Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T02:58:14.008Z Has data issue: false hasContentIssue false

Section 6 - Cystic Diseases

Published online by Cambridge University Press:  10 August 2023

Helen Liapis
Affiliation:
Ludwig Maximilian University, Nephrology Center, Munich, Adjunct Professor and Washington University St Louis, Department of Pathology and Immunology, Retired Professor
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Harris, P. C., Torres, V. E.. Polycystic kidney disease, autosomal dominant. In Adam, MP, Ardinger, HH, Pagon, RA, et al. eds. GeneReviews(®). Seattle (WA): University of Washington, Seattle. Copyright © 1993–2020, University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved; 1993.Google Scholar
Boyer, O., Gagnadoux, M. F., Guest, G., et al. Prognosis of autosomal dominant polycystic kidney disease diagnosed in utero or at birth. Pediatr Nephrol. 2007;22:380–8.CrossRefGoogle ScholarPubMed
Brun, M., Maugey-Laulom, B., Eurin, D., Didier, F., Avni, E. F.. Prenatal sonographic patterns in autosomal dominant polycystic kidney disease: A multicenter study. Ultrasound Obstet Gynecol. 2004;24:5561.CrossRefGoogle ScholarPubMed
Reuss, A., Wladimiroff, J. W., Stewart, P. A., Niermeijer, M. F.. Prenatal diagnosis by ultrasound in pregnancies at risk for autosomal recessive polycystic kidney disease. Ultrasound Med Biol. 1990;16:355–9.CrossRefGoogle ScholarPubMed
Subramanian, S., Ahmad, T.. Polycystic Kidney Disease Of Childhood. StatPearls. Treasure Island (FL): StatPearls Publishing. Copyright © 2020, StatPearls Publishing LLC.; 2020.Google Scholar
Bernstein, J.. Classification of renal cysts. Perspect Nephrol Hypertens. 1976;4:730.Google Scholar
Cadnapaphornchai, M. A.. Autosomal dominant polycystic kidney disease in children. Curr Opin Pediatr. 2015;27:193200.CrossRefGoogle ScholarPubMed
Kolb, R. J., Nauli, S. M.. Ciliary dysfunction in polycystic kidney disease: An emerging model with polarizing potential. Front Biosci. 2008;13:4451–66.Google ScholarPubMed
Arslanhan, M. D., Gulensoy, D., Firat-Karalar, E. N.. A proximity mapping journey into the biology of the mammalian centrosome/cilium complex. Cells. 2020;9:1390.CrossRefGoogle ScholarPubMed
Wheway, G., Mitchison, H. M.. Opportunities and challenges for molecular understanding of ciliopathies-the 100,000 genomes project. Front Genet. 2019;10:127.CrossRefGoogle ScholarPubMed
Bacallao, R. L., McNeill, H.. Cystic kidney diseases and planar cell polarity signaling. Clin Genet. 2009;75:107–17.Google Scholar
Delling, M., Indzhykulian, A. A., Liu, X., et al. Primary cilia are not calcium-responsive mechanosensors. Nature. 2016;531:656–60.CrossRefGoogle Scholar
Bergmann, C., Guay-Woodford, L. M., Harris, P. C., Horie, S., Peters, D. J. M., Torres, V. E.. Polycystic kidney disease. Nat Rev Dis Primers. 2018;4:50.Google Scholar
Gabow, P. A., Johnson, A. M., Kaehny, W. D., et al. Factors affecting the progression of renal disease in autosomal-dominant polycystic kidney disease. Kidney Int. 1992;41: 131119.Google Scholar
Audrézet, M. P., Corbiere, C., Lebbah, S., et al. Comprehensive PKD1 and PKD2 mutation analysis in prenatal autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 2016;27:722–9.CrossRefGoogle ScholarPubMed
Heyer, C. M., Sundsbak, J. L., Abebe, K. Z., et al. Predicted mutation strength of nontruncating PKD1 mutations aids genotype-phenotype correlations in autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 2016;27:287284.CrossRefGoogle ScholarPubMed
Porath, B., Gainullin, V. G., Cornec-Le Gall, E., et al. Mutations in GANAB, encoding the glucosidase IIα subunit, cause autosomal-dominant polycystic kidney and liver disease. Am J Hum Genet. 2016;98:1193–207.Google Scholar
Cornec-Le Gall, E., Olson, R. J., Besse, W., et al. Monoallelic mutations to DNAJB11 cause atypical autosomal-dominant polycystic kidney disease. Am J Hum Genet. 2018;102:83244.Google Scholar
Zhou, J.. Polycystins and primary cilia: Primers for cell cycle progression. Annu Rev Physiol. 2009;71:83113.CrossRefGoogle ScholarPubMed
Tsiokas, L., Kim, S., Ong, E. C.. Cell biology of polycystin-2. Cell Signal. 2007;19:44453.CrossRefGoogle ScholarPubMed
Nauli, S. M., Alenghat, F. J., Luo, Y., et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet. 2003;33:12937.CrossRefGoogle ScholarPubMed
