Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T22:01:50.190Z Has data issue: false hasContentIssue false

28 - Limits of life and the biosphere: lessons from the detection of microorganisms in the deep sea and deep subsurface of the Earth

from Part VII - Traces of life and biosignatures

Published online by Cambridge University Press:  04 February 2011

Ken Takai
Affiliation:
JAMSTEC, Yokosuka, Japan
Muriel Gargaud
Affiliation:
Université de Bordeaux
Purificación López-Garcìa
Affiliation:
Université Paris-Sud 11
Hervé Martin
Affiliation:
Université de Clermont-Ferrand II (Université Blaise Pascal), France
Get access

Summary

Naturally occurring physical and chemical constraints of life and the biosphere

Deep-sea and deep-subsurface environments have been recognized to be among the most extreme biotopes potentially placed very close to an interface between the habitable and the uninhabitable terrains for life on Earth. The concept of habitability appears difficult to define, particularly in terms of an astrobiological perspective. Nevertheless, it is widely accepted that the harshest habitats for life, such as deep-sea and deep-subsurface environments in this ‘highly habitable’ planet, the Earth, may be approximated to the most plausible environments for extraterrestrial life in some ‘hardly habitable’ planets and moons of our Solar System. Thus, to understand the limits of life and the biosphere in the deep-sea and deep-subsurface environments of the Earth could be a key for elucidating the potential habitability of extraterrestrial life in the Universe. In this chapter, the possible factors that limit life and the biosphere on the Earth are overviewed and discussed from insights gained from the recent biogeochemical and geomicrobiological explorations in the deep-sea and deep-subsurface biosphere.

In the deep-sea and deep-subsurface environments many physical and chemical parameters limiting the activities of microbial life have been elucidated. The best example is temperature. In the terrestrial and oceanic surface environments, liquid water boils at around 100°C, while with an increasing pressure (hydrostatic), liquid water can be present at up to 373°C for pure water and 407°C for seawater (critical points) (Bischoff and Rosenbauer,1988).

Type
Chapter
Information
Origins and Evolution of Life
An Astrobiological Perspective
, pp. 469 - 486
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×