Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T14:05:27.907Z Has data issue: false hasContentIssue false

Part V - Anatomical and Functional Morphological Perspectives

Published online by Cambridge University Press:  30 July 2022

David J. Gower
Affiliation:
Natural History Museum, London
Hussam Zaher
Affiliation:
Universidade de São Paulo
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Gredler, M. L., Larkins, C. E., Leal, F. , et al., Evolution of external genitalia: insights from reptilian development. Sexual Development, 8 (2014), 31133126.Google Scholar
Gredler, M. L., Developmental and Evolutionary origins of the amniote phallus. Integrative and Comparative Biology, 56 (2016), 694704.Google Scholar
Sanger, T. J., Gredler, M. L., and Cohn, M. J., Resurrecting embryos of the tuatara, Sphenodon punctatus, to resolve vertebrate phallus evolution. Biology Letters, 11 (2015), 20150694.Google Scholar
Dowling, H. G. and Savage, D. E., A guide to the snake hemipenis: a survey of basic structure and systematic characteristics. Zoologica, 45 (1960), 1728.Google Scholar
Leal, F. and Cohn, M. J., Development of hemipenes in the Ball Python snake Python regius . Sexual Development, 9 (2014), 620.CrossRefGoogle ScholarPubMed
Raynaud, A. and Pieau, C.. Embryonic development of the genital system. In Gans, C., Billett, F., eds., Biology of the Reptilia (New York: John Wiley and Sons, 1985), pp. 149300.Google Scholar
Arnold, E. N.. Variation in the cloacal and hemipenial muscles of lizards and its bearing on their relationships. In Ferguson, M. W. J., ed., The Structure, Development and Evolution of Reptiles (Symposium of the Zoological Society of London 52) (London: Academic Press, 1984), pp. 4785.Google Scholar
Cope, E. D., The classification of the Ophidia. Transactions of the American Philosophical Society, 18 (1895), 186219.CrossRefGoogle Scholar
Cope, E. D., On the hemipenes of the Sauria. Proceedings of the Academy of Natural Sciences of Philadelphia, 48 (1896), 461467.Google Scholar
Böhme, W., Zur Genitalmorphologie der Sauria: funktionelle un stammesgeschichtliche Aspekte. Bonner Zoologische Monographien, 27 (1988), 1176.Google Scholar
Zaher, H., Hemipenial morphology of the South American xenodontine snakes, with a proposal for a monophyletic Xenodontinae and a reappraisal of colubroid hemipenes. Bulletin of the American Museum of Natural History, (1999), 1168.Google Scholar
Myers, C. W. and Cadle, J. E., On the snake hemipenis, with notes on Psomophis and techniques of eversion: a response to Dowling. Herpetological Review, 34 (2003), 295302.Google Scholar
Zaher, H. and Prudente, A. L. C., Hemipenes of Siphlophis (Serpentes, Xenodontinae) and techniques of hemipenial preparation in snakes: a response to Dowling. Herpetological Review, 34 (2003), 302307.Google Scholar
Nunes, P. M., Curcio, F. F., Roscito, J. G., and Rodrigues, M. T., Are hemipenial spines related to limb reduction? A spiny discussion focused on gymnophthalmid lizards (Squamata: Gymnophthalmidae). Anatomical Record, 297 (2014), 482495.Google Scholar
Manzani, P. R. and Abe, A. S., Sobre dois métodos de preparo do hemipênis de serpentes. Memórias do instituto Butantan, 50 (1988), 1520.Google Scholar
Pesantes, O. S., A method for preparing the hemipenis of preserved snakes. Journal of Herpetology, 28 (1994), 9395.Google Scholar
Branch, W. R., Hemipenial morphology of african snakes: a taxonomic review. Part 1. Scolecophidia and Boidae. Journal of Herpetology, 20 (1986), 185299.Google Scholar
Branch, W. R., Hemipeneal morphology of platynotan lizards. Journal of Herpetology, 16 (1982), 1638.Google Scholar
Zhang, F., Studies on morphological characters of hemipenes of the Chinese lizards [in Chinese]. Acta Herpetologica Sinica, 5 (1986), 254259.Google Scholar
