Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T10:10:46.988Z Has data issue: false hasContentIssue false

Chapter 12 - Infections Involving the Kidney Directly

from Section 5 - Infectious Diseases

Published online by Cambridge University Press:  10 August 2023

Helen Liapis
Affiliation:
Ludwig Maximilian University, Nephrology Center, Munich, Adjunct Professor and Washington University St Louis, Department of Pathology and Immunology, Retired Professor
Get access

Summary

Many infections that may affect the kidney have decreased in Western countries but continue to be a serious public health issue in the tropics. This chapter describes exclusively the most common microorganisms that directly invade the kidney and/or elicit an immune response causing glomerulonephritis or interstitial nephritis. Chapters 5 and 10 examine the latter pathologies respectively. Opportunistic infections in immune compromised hosts are also discussed in Chapter 18, under transplant pathology. Clinical presentation, pathogenesis and pathology are presented, followed briefly by treatment options. The infections discussed include kidney tuberculosis, HIV, rare viruses (hantavirus, dengue virus), SARS-CoV-2 and parasites.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barsoum, R. S., Francis, M. R., Sitprija, V.. Renal involvement in tropical diseases. In Schrier, R. W. (ed) Atlas of Diseases of the Kidney. 1999;6–18.Google Scholar
Cantwell, M. F., Shehab, Z. M., Costello, A. M., Sands, L., Green, W. F., Ewing, E. P. J., et al. Brief report: Congenital tuberculosis. NEJM 1994;330:1051–4.Google Scholar
Dhua, A. K., Borkar, N., Ghosh, V., Aggarwal, S. K.. Renal tuberculosis in infancy. J Indian Assoc Pediatric Surg. 2011;16:6971.CrossRefGoogle ScholarPubMed
Zhang, X., Xie, Y., Huang, G., Fu, H.. Analysis of 17 children with renal abscess. Int J Clin Exp Pathol. 2019;12:3179–84.Google ScholarPubMed
Chattopadhyay, A., Bhatnagar, V., Agarwala, S., Mitra, D. K.. Genitourinary tuberculosis in pediatric surgical practice. J Pediatr Surg. 1997;32:1283–6.CrossRefGoogle ScholarPubMed
Singh, J. P., Priyadarshi, V., Kundu, A. K., Vijay, M. K., Bera, M. K., Pal, D. K.. Genito-urinary tuberculosis revisited--13 years’ experience of a single centre. Indian J Tuberc. 2013;60:1522.Google ScholarPubMed
Gibson, M. S., Puckett, M. L., Shelly, M. E.. Renal tuberculosis. Radiographics. 2004;24:251–6.Google Scholar
Daher, E. De F., da Silva, G. B., Barros, E. J.. Renal tuberculosis in the modern era. Am J Trop Med Hyg. 2013;88:5464.CrossRefGoogle ScholarPubMed
Kritsaneepaiboon, S., Andres, M. M., Tatco, V. R., Lim, C. C. Q., Concepcion, N. D. P.. Extrapulmonary involvement in pediatric tuberculosis. Pediatr Radiol. 2017;47:1249–59.CrossRefGoogle ScholarPubMed
Dettmar, A. K., Oh, J.. Infection-related focal segmental glomerulosclerosis in children. BioMed Res Int. 2016;2016:7351964.CrossRefGoogle ScholarPubMed
Ramsuran, D., Bhimma, R., Ramdial, P. K., Naicker, E., Adhikari, M., Deonarain, J., et al. The spectrum of HIV-related nephropathy in children. Pediatr Nephrol. 2012;27:821–7.CrossRefGoogle ScholarPubMed
Bhimma, R., Purswani, M. U., Kala, U.. Kidney disease in children and adolescents with perinatal HIV-1 infection. J Int AIDS Soc. 2013;16:18596.Google Scholar
