Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T02:19:17.087Z Has data issue: false hasContentIssue false

Chapter 7 - Glomerular Diseases with Fibrillary Deposits

from Section 2 - Glomerular Diseases

Published online by Cambridge University Press:  10 August 2023

Helen Liapis
Affiliation:
Ludwig Maximilian University, Nephrology Center, Munich, Adjunct Professor and Washington University St Louis, Department of Pathology and Immunology, Retired Professor
Get access

Summary

Glomerular diseases with organized fibrillary deposits are rare entities and more so in children. They can be simply categorized as amyloid or non-amyloid diseases using the Congo red stain. All amyloidogenic proteins as a rule stain positive with Congo red. Non-amyloid diseases can be further classified into organized fibrils with immunoglobulin components (fibrillary glomerulonephritis [FGN] and immunotactoid glomerulopathy [ITG]), and those without immunoglobulin components (fibronectin glomerulopathy and collagenofibrotic glomerulopathy among others). These deposits may have overlapping features that pose a multitude of challenges in making a correct diagnosis. Routine histological features may aid in diagnosis, but electron microscopy and special stains pertaining to each disease are frequently required. Renal prognosis in these conditions remains poor and treatment options are limited.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kyle, R. A.. Amyloidosis: A convoluted story. Br J Haematol. 2001;114:529–38.Google Scholar
Hashkes, P. J.. 50 years ago in The Journal of Pediatrics: Amyloidosis in childhood. J Pediatr. 2019;205:54.CrossRefGoogle ScholarPubMed
Rowczenio, D., Stensland, M., de Souza, G. A., et al. Renal amyloidosis associated with 5 novel variants in the fibrinogen A alpha chain protein. Kidney Int Rep. 2017;2:461–9.Google ScholarPubMed
Palsdottir, A., Snorradottir, A. O., Thorsteinsson, L.. Hereditary cystatin C amyloid angiopathy: Genetic, clinical, and pathological aspects. Brain Pathol. 2006;16:55–9.Google Scholar
Bilginer, Y., Akpolat, T., Ozen, S.. Renal amyloidosis in children. Pediatr Nephrol. 2011;26:1215–27.Google Scholar
Alzyoud, R., Alsweiti, M., Maittah, H., et al. Familial Mediterranean fever in Jordanian children: Single centre experience. Mediterr J Rheumatol. 2018;29:211–16.Google ScholarPubMed
Gattorno, M., Hofer, M., Federici, S., et al. Classification criteria for autoinflammatory recurrent fevers. Ann Rheum Dis. 2019;78:1025–32.Google Scholar
Yazılıtaş, F., Çakıcı, E. K., Kurt Şükür, E. D., et al. Clinicopathological assessment of kidney biopsies in children with familial Mediterranean fever: A single-center experience. Nephron. 2020;144:222–7.Google Scholar
Westermark, G. T., Fändrich, M., Westermark, P.. AA amyloidosis: Pathogenesis and targeted therapy. Ann Rev Pathol. 2015;10:321–44.Google Scholar
Garg, N., Jain, S., Chauhan, S., et al. Clinicopathological spectrum of renal amyloidosis in young. Saudi J Kidney Dis Transpl. 2020;31:1085–90.Google Scholar
Kang, H. G., Bybee, A., Ha, I. S., et al. Hereditary amyloidosis in early childhood associated with a novel insertion-deletion (indel) in the fibrinogen Aalpha chain gene. Kidney Int. 2005;68:1994–8.CrossRefGoogle ScholarPubMed
Wechalekar, A. D., Gillmore, J. D., Hawkins, P. N.. Systemic amyloidosis. Lancet. 2016;387:2641–54.CrossRefGoogle ScholarPubMed
Kidd, J., Carl, D. E.. Renal amyloidosis. Curr Probl Cancer. 2016;40:209–19.Google Scholar
Gupta, A., Bagri, N. K., Tripathy, S. K., et al. Successful use of tocilizumab in amyloidosis secondary to systemic juvenile idiopathic arthritis. Rheumatol Int. 2020;40:153–9.Google Scholar
Shen, Y., Meunier, L., Hendershot, L. M.. Identification and characterization of a novel endoplasmic reticulum (ER) DnaJ homologue, which stimulates ATPase activity of BiP in vitro and is induced by ER stress. J Biol Chem. 2002;277:15947–56.CrossRefGoogle ScholarPubMed
Klomjit, N., Alexander, M. P., Zand, L.. Fibrillary glomerulonephritis and DnaJ homolog subfamily B member 9 (DNAJB9). Kidney360. 2020;1:1002–13.CrossRefGoogle ScholarPubMed
Nasr, S. H., Fogo, A. B.. New developments in the diagnosis of fibrillary glomerulonephritis. Kidney Int. 2019;96:581–92.Google Scholar
Dasari, S., Alexander, M. P., Vrana, J. A., et al. DnaJ heat shock protein family B member 9 is a novel biomarker for fibrillary GN. J Am Soc Nephrol. 2018;29:51–6.CrossRefGoogle ScholarPubMed
