Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-04T19:45:43.079Z Has data issue: false hasContentIssue false

11 - Hominid growth and development from australopithecines to Middle Pleistocene Homo

Published online by Cambridge University Press:  12 August 2009

G. E. Krovitz
Affiliation:
Pennsylvania State University
J. L. Thompson
Affiliation:
University of Nevada, Las Vegas
A. J. Nelson
Affiliation:
University of Western Ontario
J. L. Thompson
Affiliation:
University of Nevada, Las Vegas
G. E. Krovitz
Affiliation:
Pennsylvania State University
A. J. Nelson
Affiliation:
University of Western Ontario
Get access

Summary

Introduction

This chapter reviews studies of juvenile dental, cranial, and postcranial remains, along with aspects of life history or demography that relate to juvenile individuals, from Lower and Middle Pleistocene members of the genus Homo (i.e., Homo habilis, Homo erectus, Homo antecessor, and Homo heidelbergensis). It is understood that these species names are not uniformly accepted by all paleoanthropologists, and that there is disagreement about what fossil specimens belong in each taxon. However, use of these species names allows for a much clearer discussion than using vague terms like “early Homo,” which has been variably used to refer to specimens of H. habilis and/or H. erectus. Additionally, as will be seen by the end of this review, there are large developmental differences between these groups that appear to justify discussion in these categories.

To set the stage for what we know about growth and development in the genus Homo, Kuykendall (this volume) reviews what is currently known about growth and development in robust and gracile australopithecines. Much of the research focuses on dental development, particularly aspects of timing and rate, and the relationship between dental development and life-history stages. Although it is clear that the australopithecines had unique developmental patterns that were unlike living apes or humans, on the whole they still matured following a faster, more “ape-like” life-history schedule and did not have the extended period of growth and development commonly associated with modern humans.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackermann, R. R., & Krovitz, G. E. (2002). Common patterns of facial ontogeny in the hominid lineage. Anatomical Record, 269, 142–147CrossRefGoogle ScholarPubMed
Aiello, L. C., & Key, C. (2002). Energetic consequences of being a Homo erectus female. American Journal of Human Biology, 14, 551–565CrossRefGoogle ScholarPubMed
Aiello, L. C., & Wells, J. C. K. (2002). Energetics and the evolution of the genus Homo. Annual Review of Anthropology, 31, 323–338CrossRefGoogle Scholar
Aiello, L. C., & Wheeler, P. (1995). The expensive tissue hypothesis: The brain and the digestive system in human and primate evolution. Current Anthropology, 36, 199–221CrossRefGoogle Scholar
Alvarez, H. P. (2000). Grandmother hypothesis and primate life histories. American Journal of Physical Anthropology, 113, 435–4503.0.CO;2-O>CrossRefGoogle ScholarPubMed
Antón, S. C. (1997). Developmental age and taxonomic affinity of the Mojokerto Child, Java, Indonesia. American Journal of Physical Anthropology, 102, 497–5143.0.CO;2-P>CrossRefGoogle Scholar
Antón, S. C. (1999). Cranial growth in Homo erectus: How credible are the Ngandong juveniles?American Journal of Physical Anthropology, 108, 223–2363.0.CO;2-8>CrossRefGoogle ScholarPubMed