Hatsukari, I., Singh, P., Hitosugi, N., Messmer, D., Valderrama, E., Teichberg, S., et al. DEC-205-mediated internalization of HIV-1 results in the establishment of silent infection in renal tubular cells. J Am Soc Nephrol. 2007;18:780–7.CrossRefGoogle ScholarPubMed
Singh, P., Goel, H., Husain, M., Lan, X., Mikulak, J., Malthotra, A., et al. Tubular cell HIV-entry through apoptosed CD4 T cells: A novel pathway. Virology. 2012;434:6877.Google Scholar
Xie, X., Colberg-Poley, A. M., Das, J. R., Li, J., Zhang, A., Tang, P., et al. The basic domain of HIV-tat transactivating protein is essential for its targeting to lipid rafts and regulating fibroblast growth factor-2 signaling in podocytes isolated from children with HIV-1-associated nephropathy. J Am Soc Nephrol. 2014;25:1800–13.Google Scholar
Jindal, A. K., Tiewsoh, K., Pilania, R. K.. A review of renal disease in children with HIV infection. Infect Dis. 2018;50:112.CrossRefGoogle ScholarPubMed
Meehan, S. M., Pascual, M., Williams, W. W., Tolkoff-Rubin, N., Delmonico, F. L., Cosimi, A. B., et al. De novo collapsing glomerulopathy in renal allografts. Transplantation. 1998;65(9):1192–7.CrossRefGoogle ScholarPubMed
Ponticelli, C., Moroni, G., Glassock, R. J.. De novo glomerular diseases after renal transplantation. Clin J Am Soc Nephrol. 2014;9(8):1479–87.CrossRefGoogle ScholarPubMed
Wierenga, K. J., Pattison, J. R., Brink, N., Griffiths, M., Miller, M., Shah, D.J., et al. Glomerulonephritis after human parvovirus infection in homozygous sickle-cell disease. Lancet. 1995;346:475–6.Google Scholar
Wong, T. Y., Chan, P. K., Leung, C. B., Szeto, C. C., Tam, J. S., Li, P. K.. Parvovirus B19 infection causing red cell aplasia in renal transplantation on tacrolimus. Am J Kidney Dis. 1999;34:1132–6.CrossRefGoogle ScholarPubMed
Besse, W., Mansour, S., Jatwani, K., Nast, C. C., Brewster, U. C.. Collapsing glomerulopathy in a young woman with APOL1 risk alleles following acute parvovirus B19 infection: A case report investigation. BMC Nephrol. 2016;17:125.Google Scholar
Moudgil, A., Nast, C. C., Bagga, A., Wei, L., Nurmamet, A., Cohen, A. H., et al. Association of parvovirus B19 infection with idiopathic collapsing glomerulopathy. Kidney Int. 2001;59:2126–33.CrossRefGoogle ScholarPubMed
Bönsch, C., Zuercher, C., Lieby, P., Kempf, C., Ros, C.. The globoside receptor triggers structural changes in the B19 virus capsid that facilitate virus internalization. J Virol. 2010;84:11737–46.Google Scholar
Barisoni, L., Kriz, W., Mundel, P., D’Agati, V.. The dysregulated podocyte phenotype: A novel concept in the pathogenesis of collapsing idiopathic focal segmental glomerulosclerosis and HIV-associated nephropathy. J Am Soc Nephrol. 1999;10:5161.CrossRefGoogle ScholarPubMed
Albaqumi, M., Soos, T. J., Barisoni, L., Nelson, P. J.. Collapsing glomerulopathy. J Am Soc Nephrol. 2006;17:2854–63.CrossRefGoogle ScholarPubMed
Tucker, J. K.. Focal segmental glomerulosclerosis in African Americans. Am J Med Sci. 2002;323:90–3.CrossRefGoogle ScholarPubMed
Ferluga, D., Vizjak, A.. Hantavirus nephropathy. J Am Soc Nephrol. 2008;19:1653–8.Google Scholar
Mustonen, J., Huttunen, N. P., Brummer-Korvenkontio, M., Vaheri, A.. Clinical picture of nephropathia epidemica in children. Acta Paediatr. 1994;83:526–9.Google Scholar
Latus, J., Schwab, M., Tacconelli, E., Pieper, F. M., Wegener, D., Rettenmaier, B., et al. Acute kidney injury and tools for risk-stratification in 456 patients with hantavirus-induced nephropathia epidemica. Nephrol Dial Transplant. 2015;30:245–51.CrossRefGoogle ScholarPubMed