Cornec-Le Gall, E., Audrézet, M. P., Chen, J. M., et al. Type of PKD1 mutation influences renal outcome in ADPKD. J Am Soc Nephrol. 2013;24:100613.Google Scholar
Hateboer, N., v Dijk, M. A., Bogdanova, N., et al. Comparison of phenotypes of polycystic kidney disease types 1 and 2. European PKD1-PKD2 Study Group. Lancet. 1999;353:1037.CrossRefGoogle ScholarPubMed
Harris, P. C., Bae, K. T., Rossetti, S., et al. Cyst number but not the rate of cystic growth is associated with the mutated gene in autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 2006;17:3013–19.CrossRefGoogle Scholar
Lu, W., Peissel, B., Babakhanlou, H., et al. Perinatal lethality with kidney and pancreas defects in mice with a targetted Pkd1 mutation. Nat Genet. 1997;17:179–81.Google Scholar
Wu, G., Markowitz, G. S., Li, L., et al. Cardiac defects and renal failure in mice with targeted mutations in Pkd2. Nat Genet. 2000;24:75–8.Google Scholar
Bergmann, C., von Bothmer, J., Ortiz Brüchle, N., et al. Mutations in multiple PKD genes may explain early and severe polycystic kidney disease. J Am Soc Nephrol. 2011;22:2047–56.CrossRefGoogle ScholarPubMed
Vujic, M., Heyer, C. M., Ars, E., et al. Incompletely penetrant PKD1 alleles mimic the renal manifestations of ARPKD. J Am Soc Nephrol. 2010;21:1097–102.Google Scholar
Rossetti, S., Kubly, V. J., Consugar, M. B., et al. Incompletely penetrant PKD1 alleles suggest a role for gene dosage in cyst initiation in polycystic kidney disease Kidney Int. 2009;75:848–55.Google Scholar
Hopp, K., Ward, C. J., Hommerding, C. J., et al. Functional polycystin-1 dosage governs autosomal dominant polycystic kidney disease severity. J Clin Invest. 2012;122:4257–73.CrossRefGoogle ScholarPubMed
Ong, A. C., Harris, P. C.. A polycystin-centric view of cyst formation and disease: the polycystins revisited. Kidney Int. 2015;88:699710.Google Scholar
Pei, Y., Lan, Z., Wang, K., et al. A missense mutation in PKD1 attenuates the severity of renal disease. Kidney Int. 2012;81:412–17.CrossRefGoogle ScholarPubMed
Brook-Carter, P. T., Peral, B., Ward, C. J., et al. Deletion of the TSC2 and PKD1 genes associated with severe infantile polycystic kidney disease – A contiguous gene syndrome. Nat Genet. 1994;8:328–32.Google Scholar
Consugar, M. B., Wong, W. C., Lundquist, P. A., et al. Characterization of large rearrangements in autosomal dominant polycystic kidney disease and the PKD1/TSC2 contiguous gene syndrome. Kidney Int. 2008;74:1468–79.Google Scholar
Shamshirsaz, A. A., Reza Bekheirnia, M., Kamgar, M., et al. Autosomal-dominant polycystic kidney disease in infancy and childhood: Progression and outcome. Kidney Int. 2005;68:2218–24.CrossRefGoogle ScholarPubMed
Chapman, A. B., Devuyst, O., Eckardt, K. U., et al. Autosomal-dominant polycystic kidney disease (ADPKD): Executive summary from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2015;88:1727.CrossRefGoogle ScholarPubMed
McDonald, R. A., Avner, E. D.. Inherited polycystic kidney disease in children. Semin Nephrology. 1991;11:632–42.Google Scholar
Seeman, T., Dusek, J., Vondrichová, H., et al. Ambulatory blood pressure correlates with renal volume and number of renal cysts in children with autosomal dominant polycystic kidney disease. Blood Press Monit. 2003;8:107–10.CrossRefGoogle ScholarPubMed
Graham, P. C., Lindop, G. B.. The anatomy of the renin-secreting cell in adult polycystic kidney disease. Kidney Int. 1988;33:1084–90.CrossRefGoogle ScholarPubMed
Helal, I., Reed, B., McFann, K., et al. Glomerular hyperfiltration and renal progression in children with autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol. 2011;6:2439–43.CrossRefGoogle ScholarPubMed
Euser, A. G., Sung, J. F., Reeves, S.. Fetal imaging prompts maternal diagnosis: autosomal dominant polycystic kidney disease. J Perinatol. 2015;35:537–8.Google Scholar
McBride, L., Wilkinson, C., Jesudason, S.. Management of autosomal dominant polycystic kidney disease (ADPKD) during pregnancy: Risks and challenges. Int J Womens Health. 2020;12:409–22.Google Scholar
Hogan, M. C., Abebe, K., Torres, V. E., et al. Liver involvement in early autosomal-dominant polycystic kidney disease. Clin Gastroenterol Hepatol. 2015;13:155–64.e6.Google Scholar
Bae, K. T., Zhu, F., Chapman, A. B., et al. Magnetic resonance imaging evaluation of hepatic cysts in early autosomal-dominant polycystic kidney disease: The Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease cohort. Clin J Am Soc Nephrol. 2006;1:64–9.CrossRefGoogle Scholar
