial canonical bundle. Proc. Ind. Acad. Sci. Math. Sci, 101, 199–213.
Paranjape, K. 1994. Cohomological and cycle-theoretic connectivity. Ann. of Math., 140, 349–373.
Peters, C. 1975. The local Torelli theorem: complete intersections. Math. Ann., 217, 1–16.
Peters, C. 1976a. Erratum to “The local Torelli theorem. I: complete intersections”. Math. Ann., 223, 191–192.
Peters, C. 1976b. The local Torelli theorem II: cyclic branched coverings. Ann. Sc. Norm. Sup. Pisa Ser. IV, 3, 321–339.
Peters, C. 1984. A criterion for flatness of Hodge bundles over curves and geometric applications. Math. Ann., 268, 1–19.
Peters, C. 1988. Some remarks about Reider's article ‘On the infinitesimal Torelli theorem for certain irregular surfaces of general type.’ Math. Ann., 282, 315–324.
Peters, C. 1990. Rigidity for variations of Hodge structure and Arakelov-type finiteness theorems. Comp. Math., 75, 113–126.
Peters, C. 2000. Arakelov inequalities for Hodge bundles. Prépub. de l'Inst. Fourier, 511.
Peters, C. 2010. Rigidity, past and present. Proceedings of Teichmueller Theory and Moduli Problems (HRI, India, January 2006). Ramanujan Mathematical Society's Lecture Notes Series, 10, 529–548.
Peters, C. 2016. Inequalities for semi-stable fibrations on surfaces, and their relation to the Coleman-Oort conjecture. Pure and Applied Math. Q. 12, 1–30. See also arxiv.org/abs/1405.4531v2.
Peters, C. and J., Steenbrink. 1983. Infinitesimal variation of Hodge Structure and the generic Torelli problem for projective hypersurfaces. Classification of Algebraic and Analytic Varieties, Birkhäuser Verlag, Basel, 399–464.
Peters, C. and J., Steenbrink, 2008. Mixed Hodge structures. Ergebnisse der Math., 52, Springer-Verlag, Berlin.
Piateckii-Shapiro, I. and I., Shafarevich. 1971. A Torelli theorem for algebraic surfaces of type K3. Izv. Akad. Nauk. SSSR. Ser.Math., 35, 530–572.
Picard, E. 1883. Sur des fonctions de deux variables indépendentes analogues aux fonctions modulaires. Acta. Math., 2, 114–135.
Pourcin, G. 1974. Déformations de singularités isolées. Asterique, 16, 161–173.
Quillen, D. 1973. Higher algebraic K-theory, I (Proc. Conf. Battle Inst. 1972). Lect. Notes Math., 341, Springer-Verlag, Berlin., 85–147.
Ravi, M. 1993. An effective version of Nori's theorem. Math. Z., 214, 1–7.
Reider, I. 1988. On the infinitesimal Torelli theorem for certain types of irregular surfaces. Math. Ann., 279, 285–302.
Roberts, J. 1972. Chow's moving lemma. Algebraic Geometry Oslo Conf. 1970, Wolters–Noordhoff, Groningen, 89–96.
Roĭtman, A. A. 1974. Rational equivalence of zero-dimensional cycles. Math. USSR Sb., 18, 571–588.
Saint-Donat, B. 1975. Variétés de translation et théorème de Torelli. C.R.Ac. Sci. Paris, Sér. A., 280, 1611–1612.
Saito, Ma. 1983. On the infinitesimal Torelli problem of elliptic surfaces. J. Math. Kyoto University, 23, 441–460.
Saito, Ma. 1986. Weak global Torelli theorem for certain weighted projective hypersurfaces. Duke Math. J., 53, 67–111.
Saito, Ma. 1993. Classification of non-rigid families of abelian varieties. Tôhoku Math. J., 45, 159–189.