Faulde, M., Sobe, D., Kimmig, P., Scharninghausen, J.. Renal failure and hantavirus infection in Europe. Nephrol Dial Transplant. 2000;15:751–3.CrossRefGoogle ScholarPubMed
Vachvanichsanong, P., Thisyakorn, U., Thisyakorn, C.. Dengue hemorrhagic fever and the kidney. Arch Virol. 2016;161:771–8.Google Scholar
Hebbal, P., Darwich, Y., Fong, J., Hagmann, S. H. F., Purswani, M. U.. Nephrotic-range proteinuria in an eight-year-old traveler with severe dengue: Case report and review of the literature. Travel Med Infect Dis. 2016;14:45–8.Google Scholar
Ismail, J., Sankar, J.. Acute kidney injury in dengue - not unprecedented. Indian J Pediatr. 2020;87:993–4.Google Scholar
Kamath, N., Iyengar, A.. Infections and the kidney: A tale from the tropics. Pediatr Nephrol. 2018;33:1317–26.CrossRefGoogle ScholarPubMed
Modhiran, N., Watterson, D., Muller, D. A., Panetta, A. K., Sester, D. P., Liu, L., et al. Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity. Sci Transl Med. 2015;7:304ra142.CrossRefGoogle ScholarPubMed
Rajan, M., Geminiganesan, S., Sankaranarayanan, S., Padmanaban, R., Selvam, M. P.. Renal manifestations in children with dengue fever hospitalized in pediatric intensive care unit. Indian J Pediatr. 2020;87:1014–17.Google Scholar
Gurugama, P., Jayarajah, U., Wanigasuriya, K., Wijewickrama, A., Perera, J., Seneviratne, S. L.. Renal manifestations of dengue virus infections. J Clin Virol. 2018;101:16.Google Scholar
Farouk, S. S., Fiaccadori, E., Cravedi, P., Campbell, K. N.. COVID-19 and the kidney: What we think we know so far and what we don’t. J Nephrol. 2020;33:1213–8.CrossRefGoogle ScholarPubMed
Hirsch, J. S., Ng, J. H., Ross, D. W., Sharma, P., Shah, H. H., Barnett, R. L., et al. Acute kidney injury in patients hospitalized with COVID-19. Kidney Int. 2020;98:209–18.Google Scholar
Prendecki, M., Clarke, C., Cairns, T., Cook, T., Roufosse, C., Thomas, D., et al. Anti-glomerular basement membrane disease during the COVID-19 pandemic. Kidney Int. 2020;98:780–1.CrossRefGoogle ScholarPubMed
Batlle, D. Soler, M. J., Sparks, M. A., Hiremath, S., South, A. M., Welling, P. A., et al. Acute kidney injury in COVID-19: Emerging evidence of a distinct pathophysiology. J Am Soc Nephrol. 2020;31:1380–3.Google Scholar
Nadim, M. K., Forni, L. G., Mehta, R. L., Connor, M. J. J., Liu, K. D., Ostermann, M., et al. COVID-19-associated acute kidney injury: Consensus report of the 25th Acute Disease Quality Initiative (ADQI) Workgroup. Nat Rev Nephrol. 2020;16:747–64.CrossRefGoogle ScholarPubMed
Puelles, V. G., Lütgehetmann, M., Lindenmeyer, M. T., Sperhake, J. P., Wong, M. N., Allweiss, L., et al. Multiorgan and renal tropism of SARS-CoV-2. N Engl J Med. 2020;383;590–2.Google Scholar
Kudose, S., Batal, I., Santoriello, D., Xu, K., Barasch, J., Peleg, Y., et al. Kidney biopsy findings in patients with COVID-19. J Am Soc Nephrol. 2020;31:1959–68.Google Scholar
Werion, A., Belkhir, L., Perrot, M., Schmit, G., Aydin, S., Chen, Z., et al. SARS-CoV-2 causes a specific dysfunction of the kidney proximal tubule. Kidney Int. 2020;98:1296–307.CrossRefGoogle ScholarPubMed
Roufosse, C., Curtis, E., Moran, L., Hollinshead, M., Cook, T., Hanley, B., et al. Electron microscopic investigations in COVID-19: Not all crowns are coronas. Kidney Int. 202;98:505–6.Google Scholar