Chebib, F. T., Jung, Y., Heyer, C. M., et al. Effect of genotype on the severity and volume progression of polycystic liver disease in autosomal dominant polycystic kidney disease. Nephrol Dial Transplant. 2016;31:952–60.Google Scholar
Chebib, F. T., Harmon, A., Irazabal Mira, M. V., et al. Outcomes and durability of hepatic reduction after combined partial hepatectomy and cyst fenestration for massive polycystic liver disease. J Am Coll Surg. 2016;223:118–26.e1.CrossRefGoogle ScholarPubMed
Molina, D. K., DiMaio, V. J.. Normal organ weights in men: part II-the brain, lungs, liver, spleen, and kidneys. Am J Forensic Med Pathol. 2012;33:368–72.Google Scholar
Evan, A. P., Gardner, K. D. Jr., Bernstein, J.. Polypoid and papillary epithelial hyperplasia: A potential cause of ductal obstruction in adult polycystic disease. Kidney Int. 1979;16:743–50.CrossRefGoogle ScholarPubMed
Xue, C., Mei, C. L.. Polycystic kidney disease and renal fibrosis. In Liu, BC, Lan, HY, Lv, LL eds. Renal Fibrosis: Mechanisms and Therapies. Advances in Experimental Medicine and Biology, vol. 1165. Springer, Singapore, pp. 81100.Google Scholar
Colbert, G. B., Elrggal, M. F., Gaur, L., Lerma, E. V.. Update and review of adult polycystic kidney disease. Dis Mon. 2020;66:100887.Google Scholar
Gattone, V. H., 2nd, Wang, X., Harris, P. C., Torres, V. E.. Inhibition of renal cystic disease development and progression by a vasopressin V2 receptor antagonist. Nat Med. 2003;9:1323–6.Google Scholar
Blair, H. A.. Tolvaptan: A review in autosomal dominant polycystic kidney disease. Drugs. 2019;79:303–13.CrossRefGoogle ScholarPubMed
Schaefer, F., Mekahli, D., Emma, F., et al. Tolvaptan use in children and adolescents with autosomal dominant polycystic kidney disease: Rationale and design of a two-part, randomized, double-blind, placebo-controlled trial. Eur J Pediatr. 2019;178:1013–21.Google Scholar
Tuli, G., Tessaris, D., Einaudi, S., De Sanctis, L., Matarazzo, P.. Tolvaptan treatment in children with chronic hyponatremia due to inappropriate antidiuretic hormone secretion: A report of three cases. J Clin Res Pediatr Endocrinol. 2017;9:288–92.Google Scholar
Streets, A. J., Prosseda, P. P., Ong, A. C.. Polycystin-1 regulates ARHGAP35-dependent centrosomal RhoA activation and ROCK signaling. JCI Insight. 2020;5(16):e135385.Google Scholar
Gwinn, J. L., Landing, B. H.. Cystic diseases of the kidneys in infants and children. Radiol Clin North Am. 1968;6:191204.CrossRefGoogle ScholarPubMed
Blyth, H., Ockenden, B. G.. Polycystic disease of kidney and liver presenting in childhood. J Med Genet. 1971;8:257–84.Google Scholar
Guay-Woodford, L. M., Bissler, J. J., Braun, M. C., et al. Consensus expert recommendations for the diagnosis and management of autosomal recessive polycystic kidney disease: Report of an international conference. J Pediatr. 2014;165:611–17.Google Scholar
Sweeney, W. E., Avner, E. D.. Polycystic kidney disease, autosomal recessive. In Adam, MP, Ardinger, HH, Pagon, RA, et al. eds. GeneReviews(®). Seattle (WA): University of Washington, Seattle. Copyright © 1993–2020, University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved; 1993.Google Scholar
Zerres, K., Mücher, G., Bachner, L., et al. Mapping of the gene for autosomal recessive polycystic kidney disease (ARPKD) to chromosome 6p21-cen. Nat Genet. 1994;7:429–32.Google Scholar
Lu, H., Galeano, M. C. R., , E. et al. Mutations in DZIP1L, which encodes a ciliary-transition-zone protein, cause autosomal recessive polycystic kidney disease. Nat Genet. 2017;49:1025–34.CrossRefGoogle ScholarPubMed
Ward, C. J., Hogan, M. C., Rossetti, S., et al. The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein. Nat Genet. 2002;30:259–69.CrossRefGoogle ScholarPubMed
Wang, S., Zhang, J., Nauli, S. M., et al. Fibrocystin/polyductin, found in the same protein complex with polycystin-2, regulates calcium responses in kidney epithelia. Mol Cell Biol. 2007;27:3241–52.Google Scholar
Ward, C. J., Yuan, D., Masyuk, T. V., et al. Cellular and subcellular localization of the ARPKD protein; fibrocystin is expressed on primary cilia. Hum Mol Genet. 2003;12:2703–10.CrossRefGoogle ScholarPubMed
