Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T22:29:19.160Z Has data issue: false hasContentIssue false

25 - Early life: nature, distribution and evolution

from Part VII - Traces of life and biosignatures

Published online by Cambridge University Press:  04 February 2011

Frances Westall
Affiliation:
Centre de Biophysique Moléculaire, Orléans, France
Muriel Gargaud
Affiliation:
Université de Bordeaux
Purificación López-Garcìa
Affiliation:
Université Paris-Sud 11
Hervé Martin
Affiliation:
Université de Clermont-Ferrand II (Université Blaise Pascal), France
Get access

Summary

Introduction

The first two thirds of the history of life on Earth are dominated by single-celled microorganisms with prokaryotes characterizing the time period up to at least the Palaeoproterozoic Period (from 2.5 to about 1.8 billion years (Ga) ago). The oldest recognizable eukaryotes appear in the Mesoproterozoic Era (and are dated at between 1.6 to 1.8 Ga (Javaux et al., 2001, 2004; see also review in Knoll et al., 2006). This chapter on early life will concentrate on the traces of life contained in the oldest crustal rocks potentially capable of hosting well-preserved biosignatures, i.e. Early to Mid-Archaean, 3.5 to 3.0 Ga-old sediments and volcanic rocks from greenstone belts in both the Pilbara (NW Australia) and the Barberton (East South Africa) Greenstone Belts. The fossil traces of early microorganisms in these rocks resemble prokaryotes in terms of their morphology, metabolic processes and interactions with the environment. Life is directly influenced by its environment and, reciprocally, it can also influence its immediate environment. On the microbial scale, this influence is in proportion to the size of the microbial colonies, biofilms or mats, which can range from tens of microns to several metres or more (sometimes up to kilometres) for well-developed mats. For instance, if one takes into consideration the probable microbial control on the rise of oxygen in the atmosphere (between 2.4 and 2.0 Ga; Bekker et al., 2004; Canfield, 2005), this influence also reaches the planetary scale.

Type
Chapter
Information
Origins and Evolution of Life
An Astrobiological Perspective
, pp. 391 - 413
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×