Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-20T17:38:27.748Z Has data issue: false hasContentIssue false

3 - Nebular line radiation

Published online by Cambridge University Press:  04 November 2009

Sun Kwok
Affiliation:
University of Calgary
Get access

Summary

Unlike stars which show a continuous spectrum, the optical spectrum of PN is dominated by emission lines. Line emission occurs when atoms or ions make a transition from one bound electronic state to another bound state at a lower energy. Such transitions, usually by means of spontaneous emission, are referred to as bound-bound (b-b) transitions. In the interior of stars, electrons in an atom are distributed over many energy levels because of the high particle and radiation densities. The bound electrons are excited either by free electrons colliding with the atom, or by the absorption of a photon. However, in the interstellar medium, both the particle and radiation densities are low, and the population distribution of the bound electrons can be far from the thermodynamical equilibrium condition given by the Boltzmann equation [Eq. (2.23)].

The typical energy separations between the electronic states of atoms are of the order of 1 eV, corresponding to photons in the visible or UV parts of the spectrum. The only available visible or UV background in the interstellar medium is from diluted starlight, which is generally not strong enough for excitation by stimulated absorption to be significant. Therefore the only way that a bound electron can be found in an excited state is by collisional excitation from a lower state, or as a consequence of recombination between a free electron and a proton.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Nebular line radiation
  • Sun Kwok, University of Calgary
  • Book: The Origin and Evolution of Planetary Nebulae
  • Online publication: 04 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511529504.004
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Nebular line radiation
  • Sun Kwok, University of Calgary
  • Book: The Origin and Evolution of Planetary Nebulae
  • Online publication: 04 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511529504.004
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Nebular line radiation
  • Sun Kwok, University of Calgary
  • Book: The Origin and Evolution of Planetary Nebulae
  • Online publication: 04 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511529504.004
Available formats
×