Zhang, F., Hu, S. Q., and Zhao, E. M., Comparative studies and phylogenetic discussions on hemipenial morphology of the Chinese Colubrinae (Colubridae). Acta Herpetologica Sinica, 3 (1984), 2344.Google Scholar
Dowling, H. G. and Duellman, W. E., Systematic Herpetology: A Synopsis of Families and Higher Categories (New York: HISS Publications, 1978).Google Scholar
McCann, C., The hemipenis in reptiles. Journal of the Bombay Natural History Society, 46 (1946), 347368.Google Scholar
Burbrink, F. T., Grazziotin, F. G., Pyron, R. A., et al., Interrogating genomic-scale data for Squamata (lizards, snakes, and amphisbaenians) shows no support for key traditional morphological relationships. Systematic Biology, 69 (2020), 502520.Google Scholar
Zaher, H., Grazziotin, F. G., Cadle, J. E., et al., Molecular phylogeny of advanced snakes (Serpentes, Caenophidia) with an emphasis on South American xenodontines: a revised classification and descriptions of new taxa. Papéis Avulsos de Zoologia (São Paulo), 49 (2009), 115153.CrossRefGoogle Scholar
Uetz, P., Freed, P., Aguilar, R., and Hošek, J.. The Reptile Database. www.reptile-database.org2021 (accessed 1 May 2021)Google Scholar
Savage, J. M., On terminology for the description of the hemipenes of squamate reptiles. Herpetological Journal, 7 (1997), 2325.Google Scholar
Klaver, C. and Böhme, W., Phylogeny and classification of the Chamaeleonidae (Sauria) with special reference to hemipenis morphology. Bonner Zoologische Monographien, 22 (1986), 164.Google Scholar
Harvey, M. B., Ugueto, G. N., and Gutberlet, R. L., Review of teiid morphology with a revised taxonomy and phylogeny of the Teiidae (Lepidosauria: Squamata). Zootaxa, 3459 (2012), 1156.Google Scholar
Böhme, W., Zur systematischen Stellung der Amphisbanen (Reptilia: Squamata), mit besonderer Berücksichtigung der Morphologie des Hemipenis. Journal of Zoological Systematics and Evolutionary Research, 27 (1989), 330337.CrossRefGoogle Scholar
Rosenberg, H. I., Cavey, M. J., and Gans, C., Morphology of the hemipenes of some Amphisbaenia (Reptilia: Squamata). Canadian Journal of Zoology, 69 (1991), 359368.Google Scholar
Ziegler, T. and Böhme, W., Genitalstrukturenund Paarungsbiologie bei squamaten Reptilien, speziell den Platynota, mit Bemerkungen zur Systematik. Mertensiella, 8 (1997), 1210.Google Scholar
Parra, V., Nunes, P. M., and Torres-Carvajal, O., Systematics of Pholidobolus lizards (Squamata, Gymnophthalmidae) from southern Ecuador, with descriptions of four new species. ZooKeys, 954 (2020), 109156.Google Scholar
Arnold, E. N., Relationships of the Palaearctic lizards assigned to the genera Lacerta, Algyroides and Psammodromus (Reptilia: Lacertidae). Bulletin of the British Museum (Natural History), Zoology, 25 (1973), 289366.Google Scholar
Brennan, I. G. and Bauer, A. M., Notes on hemipenial morphology and its phylogenetic implications in the Pygopodidae Boulenger, 1884. Bonn Zoological Bulletin, 66 (2017), 1528.Google Scholar
Myers, C. W., Rivas Fuenmayor, G., and Jadin, R. C., New species of lizards from Auyantepui and La Escalera in the Venezuelan Guayana, with notes on ‘microteiid’ hemipenes (Squamata: Gymnophthalmidae). American Museum Novitates, 3660 (2009), 131.Google Scholar
Sánchez-Martínez, P. M., Ramírez-Pinilla, M. P., Meneses-Pelayo, E., and Nunes, P. M., Hemipenial morphology of nine South American species of Mabuya (Scincidae: Lygosominae) with comments on the morphology of the family. Anatomical Record, 11 (2020), 29172930.Google Scholar
Cadle, J. E., Hemipenial morphology in the North American snake genus Phyllorhynchus (Serpentes: Colubridae), with a review of and comparisons with natricid hemipenes. Zootaxa, 3092 (2011), 125.Google Scholar
