Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T17:20:23.406Z Has data issue: false hasContentIssue false

26 - Early eukaryotes in Precambrian oceans

from Part VII - Traces of life and biosignatures

Published online by Cambridge University Press:  04 February 2011

Emmanuelle Javaux
Affiliation:
Unité de Micropaléontologie, Université de Liège, Belgium
Muriel Gargaud
Affiliation:
Université de Bordeaux
Purificación López-Garcìa
Affiliation:
Université Paris-Sud 11
Hervé Martin
Affiliation:
Université de Clermont-Ferrand II (Université Blaise Pascal), France
Get access

Summary

Origin and diversity of eukaryotes

Origin

Life on Earth is classed into three phylogenetic domains: the Archaea, the Bacteria and the Eucarya. Eukaryotic cells are less diverse than prokaryotes metabolically, but have a complex cellular architecture comprising a nucleus, a cytoskeleton (a proteinic network structuring the cytoplasm to facilitate intracellular traffic, endo- and exo-cytosis and amoeboid locomotion; Cavalier-Smith, 2002), an endomembrane system (a system of internal membranes subdivided into several organelles, and used for synthesis, processing, packaging and transport of macromolecules such as lipids and proteins) and organelles such as mitochondria (or derived organelles) and chloroplasts in photosynthetic eukaryotes. Archaea and Bacteria are called prokaryotes because their cells do not contain a nucleus or organelles, and because transcription and translation are coupled, i.e. they do not occur in different cellular compartments. The prokaryotes have diverse and complex metabolisms, but simpler cellular architecture. They possess proteins playing the role of cytoskeleton, but not the motor proteins involved in intracellular transport as in eukaryotes (Moller-Jensen and Lowe, 2005; Cabeen and Jacobs-Wagner, 2005) and some (the planctomycetales) may possess endomembrane systems (e.g. Fuerst, 2005).

The eukaryotic genome is seen as a mosaic of bacterial genes (involved in energy and carbon metabolism) and archaeal genes (related to DNA replication, transcription and translation), but it also contains a core set of genes and proteins unique to eukaryotes (e.g. Kurland et al., 2006), while the membrane lipids are closer to those of the bacteria (Rivera et al., 1998).

Type
Chapter
Information
Origins and Evolution of Life
An Astrobiological Perspective
, pp. 414 - 449
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×