Book contents
- Frontmatter
- Note to the Reader
- Preface
- Contents
- 1 Transformations and their Iteration
- 2 Arithmetic and Geometric Means
- 3 Isoperimetric Inequality for Triangles
- 4 Isoperimetric Quotient
- 5 Colored Marbles
- 6 Candy for School Children
- 7 Sugar Rather Than Candy
- 8 Checkers on a Circle
- 9 Decreasing Sets of Positive Integers
- 10 Matrix Manipulations
- 11 Nested Triangles
- 12 Morley's Theorem and Napoleon's Theorem
- 13 Complex Numbers in Geometry
- 14 Birth of an IMO Problem
- 15 Barycentric Coordinates
- 16 Douglas-Neumann Theorem
- 17 Lagrange Interpolation
- 18 The Isoperimetric Problem
- 19 Formulas for Iterates
- 20 Convergent Orbits
- 21 Finding Roots by Iteration
- 22 Chebyshev Polynomials
- 23 Sharkovskii's Theorem
- 24 Variation Diminishing Matrices
- 25 Approximation by Bernstein Polynomials
- 26 Properties of Bernstein Polynomials
- 27 Bézier Curves
- 28 Cubic Interpolatory Splines
- 29 Moving Averages
- 30 Approximation of Surfaces
- 31 Properties of Triangular Patches
- 32 Convexity of Patches
- Appendix A Approximation
- Appendix B Limits and Continuity
- Appendix C Convexity
- Bibliography
- Hints and Solutions
- Index
8 - Checkers on a Circle
- Frontmatter
- Note to the Reader
- Preface
- Contents
- 1 Transformations and their Iteration
- 2 Arithmetic and Geometric Means
- 3 Isoperimetric Inequality for Triangles
- 4 Isoperimetric Quotient
- 5 Colored Marbles
- 6 Candy for School Children
- 7 Sugar Rather Than Candy
- 8 Checkers on a Circle
- 9 Decreasing Sets of Positive Integers
- 10 Matrix Manipulations
- 11 Nested Triangles
- 12 Morley's Theorem and Napoleon's Theorem
- 13 Complex Numbers in Geometry
- 14 Birth of an IMO Problem
- 15 Barycentric Coordinates
- 16 Douglas-Neumann Theorem
- 17 Lagrange Interpolation
- 18 The Isoperimetric Problem
- 19 Formulas for Iterates
- 20 Convergent Orbits
- 21 Finding Roots by Iteration
- 22 Chebyshev Polynomials
- 23 Sharkovskii's Theorem
- 24 Variation Diminishing Matrices
- 25 Approximation by Bernstein Polynomials
- 26 Properties of Bernstein Polynomials
- 27 Bézier Curves
- 28 Cubic Interpolatory Splines
- 29 Moving Averages
- 30 Approximation of Surfaces
- 31 Properties of Triangular Patches
- 32 Convexity of Patches
- Appendix A Approximation
- Appendix B Limits and Continuity
- Appendix C Convexity
- Bibliography
- Hints and Solutions
- Index
Summary
Let n be any positive integer. Place n red and black checkers, in any order, along the circumference of a circle. We define a transformation which maps the n-tuple of red and black checkers into a new n-tuple of red and black checkers: If two adjacent checkers are of the same color, place a red checker between them; if they are of different colors, place a black checker between them. Then remove all the original checkers.
We are interested in what happens when this process is repeated. The answer depends on n in a surprising way.
Problem 8.1. Show that if n = 2m then after a finite number of transformations all checkers on the circle become red.
This is a reformulation, in nontechnical language, of a problem which has occurred in many competitions and has been discussed in several books and papers.
Vectors and Operators
Before we tackle the problem and its extensions, we shall spend some time presenting algebraic concepts which have many applications. The above transformation can be described algebraically as follows: Assign to each red checker the number 0, and to each black checker the number 1. Denote the initial distribution of checkers by x = (x1, x2, …, xn), where xi = 0 or 1 for a red or a black checker, respectively. We regard a 1-index array of n 0's and 1's as a vector and denote it by a bold face lower case letter.
- Type
- Chapter
- Information
- Over and Over Again , pp. 32 - 44Publisher: Mathematical Association of AmericaPrint publication year: 1997