Myers, C. W. and Campbell, J. A., A new genus and species of colubrid snake from the Sierra Madre del Sur of Guerrero, Mexico. American Museum Novitates, 2708 (1981), 120.Google Scholar
Arnold, E. N., The hemipenis of lacertid lizards (Reptilia: Lacertidae): structure, variation and systematic implications. Journal of Natural History, 20 (1986), 12211257.Google Scholar
Avery, D. F. and Tanner, W. W., Evolution of the iguanine lizards (Sauria, Iguanidae) as determined by osteological and myological characters. Science Bulletin, Brigham Young University, 12 (1971), 179.Google Scholar
Al-ma’Ruf, A. Y., Sari, R. P., Mostofa, I., et al., Morphology and histology of paryphasmata and hemibaculum of Varanus salvator based on sexual maturity. Open Veterinary Journal, 11 (2021), 330336.Google Scholar
Smith, M. A., The Fauna of British India, including Ceylon and Burma. Reptilia and Amphibia . Vol. II. Sauria. (London: Taylor and Francis, 1935).Google Scholar
Shea, G. M. and Reddacliff, G. L., Ossifications in the hemipenes of varanids. Journal of Herpetology, 20 (1986), 566568.Google Scholar
Werner, Y. L., Are hemipenial ‘ossifications’ of Gekkonidae and Varanidae ossified? Israel Journal of Zoology, 35 (1988), 99100.Google Scholar
Graboski, R., Arredondo, J. C., Grazziotin, F. G., et al., Molecular phylogeny and hemipenial diversity of South American species of Amerotyphlops (Typhlopidae, Scolecophidia). Zoologica Scripta, 48 (2019), 139156.Google Scholar
Jadin, R. C. and King, R. B., Ontogenetic effects on snake hemipenial morphology. Journal of Herpetology, 46 (2012), 393395.Google Scholar
Böhme, W., über das Stachelepithel am Hemipenis lacertider Eidechsen und seine systematische Bedeutung. Journal of Zoological Systematics and Evolutionary Research, 9 (1971), 187223.Google Scholar
De-Lima, A. K. S., Paschoaletto, I. P., Pinho, L. O., et al., Are hemipenial traits under sexual selection in Tropidurus lizards? Hemipenial development, male and female genital morphology, allometry and coevolution in Tropidurus torquatus (Squamata: Tropiduridae). PLoS ONE, 14 (2019), e0219053.Google Scholar
Zaher, H. and Prudente, A. L. C., Intraspecific variation of the hemipenis in Siphlophis and Tripanurgos . Journal of Herpetology, 33 (1999), 698702.Google Scholar
Arnold, E. N., Why copulatory organs provide so many useful taxonomic characters: the origin and maintenance of hemipenial differences in lacertid lizards (Reptilia: Lacertidae). Biological Journal of the Linnean Society, 29 (1986), 263281.Google Scholar
Arnold, E. N., Arribas, O., and Carranza, S., Systematics of the palaearctic and oriental lizard tribe Lacertini (Squamata: Lacertidae: Lacertinae), with descriptions of eight new genera. Zootaxa, 1430 (2007), 186.Google Scholar
Glaw, F., Kosuch, J., Henkel, F.-W., et al., Genetic and morphological variation of the leaf-tailed gecko Uroplatus fimbriatus from Madagascar, with description of a new giant species. Salamandra, 42 (2006), 129144.Google Scholar
Greer, A. E., The relationships of the lizard genera Anelytropsis and Dibamus . Journal of Herpetology, 19 (1985), 116156.Google Scholar
Streicher, J. W. and Wiens, J. J., Phylogenomic analyses of more than 4000 loci resolve the origin of snakes among lizard families. Biology Letters, 13 (2017), 20170393.CrossRefGoogle ScholarPubMed
Darevsky, I. S., Two new species of the worm-like lizard Dibamus (Sauria: Dibamidae) with remarks on the distribution and ecology of Dibamus in Vietnam. Asiatic Herpetological Research, 4 (1992), 112.Google Scholar
Das, M. and Purkayastha, J., Insight into the hemipnenial morphology of five species of Hemidactylus Oken, 1817 (Reptilia: Gekkonidae) of Guwahati, Assam, India. Hamadryad, 36 (2012), 3237.Google Scholar