Bazina, M., Glavina-Durdov, M., Sćukanec-Spoljar, M., et al. Epidemiology of renal disease in children in the region of southern Croatia: A 10-year review of regional renal biopsy databases. Med Sci Monit. 2007;13:Cr1726.Google Scholar
Menon, S., Zeng, X., Valentini, R.. Fibrillary glomerulonephritis and renal failure in a child with systemic lupus erythematosus. Pediatr Nephrol. 2009;24:1577–81.Google Scholar
Nasr, S. H., Valeri, A. M., Cornell, L. D., et al. Fibrillary glomerulonephritis: A report of 66 cases from a single institution. Clin J Am Soc Nephrol. 2011;6:775–84.Google Scholar
Rosenstock, J. L., Markowitz, G. S., Valeri, A. M., et al. Fibrillary and immunotactoid glomerulonephritis: Distinct entities with different clinical and pathologic features. Kidney Int. 2003;63:1450–61.CrossRefGoogle ScholarPubMed
Said, S. M., Leung, N., Alexander, M. P., et al. DNAJB9-positive monotypic fibrillary glomerulonephritis is not associated with monoclonal gammopathy in the vast majority of patients. Kidney Int. 2020;98:498504.CrossRefGoogle Scholar
Bahrami, D., Henegar, J. R., Baliga, R.. Fibrillary glomerulopathy in a 10-year-old female. Pediatr Nephrol. 2001;16:916–18.Google Scholar
Bircan, Z., Toprak, D., Kilicaslan, I., et al. Factor H deficiency and fibrillary glomerulopathy. Nephrol Dial Transplant. 2004;19:727–30.Google Scholar
Shim, Y. H., Lee, S. J., Sung, S. H.. A case of fibrillary glomerulonephritis with unusual IgM deposits and hypocomplementemia. Pediatr Nephrol. 2008;23:1163–6.CrossRefGoogle ScholarPubMed
Takemura, T., Yoshioka, K., Akano, N., et al. Immunotactoid glomerulopathy in a child with Down syndrome. Pediatr Nephrol. 1993;7:86–8.CrossRefGoogle Scholar
Andeen, N. K., Troxell, M. L., Riazy, M., et al. Fibrillary glomerulonephritis: Clinicopathologic features and atypical cases from a multi-institutional cohort. Clin J Am Soc Nephrol. 2019;14:1741–50.Google Scholar
Alexander, M. P., Dasari, S., Vrana, J. A., et al. Congophilic fibrillary glomerulonephritis: A case series. Am J Kidney Dis. 2018;72:325–36.CrossRefGoogle ScholarPubMed
Nasr, S. H., Vrana, J. A., Dasari, S., et al. DNAJB9 is a specific immunohistochemical marker for fibrillary glomerulonephritis. Kidney Int Rep. 2018;3:5664.Google Scholar
Collins, M., Navaneethan, S. D., Chung, M., et al. Rituximab treatment of fibrillary glomerulonephritis. Am J Kidney Dis. 2008;52:1158–62.CrossRefGoogle ScholarPubMed
Hogan, J., Restivo, M., Canetta, P. A., et al. Rituximab treatment for fibrillary glomerulonephritis. Nephrol Dial Transplant. 2014;29:1925–31.Google Scholar
Lusco, M. A., Chen, Y. P., Cheng, H., et al. AJKD atlas of renal pathology: Fibronectin glomerulopathy. Am J Kidney Dis. 2017;70:e21–e2.Google ScholarPubMed
Strøm, E. H., Banfi, G., Krapf, R., et al. Glomerulopathy associated with predominant fibronectin deposits: A newly recognized hereditary disease. Kidney Int. 1995;48:163–70.CrossRefGoogle ScholarPubMed
Niimi, K., Tsuru, N., Uesugi, N., et al. Fibronectin glomerulopathy with nephrotic syndrome in a 3-year-old male. Pediatr Nephrol. 2002;17:363–6.Google Scholar
Castelletti, F., Donadelli, R., Banterla, F., et al. Mutations in FN1 cause glomerulopathy with fibronectin deposits. Proc Natl Acad Sci U S A. 2008;105:2538–43.CrossRefGoogle ScholarPubMed
Satoskar, A. A., Shapiro, J. P., Bott, C. N., et al. Characterization of glomerular diseases using proteomic analysis of laser capture microdissected glomeruli. Mod Pathol. 2012;25:709–21.Google Scholar
Gemperle, O., Neuweiler, J., Reutter, F. W., et al. Familial glomerulopathy with giant fibrillar (fibronectin-positive) deposits: 15-year follow-up in a large kindred. Am J Kidney Dis. 1996;28:668–75.CrossRefGoogle Scholar
Otsuka, Y., Takeda, A., Horike, K., et al. A recurrent fibronectin glomerulopathy in a renal transplant patient: A case report. Clin Transplant. 2012;26 Suppl 24:5863.Google Scholar
Alchi, B., Nishi, S., Narita, I., et al. Collagenofibrotic glomerulopathy: Clinicopathologic overview of a rare glomerular disease. Am J Kidney Dis. 2007;49:499506.Google Scholar
Imbasciati, E., Gherardi, G., Morozumi, K., et al. Collagen type III glomerulopathy: A new idiopathic glomerular disease. Am J Nephrol. 1991;11:422–9.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×