Saito, Ma. and S., Zucker. 1991. Classification of non-rigid families of K3-surfaces and a finiteness theorem of Arakelov type. Math. Ann., 289, 1–31.
Saito, Mo. 2001. Arithmetic mixed Hodge structures. Inv. Math., 144, 533–569.
Saito, S. 1996. Motives and filtrations on Chow groups. Inv. Math., 125, 149–196.
Sampson, J. H. 1978. Some properties and applications of harmonic mappings. Ann. Sci. ÉNS, 11, 211–228.
Sampson, J. H. 1986. Applications of harmonic maps to Kähler geometry. Contemp. Math., 49, 125–133.
Satake, I. 1965. Holomorphic embeddings of symmetric domains into a Siegel space. Amer. J. Math., 87, 425–461.
Satake, I. 1966. Symplectic representations of algebraic groups. Algebraic Groups and Discontinous Subgroups, Proc. of Symposia, IX, 352–360.
Satake, I. 1967. Symplectic representations of algebraic groups satisfying a certain analyticity condition. Acta Math., 117, 215–279.
Satake, I. 1980. Algebraic Structures of Symmetric Domains. Princeton University Press, Princeton.
Schmid, W. 1973. Variations of Hodge structure: the singularities of the period mapping. Inv. Math., 22, 211–320.
Schur, I. 1905. Zur Theorie der vertauschbaren Matrizen. J. reine u. angew. Math., 130, 66–78.
Sebastiani, M. and R., Thom. 1955. Un résultat sur la monodromie. Invent. Math., 13, 90–96.
Serre, J.-P. 1955. Faiscaux algébriques cohérents. Ann. Math., 61, 197–278.
Serre, J.-P. 1956. Géométrie algébrique et géométrie analytique. Ann. Inst. Fourier, 6, 1–42.
Serre, J.-P. 1979. A Course in Arithmetic. Springer-Verlag, Berlin.
Shimura, G. 1963. On analytic families of polarized abelian varieties and automorphic functions. Ann. of Math., 78, 149–192.
Shimura, G. 1964. On the field of definition for a field of automorphic functions. I, Ann. of Math., 80, 160–189.
Shimura, G. 1965. On the field of definition for a field of automorphic functions. II. Ann. of Math., 81, 124–165.
Shimura, G. 1966. On the field of definition for a field of automorphic functions. III. Ann. of Math., 83, 377–385.
Shioda, T. 1981. On the Picard number of a complex-projective variety. Ann. Sc. ENS, 14, 303–321.
Shioda, T. 1985. A note on a theorem of Griffiths on the Abel–Jacobi map. Inv. Math., 82, 461–466.
Silverman, J. 1992. The Arithmetic of Elliptic Curves. Graduate Texts in Math., 106, Springer Verlag, Berlin.
Simpson, C. 1990. Harmonic bundles on non-compact curves. J. Am. Math. Soc., 3, 713–770.
Simpson, C. 1992. Higgs bundles and local systems. Publ. Math. IHES, 75, 5–95.
Simpson, C. 1994. Moduli of representations of the fundamental group of a smooth variety. Publ. Math. IHES, 79, 47–129.
Simpson, C. 1995. Moduli of representations of the fundamental group of a smooth projective variety, II. Publ. Math. IHES, 80, 5–79.
Siu, Y.-T. 1980. Complex analyticity of harmonic maps and strong rigidity of complex Kähler manifolds. Ann. Math., 112, 73–111.
Siu, Y.-T. 1983. Every K3-surface is Kähler. Invent. Math., 73, 139–150.
Spandaw, J. 1992. A Noether–Lefschetz theorem for linked surfaces in P4. Indag. Math. New Ser., 3, 91–112.
Spandaw, J. 1994. Noether–Lefschetz problems for vector bundles. Math. Nachr., 169, 287–308.
Spandaw, J. 1996. A Noether–Lefschetz theorem for vector bundles. Manuscri. Math., 89, 319–323.