Akilesh, S., Nast, C. C., Yamashita, M., Henriksen, K., Charu, V., Troxell, M. L., et al. Multicenter clinicopathologic correlation of kidney biopsies performed in COVID-19 patients presenting with acute kidney injury or proteinuria. Am J Kidney Dis. 2021;77:8293.e1.Google Scholar
Al-Mendalawi, M. D.. Ultrasound findings in urinary schistosomiasis infection in school children in Gezira State, Central Sudan. Saudi J Kidney Dis Transpl. 2013;24:1252–3.Google Scholar
Bocanegra, C., Pintar, Z., Mendioroz, J., Serres, X., Gallego, S., Nindia, A., et al. Ultrasound evolution of pediatric urinary schistosomiasis after treatment with praziquantel in a highly endemic area. AmJ Trop Med Hygiene. 2018;99:1011–17.Google Scholar
Kayange, N. M., Smart, L. R., Tallman, J. E., Chu, E. Y., Fitzgerald, D. W., Pain, K. J., et al. Kidney disease among children in sub-Saharan Africa: Systematic review. Pediatr Res. 2015;77:272–81.Google Scholar
Mishra, S. K., Das, B. S.. Malaria and acute kidney injury. Semin Nephrol. 2008;28:395408.CrossRefGoogle ScholarPubMed
Ehrich, J. H. H., Eke, F. U.. Malaria-induced renal damage: Facts and myths. Pediatr Nephrol. 2007;22:626–37.Google Scholar
Padhi, R. K., Mishra, S.. Incidence of renal involvement in malaria in children of odisha. ISRN Nephrol. 2013;2013:573735.Google Scholar
Olowu, W. A., Adelusola, K. A., Adefehinti, O., Oyetunji, T. G.. Quartan malaria-associated childhood nephrotic syndrome: Now a rare clinical entity in malaria endemic Nigeria. Nephrol Dial Transplant. 2010;25:794801.CrossRefGoogle ScholarPubMed
Hendrickse, R. G., Adeniyi, A.. Quartan malarial nephrotic syndrome in children. Kidney Int. 1979;16:6474.Google Scholar
Zaki, S. A., Shenoy, P., Shanbag, P., Mauskar, A., Patil, A., Nagotkar, L.. Acute renal failure associated with malaria in children. Saudi J Kidney Dis Transpl. 2013;24:303–8.CrossRefGoogle ScholarPubMed
Nagajyothi, F., Machado, F. S., Burleigh, B. A., Jelicks, L. A., Scherer, P. E., Mukherjee, S., et al. Mechanisms of Trypanosoma cruzi persistence in Chagas disease. Cell Microbiol. 2012;14:634–43.Google Scholar
Robello, C., Maldonado, D. P., Hevia, A., Hoashi, M., Frattaroli, P., Montacutti, V., et al. The fecal, oral, and skin microbiota of children with Chagas disease treated with benznidazole. PloS One. 2019;14:e0212593.Google Scholar
Ngoma, M. S., Nalubamba, M., Kowa, S., Minyoi, D., Mubanga, J., Mwansa, J., et al. Congenital trypanosomiasis. J Trop Pediatr. 2004;50:377–8.CrossRefGoogle ScholarPubMed
Costa, R. S., Monteiro, R. C., Lehuen, A., Joskowicz, M., Noël, L. H., Droz, D.. Immune complex-mediated glomerulopathy in experimental Chagas’ disease. Clin Immunol Immunopathol. 1991;58:102–14.Google Scholar
Lemos, J. R. D., Rodrigues, W. F., Miguel, C. B., Parreira, R. C., Miguel, R. B., de Paula Rogerio, A., et al. Influence of parasite load on renal function in mice acutely infected with Trypanosoma cruzi. PLoS ONE. 2013;8:e71772.CrossRefGoogle ScholarPubMed
Bern, C.. Chagas’ disease. N EnglJ Med. 2015;373:456–66.Google Scholar
Traynor, K.. Benznidazole approved for Chagas disease in children. Am J Health Syst Pharm. 2017;74:1519.Google Scholar
de Andrade, A. L., Zicker, F., de Oliveira, R. M., Almeida Silva, S., Luquetti, A., Travassos, L. R., et al. Randomised trial of efficacy of benznidazole in treatment of early Trypanosoma cruzi infection. Lancet. 1996;348:1407–13.Google Scholar