Antón, S. C. (2002). Cranial growth in Homo erectus. In Human Evolution through Developmental Change, eds. N. Minugh-Purvis & K. J. McNamara, pp. 349–380. Baltimore: Johns Hopkins University Press
Antón, S. C., & Leigh, S. (1998). Paedomorphosis and neoteny in human evolution. Journal of Human Evolution, 34, A2Google Scholar
Antón, S. C., Leonard, W. R., & Robertson, M. L. (2002). An ecomorphological model of the initial hominid dispersal from Africa. Journal of Human Evolution, 43, 773–785CrossRefGoogle ScholarPubMed
Arsuaga, J. L., Bermúdez de Castro, J. M., & Carbonell, E. (1997a). The Sima de los Huesos hominid site. Journal of Human Evolution, 33CrossRefGoogle Scholar
Arsuaga, J. L., Martinez, I., Gracia, A., & Lorenzo, C. (1997b). The Sima de los Huesos crania (Sierra de Atapuerca, Spain): A comparative study. Journal of Human Evolution, 33, 219–281CrossRefGoogle Scholar
Arsuaga, J. L., Lorenzo, C., Carretero, J.-M., Gracia, A., Martinez, I., Garcia, N., Bermúdez de Castro, J. M., & Carbonell, E. (1999a). A complete human pelvis from the Middle Pleistocene of Spain. Nature, 399, 255–258CrossRefGoogle Scholar
Arsuaga, J. L., Martinez, I., Lorenzo, C., & Gracia, A. (1999b). The human cranial remains from Gran Dolina Lower Pleistocene site (Sierra de Atapuerca, Spain). Journal of Human Evolution, 37, 431–457CrossRefGoogle Scholar
Asfaw, B., White, T., Lovejoy, O., Latimer, B., Simpson, S., & Suwa, G. (1999). Australopithecus garhi: A new species of early hominid from Ethiopia. Science, 284, 629–635CrossRefGoogle ScholarPubMed
Bermúdez de Castro, J. M. (1996). European Middle Pleistocene human mortality patterns: The case of the Atapuerca–SH hominids. In The Last Neandertals, the First Anatomically Modern Humans: A Tale About the Human Diversity – Cultural Change and Human Evolution, the Crisis at 40 KA B. P., eds. E. Carbonell & M. Vaquero, pp. 21–38. Tarragona: Universitat Rovira i Virgili
Bermúdez de Castro, J. M., & Nicolas, M. E. (1997). Palaeodemography of the Atapuerca–SH Middle Pleistocene hominid samples. Journal of Human Evolution, 33, 333–355CrossRefGoogle Scholar
Bermúdez de Castro, J. M., & Rosas, A. (2001). Pattern of dental development in Hominid XVIII from the Middle Pleistocene Atapuerca-Sima de los Huesos site (Spain). American Journal of Physical Anthropology, 114, 325–330CrossRefGoogle Scholar
Bermúdez, Castro J. M., Arsuaga, J. L., Carbonell, E., Rosas, A., Martínez, I., & Mosquera, M. (1997). A hominid from the Lower Pleistocene of Atapuerca, Spain: Possible ancestor to Neandertals and modern humans. Science, 276, 1392–1395CrossRefGoogle Scholar
Bermúdez de Castro, J. M., Carbonell, E., & Arsuaga, J. L. (1999a). Gran Dolina Site: TD6 Aurora Stratum (Burgos, Spain). Journal of Human Evolution, 37Google Scholar
Bermúdez de Castro, J. M., Rosas, A., Carbonell, E., Nicolas, M. E., Rodriguez, J., & Arsuaga, J. L. (1999b). A modern human pattern of dental development in Lower Pleistocene hominids from Atapuerca-TD6 (Spain). Proceedings of the National Academy of Sciences of the USA, 96, 4210–4213CrossRefGoogle Scholar
Beynon, A. D., & Wood, B. A. (1987). Patterns and rates of enamel growth in the molar teeth of early hominids. Nature, 326, 493–496CrossRefGoogle ScholarPubMed
Bogin, B. (1997). Evolutionary hypotheses for human childhood. Yearbook of Physical Anthropology, 40, 63–893.0.CO;2-8>CrossRefGoogle Scholar
Bogin, B. (1999a). Evolutionary perspective on human growth. Annual Review of Anthropology, 28, 109–153CrossRefGoogle Scholar