Onuchic, L. F., Furu, L., Nagasawa, Y., et al. PKHD1, the polycystic kidney and hepatic disease 1 gene, encodes a novel large protein containing multiple immunoglobulin-like plexin-transcription-factor domains and parallel beta-helix 1 repeats. Am J Hum Genet. 2002;70:1305–17.Google Scholar
Zhang, J., Wu, M., Wang, S., Shah, J. V., Wilson, P. D., Zhou, J.. Polycystic kidney disease protein fibrocystin localizes to the mitotic spindle and regulates spindle bipolarity. Hum Mol Genet. 2010;19:3306–19.Google Scholar
Menezes, L. F., Cai, Y., Nagasawa, Y., et al. Polyductin, the PKHD1 gene product, comprises isoforms expressed in plasma membrane, primary cilium, and cytoplasm. Kidney Int. 2004;66:1345–55.Google Scholar
Wang, S., Luo, Y., Wilson, P. D., Zhou, G. B. J.. The autosomal recessive polycystic kidney disease protein is localized to primary cilia, with concentration in the basal body area. J Am Soc Nephrol. 2004;15:592602.CrossRefGoogle ScholarPubMed
Burgmaier, K., Kilian, S., Bammens, B., et al. Clinical courses and complications of young adults with autosomal recessive polycystic kidney disease (ARPKD). Sci Rep. 2019;9:7919.CrossRefGoogle ScholarPubMed
Zerres, K., Hansmann, M., Mallmann, R., Gembruch, U.. Autosomal recessive polycystic kidney disease. Problems of prenatal diagnosis. Prenat Diagn. 1988;8:215–29.CrossRefGoogle ScholarPubMed
Gimpel, C., Avni, E. F., Breysem, L., et al. Imaging of kidney cysts and cystic kidney diseases in children: An International Working Group Consensus Statement. Radiology. 2019;290:769–82.CrossRefGoogle ScholarPubMed
Liebau, M. C., Serra, A. L.. Looking at the (w)hole: Magnet resonance imaging in polycystic kidney disease. Pediatr Nephrol. 2013;28:1771–83.Google Scholar
Bergmann, C., Senderek, J., Windelen, E., et al. Clinical consequences of PKHD1 mutations in 164 patients with autosomal-recessive polycystic kidney disease (ARPKD). Kidney Int. 2005;67:829–48.Google Scholar
Rosenbaum, D. M., Korngold, E., Teele, R. L.. Sonographic assessment of renal length in normal children. Am J Roentgenol. 1984;142:467–9.CrossRefGoogle ScholarPubMed

References

Au, K. S., Williams, A. T., Roach, E. S., et al. Genotype/phenotype correlation in 325 individuals referred for a diagnosis of tuberous sclerosis complex in the United States. Genet Med. 2007; 9: 88100.CrossRefGoogle ScholarPubMed
Siroky, B. J., Yin, H., Bissler, J. J.. Clinical and molecular insights into tuberous sclerosis complex renal disease. Pediatr Nephrol. 2011; 26: 83952.Google Scholar
Kozlowski, P., Roberts, P., Dabora, S., et al. Identification of 54 large deletions/duplications in TSC1 and TSC2 using MLPA, and genotype-phenotype correlations. Hum Genet. 2007; 121: 389400.Google Scholar
Dabora, S. L., Jozwiak, S., Franz, D. N., et al. Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs. Am J Hum Genet. 2001; 68: 6480.Google Scholar
Bisceglia, M., Galliani, C., Carosi, I., et al. Tuberous sclerosis complex with polycystic kidney disease of the adult type: The TSC2/ADPKD1 contiguous gene syndrome. Int J Surg Pathol. 2008; 16: 37585.Google Scholar
Crino, P. B., Nathanson, K. L., Henske, E. P.. The tuberous sclerosis complex. N Engl J Med. 2006; 355: 134556.Google Scholar
Ebrahimi-Fakhari, D., Mann, L. L., Poryo, M., et al. Incidence of tuberous sclerosis and age at first diagnosis: New data and emerging trends from a national, prospective surveillance study. Orphanet J Rare Dis. 2018; 13: 117.CrossRefGoogle ScholarPubMed
Yates, J. R., Maclean, C., Higgins, J. N., et al. The Tuberous Sclerosis 2000 Study: Presentation, initial assessments and implications for diagnosis and management. Arch Dis Child. 2011; 96: 10205.Google Scholar
Peron, A., Northrup, H.. Tuberous sclerosis complex. Am J Med Genet C Semin Med Genet. 2018; 178: 2747.CrossRefGoogle ScholarPubMed
Marom, D.. Genetics of tuberous sclerosis complex: An update. Childs Nerv Syst. 2020; 36: 248996.Google Scholar
Peron, A., Canevini, M. P., Ghelma, F., et al. Healthcare transition from childhood to adulthood in tuberous sclerosis complex. Am J Med Genet C Semin Med Genet. 2018; 178: 35564.Google Scholar
Northrup, H., Krueger, D. A.. Tuberous sclerosis complex diagnostic criteria update: Recommendations of the 2012 international tuberous sclerosis complex consensus conference. Pediatr Neurol. 2013; 49: 24354.Google Scholar