Lyu, Z.-T., Lin, C.-Y., Ren, J.-L., et al., Review of the Gekko (Japonigekko) subpalmatus complex (Squamata, Sauria, Gekkonidae), with description of a new species from China. Zootaxa, 4951 (2021), 236258.Google Scholar
Dowling, H. G. and Gibson, F. W., The hemipenis of the Onion-Tail gecko Thecadactylus rapicaudus (Houttuyn). Herpetological Review, 3 (1971), 110.Google Scholar
Purkayastha, J., Das, M., Bauer, A. M., et al., Notes on the Hemidactylus bowringii complex (Reptilia: Gekkonidae) in India, and a change to the national herpetofaunal list. Hamadryad, 35 (2010), 2027.Google Scholar
Rösler, H. and Böhme, W., Peculiarities of the hemipenes of the gekkonid lizard genera Aristelliger Cope, 1861 and Uroplatus Duméril, 1806. Proceedings of the 13th Congress of the Societas Europaea Herpetologica (Bonn: SEH, 2006).Google Scholar
Rösler, H., Bauer, A., Heinicke, M. P., et al., Phylogeny, taxonomy, and zoogrography of the genus Gekko Laurenti, 1768 with the revalidation of G. reevesii Gray, 1831 (Sauria: Gekkonidae). Zootaxa, 2989 (2011), 1–50.Google Scholar
Linkem, C. W., Diesmos, A. C., and Brown, R. M., Molecular systematics of the Philippine forest skinks (Squamata: Scincidae: Sphenomorphus): testing morphological hypotheses of interspecific relationships. Zoological Journal of the Linnean Society, 163 (2011), 12171243.Google Scholar
Vergilov, V. S., Zlatkov, B., and Tzankov, N. D., Hemipenial differentiation in the closely related congeners Ablepharus kitaibelii (Bibron & Bory de Saint-Vincent, 1833) and Ablepharus budaki Göçmen, Kumlutas & Tosunoglu, 1996. Herpetozoa, 30 (2017), 3948.Google Scholar
Bhilala, A. K., Ashaharraza, K., Ingle, M., et al., Records of Günther’s gracile skink, Riopa guentheri (Peters, 1879) (Reptilia: Scincidae: Lygosominae) from Central India. Records of the Zoological Survey of India, 121 (2021), 4753.Google Scholar
Greer, A. E., A phylogenetic subdivision of Australian skinks. Records of the Australian Museum, 32 (1979), 339371.Google Scholar
Noble, G. K. and Bradley, H. T., The mating behavior of lizards; its bearing on the theory of sexual selection. Annals of the New York Academy of Sciences, 35 (1933), 25100.Google Scholar
Greer, A. E., The Biology and Evolution of Scincid lizards. www.academia.edu/35305801/The_Biology_and_Evolution_of_Scincid_Lizards.doc: Academia (2007).Google Scholar
Domergue, C. A., Observations sur les hémipênis des ophidiens et sauriens de Madagascar (1). Bulletin de l’Académie Malgache, [1963] (1963), 2133.Google Scholar
Lang, M., Generic relationships within Cordyliformes (Reptilia : Squamata). Bulletin de l’Institut Royal des Sciences Naturelles de Belgique, 61 (1991), 121188.Google Scholar
Presch, W., Descriptions of the hemipenial morphology in eight species of microteiid lizards (Family Teiidae, Subfamily Gymnophthalmidae). Herpetologica, 34 (1978), 108112.Google Scholar
Rodrigues, M. T., Recoder, R., Teixeira, M. Jr., et al., A morphological and molecular study of Psilops, a replacement name for the Brazilian microteiid lizard genus Psilophthalmus Rodrigues 1991 (Squamata, Gymnophthalmidae), with the description of two new species. Zootaxa, 4286 (2017), 451482.Google Scholar
Myers, C. W. and Donnelly, M. A., The summit herpetofauna of Auyantepui, Venezuela: report from the Robert G. Goelet American Museum–Terramar expedition. Bulletin of the American Museum of Natural History, 308 (2008), 1147.Google Scholar
da Silva, M. B., de Lima-Filho, G. R., Cronemberger, Á. A., et al., Description of the hemipenial morphology of Tupinambis quadrilineatus Manzani and Abe, 1997 (Squamata, Teiidae) and new records from Piauí, Brazil. ZooKeys, 361 (2013), 6172.Google Scholar