Bogin, B. (1999b). Patterns of Human Growth, 2nd edn. Cambridge: Cambridge University Press
Bogin, B., & Smith, B. H. (1996). Evolution of the human life cycle. American Journal of Human Biology, 8, 703–7163.0.CO;2-U>CrossRefGoogle ScholarPubMed
Bromage, T. G. (1989). Ontogeny of the early hominid face. Journal of Human Evolution, 18, 751–773CrossRefGoogle Scholar
Bromage, T. G., & Dean, M. C. (1985). Re-evaluation of the age at death of immature fossil hominids. Nature, 317, 525–527CrossRefGoogle ScholarPubMed
Carretero, J. M., Arsuaga, J. L., & Lorenzo, C. (1997). Clavicles, scapulae and humeri from the Sima de los Huesos site (Sierra de Atapuerca, Spain). Journal of Human Evolution, 33, 357–408CrossRefGoogle Scholar
Carretero, J. M., Lorenzo, C., & Arsuaga, J. L. (1999). Axial and appendicular skeleton of Homo antecessor. Journal of Human Evolution, 37, 459–499CrossRefGoogle ScholarPubMed
Clegg, M., & Aiello, L. C. (1999). A comparison of the Nariokotome Homo erectus with juveniles from a modern human population. American Journal of Physical Anthropology, 110, 81–933.0.CO;2-T>CrossRefGoogle ScholarPubMed
Day, M. H. (1986). Guide to Fossil Man, 4th edn. London: Cassell
Dean, M. C. (1985). The eruption pattern of the permanent incisors and first permanent molars in Australopithecus (Paranthropus. robustus. American Journal of Physical Anthropology, 67, 251–257CrossRefGoogle ScholarPubMed
Dean, M. C. (1987). The dental developmental status of six East African juvenile fossil hominids. Journal of Human Evolution, 16, 197–213CrossRefGoogle Scholar
Dean, M. C., & Reid, D. J. (2001). Perikymata spacing and distribution on hominid anterior teeth. American Journal of Physical Anthropology, 116, 209–215CrossRefGoogle ScholarPubMed
Dean, C., Leakey, M. G., Reid, D., Schrenk, F., Schwartz, G. T., Stringer, C., & Walker, A. (2001). Growth processes in teeth distinguish modern humans from Homo erectus and earlier hominins. Nature, 414, 628–631CrossRefGoogle ScholarPubMed
Dunsworth, H., & Walker, A. (2002). Early genus Homo. In The Primate Fossil Record, ed. W. C. Hartwig, pp. 419–435. Cambridge: Cambridge University Press
Feibel, C. S., Brown, F. H., & McDougall, I. (1989). Stratigraphic context of fossil hominids from the Omo Group deposits: Northern Turkana Basin, Kenya and Ethiopia. American Journal of Physical Anthropology, 78, 595–622CrossRefGoogle ScholarPubMed
Gibbons, A. (1997). A new face for human ancestors. Science, 276, 1331–1333CrossRefGoogle ScholarPubMed
Hawkes, K., O'Connell, J. F., Blurton-Jones, N. G., Alvarez, H., & Charnov, E. L. (1998). Grandmothering, menopause, and the evolution of human life histories. Proceedings of the National Academy of Sciences of the USA, 95, 1336–1339CrossRefGoogle ScholarPubMed
Kennedy, G. E. (1983). A morphometric and taxonomic assessment of a hominine femur from the lower member, Koobi Fora, Lake Turkana. American Journal of Physical Anthropology, 61, 429–436CrossRefGoogle ScholarPubMed
Krings, M., Stone, A., Schmitz, R. W., Krainitzki, H., Stoneking, M., & Pääbo, S. (1997). Neandertal DNA sequences and the origin of modern humans. Cell, 90, 19–30CrossRefGoogle ScholarPubMed
Krings, M., Geisert, H., Schmitz, R. W., Krainitzki, H., & Pääbo, S. (1999). DNA sequence of the mitochondrial hypervariable region II from the Neandertal type specimen. Proceedings of the National Academy of Sciences of the USA, 96, 5581–5585CrossRefGoogle ScholarPubMed
Krovitz, G. E. (1999). Three-dimensional analysis of modern human and Neandertal craniofacial growth patterns. American Journal of Physical Anthropology, Suppl. 28, 175–176Google Scholar