Mettin, R. R., Merkenschlager, A., Bernhard, M. K., et al. Wide spectrum of clinical manifestations in children with tuberous sclerosis complex--follow-up of 20 children. Brain Dev. 2014; 36: 30614.Google Scholar
Wilbur, C., Sanguansermsri, C., Chable, H., et al. Manifestations of tuberous sclerosis complex: The experience of a provincial clinic. Can J Neurol Sci. 2017; 44: 3543.CrossRefGoogle ScholarPubMed
Warncke, J. C., Brodie, K. E., Grantham, E. C., et al. Pediatric renal angiomyolipomas in tuberous sclerosis complex. J Urol. 2017; 197: 5006.Google Scholar
Kingswood, J. C., Belousova, E., Benedik, M. P., et al. Renal angiomyolipoma in patients with tuberous sclerosis complex: findings from the TuberOus SClerosis registry to increase disease Awareness. Nephrol Dial Transplant. 2019; 34: 5028.Google Scholar
Bissler, J. J., Christopher Kingswood, J.. Renal manifestation of tuberous sclerosis complex. Am J Med Genet C Semin Med Genet. 2018; 178: 33847.Google Scholar
Bissler, J. J., Kingswood, J. C.. Renal angiomyolipomata. Kidney Int. 2004; 66: 92434.CrossRefGoogle ScholarPubMed
Guo, J., Tretiakova, M. S., Troxell, M. L., et al. Tuberous sclerosis-associated renal cell carcinoma: A clinicopathologic study of 57 separate carcinomas in 18 patients. Am J Surg Pathol. 2014; 38: 145767.Google Scholar
Janssens, P., Van Hoeve, K., De Waele, L., et al. Renal progression factors in young patients with tuberous sclerosis complex: A retrospective cohort study. Pediatr Nephrol. 2018; 33: 208593.Google Scholar
Kingswood, J. C., Nasuti, P., Patel, K., et al. The economic burden of tuberous sclerosis complex in UK patients with renal manifestations: A retrospective cohort study in the clinical practice research datalink (CPRD). J Med Econ. 2016; 19: 111626.Google Scholar
Amin, S., Lux, A., Calder, N., et al. Causes of mortality in individuals with tuberous sclerosis complex. Dev Med Child Neurol. 2017; 59: 612–17.Google Scholar
Morin, C. E., Morin, N. P., Franz, D. N., et al. Thoracoabdominal imaging of tuberous sclerosis. Pediatr Radiol. 2018; 48: 130723.CrossRefGoogle ScholarPubMed
Kozłowska, J., Okoń, K.. Renal tumors in postmortem material. Pol J Pathol. 2008; 59: 215.Google ScholarPubMed
Krueger, D. A., Northrup, H.. Tuberous sclerosis complex surveillance and management: Recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference. Pediatr Neurol. 2013; 49: 25565.CrossRefGoogle ScholarPubMed
Boils, C., et al. Tuberous sclerosis: The spectrum of metanephric defects, cystic kidney diseases and neoplasms in 26 pediatric and adult cases. Kidney/Renal Pathol Mod Pathol. 2014; 27: 40516.Google Scholar
Bonsib, S. M., Boils, C., Gokden, N., et al. Tuberous sclerosis complex: Hamartin and tuberin expression in renal cysts and its discordant expression in renal neoplasms. Pathol Res Pract. 2016; 212: 9729.Google Scholar
Bernstein, J., Robbins, T. O., Kissane, J. M.. The renal lesions of tuberous sclerosis. Semin Diagn Pathol. 1986; 3: 97105.Google Scholar
Bernstein, J., Robbins, T. O.. Renal involvement in tuberous sclerosis. Ann N Y Acad Sci. 1991; 615: 3649.Google Scholar
Martignoni, G., Bonetti, F., Pea, M., et al. Renal disease in adults with TSC2/PKD1 contiguous gene syndrome. Am J Surg Pathol. 2002; 26: 198205.Google Scholar
Bernstein, J.. Renal cystic disease in the tuberous sclerosis complex. Pediatr Nephrol. 1993; 7: 4905.CrossRefGoogle ScholarPubMed
Fine, S. W., Reuter, V. E., Epstein, J. I., et al. Angiomyolipoma with epithelial cysts (AMLEC): A distinct cystic variant of angiomyolipoma. Am J Surg Pathol. 2006; 30: 593-9.Google Scholar
Trpkov, K., Hes, O., Bonert, M., et al. Eosinophilic, solid, and cystic renal cell carcinoma: Clinicopathologic study of 16 unique, sporadic neoplasms occurring in women. Am J Surg Pathol. 2016; 40: 6071.Google Scholar
Schreiner, A., Daneshmand, S., Bayne, A., et al. Distinctive morphology of renal cell carcinomas in tuberous sclerosis. Int J Surg Pathol. 2010; 18: 40918.Google Scholar
Lam, H. C., Siroky, B. J., Henske, E. P.. Renal disease in tuberous sclerosis complex: Pathogenesis and therapy. Nat Rev Nephrol. 2018; 14: 70416.Google Scholar
Roach, E. S.. Applying the lessons of tuberous sclerosis: The 2015 Hower Award Lecture. Pediatr Neurol. 2016; 63: 622.CrossRefGoogle ScholarPubMed
Halpenny, D., Snow, A., McNeill, G., et al. The radiological diagnosis and treatment of renal angiomyolipoma-current status. Clin Radiol. 2010; 65: 99108.Google Scholar
