Book contents
- Frontmatter
- Contents
- Preface
- Acknowledgments
- 0 Introductory remarks
- Part I Tools of p-adic Analysis
- Part II Differential Algebra
- Part III p-adic Differential Equations on Discs and Annuli
- Part IV Difference Algebra and Frobenius Modules
- Part V Frobenius Structures
- 17 Frobenius structures on differential modules
- 18 Effective convergence bounds
- 19 Galois representations and differential modules
- Part VI The p-adic local monodromy theorem
- Part VII Global theory
- Appendix A Picard–Fuchs modules
- Appendix B Rigid cohomology
- Appendix C p-adic Hodge theory
- References
- Index of notation
- Subject index
17 - Frobenius structures on differential modules
from Part V - Frobenius Structures
Published online by Cambridge University Press: 06 August 2022
- Frontmatter
- Contents
- Preface
- Acknowledgments
- 0 Introductory remarks
- Part I Tools of p-adic Analysis
- Part II Differential Algebra
- Part III p-adic Differential Equations on Discs and Annuli
- Part IV Difference Algebra and Frobenius Modules
- Part V Frobenius Structures
- 17 Frobenius structures on differential modules
- 18 Effective convergence bounds
- 19 Galois representations and differential modules
- Part VI The p-adic local monodromy theorem
- Part VII Global theory
- Appendix A Picard–Fuchs modules
- Appendix B Rigid cohomology
- Appendix C p-adic Hodge theory
- References
- Index of notation
- Subject index
Summary
In this part of the book, we bring together the streams of differential algebra (from Part III) and difference algebra (from Part IV), realizing Dwork’s fundamental insight that the study of differential modules on discs and annuli is greatly enhanced by the introduction of Frobenius structures. This chapter sets the foundations for this study. We first introduce the notion of a Frobenius structure on a differential module, with some examples. We then consider the effect of Frobenius structures on the generic radius of convergence, and obtain the fact that a differential module on a disc has a full basis of horizontal sections (“Dwork’s trick”). We also show that the existence of a Frobenius structure does not depend on the particular choice of a Frobenius lift; this independence plays an important role in rigid cohomology (Appendix B).
- Type
- Chapter
- Information
- p-adic Differential Equations , pp. 311 - 322Publisher: Cambridge University PressPrint publication year: 2022