Krovitz, G. E. (2000). Three-dimensional comparisons of craniofacial morphology and growth patterns in Neandertals and modern humans. PhD dissertation, The Johns Hopkins University
Leigh, S. R. (1996). Evolution of human growth spurts. American Journal of Physical Anthropology, 101, 455–4743.0.CO;2-V>CrossRefGoogle ScholarPubMed
Leigh, S. R., & Park, P. B. (1998). Evolution of human growth prolongation. American Journal of Physical Anthropology, 107, 331–3503.0.CO;2-#>CrossRefGoogle ScholarPubMed
Lorenzo, C., Arsuaga, J. L., & Carretero, J. M. (1999). Hand and foot remains from the Gran Dolina Early Pleistocene site (Sierra de Atapuerca, Spain). Journal of Human Evolution, 37, 501–522CrossRefGoogle Scholar
Moggi-Cecchi, J. (2001). Patterns of dental development of Australopithecus africanus, with some inferences on their evolution with the origin of the genus Homo. In Humanity from African Naissance to Coming Millennia: Colloquia in Human Biology and Palaeoanthropology, eds. P. V. Tobias, M. A. Raath, J. Moggi-Cecchi, & G. A. Doyle, pp. 125–133. Firenze: Firenze University Press
Montagu, M. F. A. (1955). Time, morphology, and neoteny in the evolution of Man. American Anthropologist, 57, 13–27CrossRefGoogle Scholar
O'Connell, J. F., Hawkes, K., & Blurton Jones, N. G. (1999). Grandmothering and the evolution of Homo erectus. Journal of Human Evolution, 36, 461–485CrossRefGoogle ScholarPubMed
Ovchinnikov, I. V., Götherström, A., Romanova, G. P., Kharitonov, V. M., Lidén, K., & Goodwin, W. (2000). Molecular analysis of Neanderthal DNA from the northern Caucasus. Nature, 404, 490–493CrossRefGoogle ScholarPubMed
Ponce de León, M. S., & Zollikofer, C. P. E. (2001). Neanderthal cranial ontogeny and its implications for late hominid diversity. Nature, 412, 534–538CrossRefGoogle ScholarPubMed
Richmond, B. G., Aiello, L. C., & Wood, B. A. (2002). Early hominin limb proportions. Journal of Human Evolution, 43, 529–548CrossRefGoogle ScholarPubMed
Richtsmeier, J. T., & Walker, A. (1993). A morphometric study of facial growth. In The Nariokotome Homo erectus Skeleton, eds. A. Walker & R. Leakey, pp. 391–410. Cambridge: Harvard University PressCrossRef
Rightmire, G. P. (1998). Human evolution in the Middle Pleistocene: The role of Homo heidelbergensis. Evolutionary Anthropology, 6, 218–2273.0.CO;2-6>CrossRefGoogle Scholar
Rosenberg, K., & Trevathan, W. (1996). Bipedalism and human birth: The obstetrical dilemma revisited. Evolutionary Anthropology, 4, 161–168CrossRefGoogle Scholar
Ruff, C. B. (1995). Biomechanics of the hip and birth in early Homo. American Journal of Physical Anthropology, 98, 527–574CrossRefGoogle ScholarPubMed
Shipman, P. (1986). Scavenging or hunting in early hominids. American Anthropologist, 88, 27–43CrossRefGoogle Scholar
Shipman, P., & Walker, A. (1989). The costs of becoming a predator. Journal of Human Evolution, 18, 373–392CrossRefGoogle Scholar
Smith, B. H. (1986). Dental development in Australopithecus and early Homo. Nature, 323, 327–330CrossRefGoogle Scholar
Smith, B. H. (1989a). Dental development as a measure of life history in primates. Evolution, 43, 683–688CrossRefGoogle Scholar
Smith, B. H. (1989b). Growth and development and its significance for early hominid behaviour. Ossa, 14, 63–96Google Scholar
Smith, B. H. (1991). Dental development and the evolution of life history in the Hominidae. American Journal of Physical Anthropology, 86, 157–174CrossRefGoogle Scholar