Franz, D. N., Krueger, D. A.. mTOR inhibitor therapy as a disease modifying therapy for tuberous sclerosis complex. Am J Med Genet C Semin Med Genet. 2018; 178: 36573.Google Scholar

References

Lennerz, J. K., Spence, D. C., Iskandar, S. S., Dehner, L. P., Liapis, H.. Glomerulocystic kidney: One hundred-year perspective. Arch Pathol Lab Med. 201;134:583–605.Google Scholar
Cramer, M. T., Guay-Woodford, L. M.. Cystic kidney disease: A primer. Adv Chronic Kidney Dis. 2015;22:297305.Google Scholar
Liapis, H., Winyard, P.. Cystic diseases of the kidney and developmental defects. In Jennette, J. C., D’Agati, V. D., Olson, J. L., Silva, F. G., eds. Heptinstall’s Pathology of the Kidney. Chapter 4, 7th ed. Wolters Kluwer.Google Scholar
Rizzoni, G., Loirat, C., Levy, M., Milanesi, C., Zachello, G., Mathieu, H.. Familial hypoplastic glomerulocystic kidney. A new entity? Clin Nephrol. 1982;18:263–68.Google Scholar
Kaplan, B. S., Gordon, I., Pincott, J., Barratt, T. M.. Familial hypoplastic glomerulocystic kidney disease: A definite entity with dominant inheritance. Am J Med Genet. 1989;34:569–73.Google Scholar
Bolar, N. A., Golzio, C., Živná, M., Hayot, G., et al. Heterozygous loss-of-function SEC61A1 mutations cause autosomal-dominant tubulo-interstitial and glomerulocystic kidney disease with anemia. Am J Hum Genet. 2016;99:174–87.Google Scholar
Rito, M., Cabrera, R. A.. Glomerulocystic kidney presenting as a unilateral kidney mass in a newborn with tuberous sclerosis: Report of a case and review of the literature. Pathol Res Pract. 2017;213:286–91.Google Scholar
Gusmano, R., Caridi, G., Marini, M., Perfumo, F., et al. Glomerulocystic kidney disease in a family. Nephrol Dial Transplant. 2002;17:813–8.Google Scholar
Zaman, R., Maggi, A., Rajpoot, S. K., Joshi, D. D.. Glomerulocystic kidney disease and hepatoblastoma in an infant: A rare presentation. Case Rep Nephrol Dial. 2015;5:200–3.Google Scholar
Duval, H., Michel-Calemard, L., Gonzales, M., Loget, P., et al. Fetal anomalies associated with HNF1B mutations: Report of 20 autopsy cases. Prenat Diagn. 2016;36:744–51.Google Scholar
Landau, D., Shalev, H., Shulman, H., Barki, Y., Maor, E., Zmora, E.. Oligohydramnion, renal failure and no pulmonary hypoplasia in glomerulocystic kidney disease. Pediatr Nephrol. 2000;14:319–21.Google Scholar
Wolf, M. T., Hoskins, B. E., Beck, B. B., Hoppe, B., et al. Mutation analysis of the Uromodulin gene in 96 individuals with urinary tract anomalies (CAKUT). Pediatr Nephrol. 2009;24:5560.Google Scholar
Rampoldi, L., Caridi, G., Santon, D., Boaretto, F., et al. Allelism of MCKD, FJHN and GCKD caused by impairment of uromodulin export dynamics. Hum Mol Genet. 2003;12:3369–384.Google Scholar
Bernstein, J.. Glomerulocystic kidney disease--nosological considerations. Pediatr Nephrol. 1993;7:464–70.Google Scholar
Fiorentino, A., Christophorou, A., Massa, F., Garbay, S., et al. Developmental renal glomerular defects at the origin of glomerulocystic disease. Cell Rep. 2020;33:108304.CrossRefGoogle ScholarPubMed
Georgas, K., Rumballe, B., Valerius, M. T., Chiu, H. S., et al. Analysis of early nephron patterning reveals a role for distal RV proliferation in fusion to the ureteric tip via a cap mesenchyme-derived connecting segment. Dev Biol. 2009;332:273–86.Google Scholar
Liu, J. S., Ishikawa, I., Saito, Y., Nakazawa, T., Tomosugi, N., Ishikawa, Y.. Digital glomerular reconstruction in a patient with a sporadic adult form of glomerulocystic kidney disease. Am J Kidney Dis. 2000;35:216–20.Google Scholar
Anık, A., Çatlı, G., Abacı, A., Böber, E.. Maturity-onset diabetes of the young (MODY): An update. J Pediatr Endocrinol Metab. 2015;28:251–63.Google Scholar
Johnson, S. R., Ellis, J. J., Leo, P. J., Anderson, L. K., et al. Comprehensive genetic screening: The prevalence of maturity-onset diabetes of the young gene variants in a population-based childhood diabetes cohort. Pediatr Diabetes. 2019;20:5764.Google Scholar
McDonald, T. J., Colclough, K., Brown, R., Shields, B., et al. Islet autoantibodies can discriminate maturity-onset diabetes of the young (MODY) from Type 1 diabetes. Diabet Med. 2011;28:1028–33.Google Scholar
Álvarez-Satta, M., Castro-Sánchez, S., Valverde, D.. Bardet-Biedl syndrome as a chaperonopathy: Dissecting the major role of chaperonin-like BBS proteins (BBS6-BBS10-BBS12). Front Mol Biosci. 2017;4:5562.Google Scholar