Spandaw, J. 2002. Noether–Lefschetz Theorems for Degeneracy Loci. Habilitationsschrift, Hannover (2000), Mem. Am. Math. Soc., 161.
Spanier, E. 1966. Algebraic Topology. Springer-Verlag, Berlin, Heidelberg.
Sun, X., S.-L., Tan, and K., Zuo. 2003. Families of K3-surfaces reaching the Arakelov–Yau upper bounds and modularity. Math. Res. Letters, 10, 323–342.
Szabo, E. 1996. Complete intersection subvarieties of general hypersurfaces. Pac. J. Math., 175, 271–294.
Tian, G. 1986. Smoothness of the universal deformation space of compact Calabi–Yau manifolds and its Petersson–Weil metric. Mathematical Methods of Theoretical Physics (S.-T., Yau, ed.), World Scientific, Hong Kong.
Todorov, A. N. 1980. Surfaces of general type with pg = 1 and (K, K) = 1. I. Ann. Sci. École Norm. Sup. (4), 13, (1980), 1–21.
Todorov, A. N. 1981. A construction of surfaces with pg = 1, q = 0 and 2 ≤ K2 ≤ 8. Counterexamples of the global Torelli theorem. Inv. Math., 63, 287–304.
Torelli, R. 1913. Sulle varietà di Jacobi. Rend. Accad. Lincei, Cl. Fis. Mat. Nat., 22 (5), 98–103.
Tsimerman, J. 2015. A proof of the André–Oort conjecture. arXiv:1506.01466.
Tu, L. W. 1983. Hodge Theory and the Local Torelli Problem. Mem. Am. Math. Soc., 279.
Usui, S. 1976. The local Torelli theorem for non-singular complete intersections. Jap. J. Math., 2, 411–418.
Usui, S. 1982. Torelli theorem for surfaces with pg = c2 1 = 1 and K ample and with certain type of automorphism. Comp. Math., 45, 293–314.
Ullmo, E. and A., Yafaev 2014. Galois orbits and equidistribution of special subvarieties: towards the André–Oort conjecture. Ann. Math., 180, 823–865.
Verbitsky, M. 2013. Mapping class group and global Torelli theorem for hyperkähler manifolds. Duke Math. J., 162, 2929–2986.
Viehweg, E. 1982. Die Additivität der Kodaira Dimension für projektive Faserraüme über Varietäten des allgemeinen Typs. J. reine u. angewandte Math, 330, 132–142.
Viehweg, E. 1995. Quasi-Projective Moduli for Polarized Manifolds. Springer-Verlag, Berlin, New York.
Viehweg, E. 2008. Arakelov (in)equalities. arXiv:0812.3350v2.
Viehweg, E. and K., Zuo. 2001. On the isotriviality of families of projective manifolds over curves. J. Alg. Geom., 10, 781–799.
Viehweg, E. and K., Zuo. 2003a. Discreteness of minimal models of Kodaira dimension zero and subvarieties of moduli stacks. Surveys in Differential Geometry, Vol. VIII, Int. Press, Somerville, MA, 337–356.
Viehweg, E. and K., Zuo. 2003b. On the Brody hyperbolicity of moduli spaces for canonically polarized manifolds. Duke Math. J., 118, 103–150.
Viehweg, E. and K., Zuo. 2004. A characterization of certain Shimura curves in the moduli stack of abelian varieties. J. Differential Geom., 66, 233–287.
Viehweg, E. and K., Zuo. 2005. Complex multiplication, Griffiths–Yukawa couplings and rigidity for families of hypersurfaces. J. Alg. Geom., 14, 481–528.
Viehweg, E. and K., Zuo. 2006. Numerical bounds for semistable families of curves or of certain higher dimensional manifolds. J. Alg. Geom., 15, 771–791.
Viehweg, E. and K., Zuo. 2007. Arakelov inequalities and the uniformization of certain rigid Shimura varieties. J. Diff. Geom., 77, 291–352.