Smith, B. H. (1993). The physiological age of KNM-WT 15000. In The Nariokotome Homo erectus Skeleton, eds. A. Walker & R. Leakey, pp. 196–220. Cambridge: Harvard University PressCrossRef
Smith, B. H. (1994). Patterns of dental development in Homo, Australopithecus, Pan and Gorilla. American Journal of Physical Anthropology, 94, 307–325CrossRefGoogle ScholarPubMed
Smith, B. H., & Tompkins, R. L. (1995). Toward a life history of the Hominidae. Annual Review of Anthropology, 24, 257–279CrossRefGoogle Scholar
Smith, R. J., Gannon, P. J., & Smith, B. H. (1995). Ontogeny of australopithecines and early Homo: Evidence from cranial capacity and dental eruption. Journal of Human Evolution, 29, 155–168CrossRefGoogle Scholar
Strand Viðarsdóttir, U., O'Higgins, P., & Stringer, C. (2002). A geometric morphometric study of regional differences in the ontogeny of the modern human facial skeleton. Journal of Anatomy, 201, 211–229CrossRefGoogle Scholar
Tardieu, C. (1998). Short adolescence in early hominids: Infantile and adolescent growth of the human femur. American Journal of Physical Anthropology, 107, 163–1783.0.CO;2-W>CrossRefGoogle ScholarPubMed
Tardieu, C. (1999). Ontogeny and phylogeny of femoro-tibial characters in humans and hominid fossils: Functional influence and genetic determinism. American Journal of Physical Anthropology, 110, 365–3773.0.CO;2-T>CrossRefGoogle ScholarPubMed
Tardieu, C., & Trinkaus, E. (1994). Early ontogeny of the human femoral bicondylar angle. American Journal of Physical Anthropology, 95, 183–195CrossRefGoogle ScholarPubMed
Thompson, J. L., & Nelson, A. J. (2000). The place of Neandertals in the evolution of hominid patterns of growth and development. Journal of Human Evolution, 38, 475–495CrossRefGoogle ScholarPubMed
Tobias, P. V. (1991). Olduvai Gorge, vol. 4, The Skulls, Endocasts and Teeth of Homo habilis. Cambridge: Cambridge University Press
Tompkins, R. L. (1996). Relative dental development of Upper Pleistocene hominids compared to human population variation. American Journal of Physical Anthropology, 99, 103–1183.0.CO;2-1>CrossRefGoogle ScholarPubMed
Trinkaus, E. (1984). Does KNM-ER 1481A establish Homo erectus at 2.0 myr BP?American Journal of Physical Anthropology, 64, 137–139CrossRefGoogle Scholar
Trinkaus, E. (1995). Neanderthal mortality patterns. Journal of Archaeological Science, 22, 121–142CrossRefGoogle Scholar
Trinkaus, E., & Tompkins, R. L. (1990). The Neandertal life cycle: The possibility, probability, and perceptability of contrasts with recent humans. In Primate Life History and Evolution, ed. C. J. de Rousseau, pp. 153–180. New York: Wiley-Liss
Walker, A. (1993). Perspectives on the Nariokotome discovery. In The Nariokotome Homo erectus Skeleton, eds. A. Walker & R. Leakey, pp. 411–430. Cambridge: Harvard University PressCrossRef
Walker, A., & Leakey, R. (eds.) (1993). The Nariokotome Homo erectus Skeleton. Cambridge: Harvard University Press
Walker, A., & Ruff, C. B. (1993). The reconstruction of the pelvis. In The Nariokotome Homo erectus Skeleton, eds. A. Walker & R. Leakey, pp. 221–233. Cambridge: Harvard University PressCrossRef
Wood, B. (1992). Origin and evolution of the genus Homo. Nature, 355, 783–790CrossRefGoogle ScholarPubMed
Wood, B., & Collard, M. (1999). The human genus. Science, 284, 65–71CrossRefGoogle ScholarPubMed
Wood, B., & Richmond, B. G. (2000). Human evolution: Taxonomy and paleobiology. Journal of Anatomy, 196, 16–60Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×