Tsang, S. H., Sharma, T.. Autosomal dominant retinitis pigmentosa. Adv Exp Med Biol. 2018;1085:6977.CrossRefGoogle ScholarPubMed
Shifera, A. S., Kay, C. N.. Early-onset X-linked retinitis pigmentosa in a heterozygous female harboring an intronic donor splice site mutation in the retinitis pigmentosa GTPase regulator gene. Ophthalmic Genet. 2015;36:251–6.Google Scholar
Guay-Woodford, L. M., Galliani, C. A., Musulman-Mroczek, E., Spear, G.S., Guillot, A.P., Bernstein, J.. Diffuse renal cystic disease in children: Morphologic and genetic correlations. Pediatr Nephrol. 1998;12:173–82.Google Scholar
Gimpel, C., Avni, E. F., Breysem, L., Burgmaier, K., et al. Imaging of kidney cysts and cystic kidney diseases in children: An International Working Group Consensus Statement. Radiology. 2019;290:769–82.CrossRefGoogle ScholarPubMed
Fitch, S. J., Stapleton, F. B.. Ultrasonographic features of glomerulocystic disease in infancy: Similarity to infantile polycystic kidney disease. Pediatr Radiol. 1986;16:400–2.Google Scholar
Spence, D. C., Dehner, L. P., Lennerz, J., Liapis, H.. PAX-2 and Tamm-Horsfall immunohistochemistry facilitate the diagnosis of glomerular cysts in bilateral cystic kidneys. Mod Pathol. 2008;21:294a295a.Google Scholar
Fahim, A.. Retinitis pigmentosa: Recent advances and future directions in diagnosis and management. Curr Opin Pediatr. 2018;30:725–33.Google Scholar
Rubin, J. D., Barry, M. A.. Improving molecular therapy in the kidney. Mol Diagn Ther. 2020;24:375–96.Google Scholar

References

Braun, D. A., Hildebrandt, F.. Ciliopathies. Cold Spring Harb Perspect Biol. 2017;9.Google Scholar
Wolf, M. T.. Nephronophthisis and related syndromes. Curr Opin Pediatr. 2015;27:201–11.Google Scholar
McConnachie, D. J., Stow, J. L., Mallett, A. J.. Ciliopathies and the kidney: A review. Am J Kidney Dis. 2021;77:410–19.CrossRefGoogle ScholarPubMed
Konig, J., Kranz, B., Konig, S., et al. Phenotypic spectrum of children with nephronophthisis and related ciliopathies. Clin J Am Soc Nephrol. 2017;12:1974–83.Google Scholar
Eckardt, K. U., Alper, S. L., Antignac, C., et al. Autosomal dominant tubulointerstitial kidney disease: Diagnosis, classification, and management--A KDIGO consensus report. Kidney Int. 2015;88:676–83.Google Scholar
Devuyst, O., Olinger, E., Weber, S., et al. Autosomal dominant tubulointerstitial kidney disease. Nat Rev Dis Primers. 2019;5:60.Google Scholar
Ayasreh Fierro, N., Miquel Rodriguez, R., Matamala Gaston, A., et al. A review on autosomal dominant tubulointerstitial kidney disease. Nefrologia. 2017;37:235–43.Google Scholar
Bleyer, A. J., Kidd, K., Živná, M., Kmoch, S.. Autosomal dominant tubulointerstitial kidney disease. Adv Chronic Kidney Dis. 2017;24:8693.Google Scholar
Gast, C., Marinaki, A., Arenas-Hernandez, M., et al. Autosomal dominant tubulointerstitial kidney disease-UMOD is the most frequent non polycystic genetic kidney disease. BMC Nephrol. 2018;19:301.Google Scholar
Johnson, B. G., Dang, L. T., Marsh, G., et al. Uromodulin p.Cys147Trp mutation drives kidney disease by activating ER stress and apoptosis. J Clin Invest. 2017;127:3954–69.Google Scholar
Kidd, K., Vylet’al, P., Schaeffer, C., et al. Genetic and clinical predictors of age of ESKD in individuals with autosomal dominant tubulointerstitial kidney disease due to UMOD mutations. Kidney Int Rep. 2020;5:1472–85.Google Scholar
Al-Bataineh, M. M., Sutton, T. A., Hughey, R. P.. Novel roles for mucin 1 in the kidney. Curr Opin Nephrol Hypertens. 2017;26:384–91.Google Scholar
Yamamoto, S., Kaimori, J. Y., Yoshimura, T., et al. Analysis of an ADTKD family with a novel frameshift mutation in MUC1 reveals characteristic features of mutant MUC1 protein. Nephrol Dial Transplant. 2017;32:2010–7.Google Scholar
Yu, S. M., Bleyer, A. J., Anis, K., et al. Autosomal dominant tubulointerstitial kidney disease due to MUC1 mutation. Am J Kidney Dis. 2018;71:495500.Google Scholar
Knaup, K. X., Hackenbeck, T., Popp, B., et al. Biallelic expression of mucin-1 in autosomal dominant tubulointerstitial kidney disease: Implications for nongenetic disease recognition. J Am Soc Nephrol. 2018;29:2298–309.Google Scholar
Zivna, M., Kidd, K., Pristoupilova, A., et al. Noninvasive immunohistochemical diagnosis and novel MUC1 mutations causing autosomal dominant tubulointerstitial kidney disease. J Am Soc Nephrol. 2018;29:2418–31.CrossRefGoogle ScholarPubMed