Andrade, L., de Francesco Daher, E., Seguro, A. C.. Leptospiral nephropathy. Semin Nephrol. 2008;28:383–94.Google Scholar
Visith, S., Kearkiat, P.. Nephropathy in leptospirosis. J Postgrad Med. 2005;51:184–8.Google ScholarPubMed
Agampodi, S. B., Peacock, S. J., Thevanesam, V., Nugegoda, D. B., Smythe, L., Thaipadungpanit, J., et al. Leptospirosis outbreak in Sri Lanka in 2008: Lessons for assessing the global burden of disease. Am J Trop Med Hygiene. 2011;85:471–8.Google Scholar
Sethi, S., Sharma, N., Kakkar, N., Taneja, J., Chatterjee, S. S., Banga, S. S., et al. Increasing trends of leptospirosis in northern India: A clinico-epidemiological study. PLoS Negl Trop Dis. 2010;4(1):e579.Google Scholar
Kim, Y. H., Song, J. H., Kim, C. J., Yang, E. M.. Congenital syphilis presenting with only nephrotic syndrome: Reemergence of a forgotten disease. J Korean Med Sci. 2017;32:1374–6.CrossRefGoogle ScholarPubMed
Vachvanichsanong, P., Mitarnun, W., Tungsinmunkong, K., Dissaneewate, P.. Congenital and infantile nephrotic syndrome in Thai infants. Clin Pediatr. 2005;44:169–74.Google Scholar
Mahajan, S. K.. Rickettsial diseases. J Assoc Physicians India. 2012;60:3744.Google ScholarPubMed
Kim, D-M., Kang, D. W., Kim, J. O., Chung, J. H., Kim, H. L., Park, C. Y., et al. Acute renal failure due to acute tubular necrosis caused by direct invasion of Orientia tsutsugamushi. J Clin Microbiol. 2008;46:1548–50.Google Scholar
Rathi, N., Kulkarni, A., Yewale, V.. IAP guidelines on rickettsial diseases in children. Indian Pediatr. 2017;54:223–9.Google Scholar
Alvarez-Hernandez, G., Murillo-Benitez, C., Candia-Plata, M. del C., Moro, M.. Clinical profile and predictors of fatal Rocky Mountain spotted fever in children from Sonora, Mexico. Pediatr Infect Dis J. 2015;34:125–30.Google Scholar
Ramdial, P. K., Sing, Y., Deonarain, J., Bhimma, R., Chotey, N., Sewram, V.. Pediatric renal cryptococcosis: Novel manifestations in the acquired immunodeficiency syndrome era. Int J Surg Pathol. 2011;19:386–92.Google Scholar
Suárez-Rivera, M., Abadeer, R. A., Kott, M. M., Braun, M. C.. Cryptococcosis associated with crescentic glomerulonephritis. Pediatr Nephrol. 2008;23:827–30.Google Scholar
Chung, S., Park, C. W., Chung, H. W., Chang, Y. S.. Acute renal failure presenting as a granulomatous interstitial nephritis due to cryptococcal infection. Kidney Int. 2009;76:453–8.Google Scholar
Petrela, R., Kuneshka, L., Foto, E., Zavalani, F., Gradoni, L.. Pediatric visceral leishmaniasis in Albania: A retrospective analysis of 1,210 consecutive hospitalized patients (1995-2009). PLoS Negl Trop Dis. 2010;4:9.Google Scholar
Libório, A. B., Rocha, N. A., Oliveira, M. J. C., Franco, L. F. L. G., Aguiar, G. B. R., Pimentel, R. S., et al. Acute kidney injury in children with visceral leishmaniasis. Pediatr Infect Dis J. 2012;31:451–4.CrossRefGoogle ScholarPubMed
Wiedermann, C. J., Wiedermann, W., Joannidis, M.. Causal relationship between hypoalbuminemia and acute kidney injury. World J Nephrol. 2017;6:176–87.CrossRefGoogle ScholarPubMed
Rocha, N. A., Oliveira, M. J. C., Franco, L. F. L. G., Júnior, G. B. S., Alves, M. P., Sampaio, A. M., et al. Comparative analysis of pediatric and adult visceral leishmaniasis in Brazil. Pediatr Infect Dis J. 2013;32:e182–5.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×