Viehweg, E. and K., Zuo. 2008. Special subvarieties of Ag. Third International Congress of Chinese Mathematicians. Part 1, 2, AMS/IP Stud. Adv. Math., 42, Amer. Math. Soc., Providence, RI, 111–124.
Voevodsky, V., A., Suslin, and E., Friedlander. 2000. Cycles, Transfers and Motivic Homology Theories. Ann. Math. Studies, 143, Princeton University Press, Princeton, NJ.
Voisin, C. 1988a. Une précision concernant le théorème de Noether. Math. Ann., 280, 605–611.
Voisin, C. 1988b. Une remarque sur l'invariant infinitésimal des fonctions normales. C. R. Acad. Sci. Paris, 307, 157–160.
Voisin, C. 1989a. Sur une conjecture de Griffiths et Harris. Algebraic Curves and Projective Geometry (Proc. Conf., Trento/Italy 1988), Springer Lect. Notes Math., 1389, 270–275.
Voisin, C. 1989b. Composantes de petite codimension du lieu de Noether–Lefschetz. Comm. Math. Helv., 64, 515–526.
Voisin, C. 1990. Sur le lieu de Noether–Lefschetz en degrés 6 et 7. Comp. Math., 74, 47–68.
Voisin, C. 1991. Contrexemple à une conjecture de J. Harris. C. R. Acad. Sci., Paris, Ser. I, 313, 685–687.
Voisin, C. 1992. Une approche infinitésimale du théorème de H. Clemens sur les cycles d'une quintique générale de P4. J. Alg. Geom., 1, 157–174.
Voisin, C. 1994a. Sur l'application d'Abel–Jacobi des variétés de Calabi–Yau de dimension trois. Ann. Sci. ENS, 27, 209–226.
Voisin, C. 1994b. Variations de structure de Hodge et zéro-cycles sur les surfaces générales. Math. Ann., 299, 77–103.
Voisin, C. 1995. Variations of Hodge structures and algebraic cycles. Proc. Int. Congr. Zurich 1994, 706–715.
Voisin, C. 1999a. A generic Torelli theorem for the quintic threefold. New Trends in Algebraic Geometry (Warwick, 1996), London Math. Soc. Lecture Note Ser., 264, 425–463.
Voisin, C. 1999b. Some results on Green's higher Abel–Jacobi map. Ann. Math., 149, 451–473.
Voisin, C. 2000. The Griffiths group of a general Calabi–Yau threefold is not finitely generated. Duke Math. J., 102, 151–186.
Warner, F. W. 1983. Foundations of Differentiable Manifolds and Lie Groups. Springer-Verlag, Berlin, Heidelberg.
Wehler, J. 1986. Cyclic coverings: deformations and Torelli theorems. Math. Ann., 274, 443–472.
Wehler, J. 1988. Hypersurfaces of the flag variety: deformation theory and the theorems of Kodaira–Spencer, Torelli, Lefschetz, M. Noether and Serre. Math. Z., 198, 21–38.
Weil, A. 1958. Variétés Kähleriennes. Hermann, Paris.
Wells, R. 1980. Differential Analysis on Complex Manifolds. Springer-Verlag, Berlin, Heidelberg.
Wu, Xian. 1990a. On a conjecture of Griffiths and Harris generalizing the Noether– Lefschetz theorem. Duke Math. J., 60, 465–472.
Wu, Xian. 1990b. On an infinitesimal invariant of normal functions. Math. Ann., 288, 121–132.
Xu, Geng. 1994. Subvarieties of general hypersurfaces in projective space. J. Differ. Geom., 39, 139–172.
Yuan, X. and S.-W., Zhang. 2015. On the averaged Colmez conjecture. arXiv:1507.06903.
Zariski, O. 1971. Algebraic Surfaces (second supplemented edition). Springer-Verlag, Berlin, Heidelberg.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.