Živná, M., Kidd, K., Zaidan, M., et al. An international cohort study of autosomal dominant tubulointerstitial kidney disease due to REN mutations identifies distinct clinical subtypes. Kidney Int. 2020;98:1589–604.Google Scholar
Schaeffer, C., Olinger, E.. Clinical and genetic spectra of kidney disease caused by REN mutations. Kidney Int. 2020;98:1397–400.Google Scholar
Desgrange, A., Heliot, C., Skovorodkin, I., et al. HNF1B controls epithelial organization and cell polarity during ureteric bud branching and collecting duct morphogenesis. Development. 2017;144:4704–19.Google Scholar
Gimpel, C., Avni, E. F., Breysem, L., et al. Imaging of kidney cysts and cystic kidney diseases in children: An International Working Group Consensus Statement. Radiology. 2019;290:769–82.Google Scholar
Izzi, C., Dordoni, C., Econimo, L., et al. Variable expressivity of HNF1B nephropathy, from renal cysts and diabetes to medullary sponge kidney through tubulo-interstitial kidney disease. Kidney Int Rep. 2020;5:2341–50.Google Scholar
Clissold, R. L., Hamilton, A. J., Hattersley, A. T., Ellard, S., Bingham, C.. HNF1B-associated renal and extra-renal disease – An expanding clinical spectrum. Nat Rev Nephrol. 2015;11:102–12.Google Scholar
Kołbuc, M., Leßmeier, L., Salamon-Słowińska, D., et al. Hypomagnesemia is underestimated in children with HNF1B mutations. Pediatr Nephrol. 2020;35:1877–86.Google Scholar
Bolar, N. A., Golzio, C., Zivna, M., et al. Heterozygous loss-of-function SEC61A1 mutations cause autosomal-dominant tubulo-interstitial and glomerulocystic kidney disease with anemia. Am J Hum Genet. 2016;99:174–87.Google Scholar
Espino-Hernandez, M., Palma Milla, C., Vara-Martin, J., Gonzalez-Granado, L. I.. De novo SEC61A1 mutation in autosomal dominant tubulo-interstitial kidney disease: Phenotype expansion and review of literature. J Paediatr Child Health. 2021;57:1305–7.Google Scholar
Reindl, J., Gröne, H.J., Wolf, G., Busch, M.. Uromodulin-related autosomal-dominant tubulointerstitial kidney disease-pathogenetic insights based on a case. Clin Kidney J. 2019;12:1729.Google Scholar
Vnučák, M., Graňák, K., Skálová, P., et al. Living-related kidney transplantation in a patient with juvenile nephronophthisis. Nephron. 2020;144:5838.Google Scholar
Živná, M., Kidd, K., Zaidan, M., et al. An international cohort study of autosomal dominant tubulointerstitial kidney disease due to REN mutations identifies distinct clinical subtypes. Kidney Int. 2020;98:1589604.Google Scholar
Cormican, S., Kennedy, C., Connaughton, D. M., et al. Renal transplant outcomes in patients with autosomal dominant tubulointerstitial kidney disease. Clin Transplant. 2020;34:e13783.Google Scholar
Knotek, M., Novak, R., Jaklin-Kekez, A., Mrzljak, A.. Combined liver-kidney transplantation for rare diseases. World J Hepatol. 2020;12:72237.Google Scholar
Dvela-Levitt, M., Shaw, J. L., Greka, A.. A rare kidney disease to cure them all? Towards mechanism-based therapies for proteinopathies. Trends Mol Med. 2021;27:393409.Google Scholar
Bleyer, A. J., Wolf, M. T., Kidd, K. O., et al. Autosomal dominant tubulointerstitial kidney disease: More than just HNF1β. Pediatr Nephrol. 2022;37:933–46.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Cystic Diseases
  • Edited by Helen Liapis, Ludwig Maximilian University, Nephrology Center, Munich, Adjunct Professor and Washington University St Louis, Department of Pathology and Immunology, Retired Professor
  • Book: Pediatric Nephropathology & Childhood Kidney Tumors
  • Online publication: 10 August 2023
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Cystic Diseases
  • Edited by Helen Liapis, Ludwig Maximilian University, Nephrology Center, Munich, Adjunct Professor and Washington University St Louis, Department of Pathology and Immunology, Retired Professor
  • Book: Pediatric Nephropathology & Childhood Kidney Tumors
  • Online publication: 10 August 2023
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Cystic Diseases
  • Edited by Helen Liapis, Ludwig Maximilian University, Nephrology Center, Munich, Adjunct Professor and Washington University St Louis, Department of Pathology and Immunology, Retired Professor
  • Book: Pediatric Nephropathology & Childhood Kidney Tumors
  • Online publication: 10 August 2023
Available formats
×