Nunes, P. M.. Morfologia hemipeniana dos lagartos microteídeos e suas implicações nas relações filogenéticas da família Gymnophthalmidae (Teiioidea: Squamata). Vols. I and II. (São Paulo, Universidade de São Paulo, 2011).Google Scholar
Ribeiro-Júnior, M. A., Sánchez-Martínez, P. M., de Lima Moraes, L. J. C., et al., Uncovering hidden species diversity of alopoglossid lizards in Amazonia, with the description of three new species of Alopoglossus (Squamata: Gymnophthalmoidea). Journal of Zoological Systematics and Evolutionary Research, 59 (2021), 13221356.Google Scholar
Hernández Morales, C., Sturaro, M. J., Nunes, P. M., et al., A species-level total evidence phylogeny of the microteiid lizard family Alopoglossidae (Squamata: Gymnophthalmoidea). Cladistics, 36 (2020), 301321.CrossRefGoogle ScholarPubMed
Arribas, O. J., Hemipenial morphology and microornamentation in Iberolacerta Arribas, 1997 (Squamata: Lacertidae). Butlletí de la Societat Catalana d’herpetologia, 24 (2017), 1223.Google Scholar
Klemmer, K., Untersuchungen zur Osteologie und Taxonomie der europäischen Mauereidechsen. Abhandlungen der Senckenberg Gesellschaft für Naturforschung, 496 (1957), 156.Google Scholar
Pinna, P. H., Mendonça, A. F., Bocchiglieri, A., and Fernandes, D. S., A new two-pored Amphisbaena Linnaeus from the endangered Brazilian Cerrado biome (Squamata: Amphisbaenidae). Zootaxa, 2569 (2010), 4454.Google Scholar
Thomas, R. and Hedges, S. B., Two new species of Amphisbaena (Reptilia: Squamata: Amphisbaenidae) from the Tiburon Peninsula of Haiti. Caribbean Journal of Science, 42 (2006), 208219.Google Scholar
Böhme, W. and Ziegler, T., A review of iguanian and anguimorph lizard genitalia (Squamata: Chamaeleonidae; Varanoidea, Shinisauridae, Xenosauridae, Anguidae) and their phylogenetic significance: comparisons with molecular data sets. Journal of Zoological Systematics and Evolutionary Research, 47 (2009), 189202.Google Scholar
Glaw, F., Köhler, J., Hawlitschek, O., et al., Extreme miniaturization of a new amniote vertebrate and insights into the evolution of genital size in chameleons. Scientific Reports, 11 (2021), 2522.CrossRefGoogle ScholarPubMed
Glaw, F., Vences, M., Ziegler, T., et al., Species distinctness and biogeography of the dwarf chameleons Brookesia minima, B. peyrierasi and B. tuberculata (Reptilia: Chamaeleonidae): evidence from hemipenial and external morphology. Journal of Zoology, London, 247 (1999), 225238.Google Scholar
Hughes, D. F., Kusamba, C., Behangana, M., and Greenbaum, E., Integrative taxonomy of the Central African forest chameleon, Kinyongia adolfifriderici (Sauria: Chamaeleonidae), reveals underestimated species diversity in the Albertine Rift. Zoological Journal of the Linnean Society, 181 (2017), 400438.Google Scholar
Raxworthy, C. J. and Nussbaum, R. A., Systematics, speciation and biogeography of the dwarf chameleons ( Brookesia ; Reptilia, Squamata, Chamaeleontidae) of northern Madagascar. Journal of Zoology, London, 235 (1995), 525558.Google Scholar
Rosenberg, H. I., Bauer, A. M., and Russell, A. P., External morphology of the developing hemipenes of the dwarf chameleon, Bradypodion pumilum (Reptilia: Chamaeleonidae). Canadian Journal of Zoology, 67 (1989), 884890.Google Scholar
Deepak, V., Khandekar, A., Chaitanya, R., and Karanth, P., Descriptions of two new endemic and cryptic species of Sitana Cuvier, 1829 from peninsular India. Zootaxa, 4434 (2018), 327365.CrossRefGoogle ScholarPubMed
Maduwage, K. and Silva, A., Hemipeneal morphology of Sri Lankan dragon lizards (Sauria: Agamidae). Ceylon Journal of Science (Biological Sciences), 41 (2012), 111123.Google Scholar
Deepak, V., Tillack, F., Kar, N. B., et al., A new species of Sitana (Squamata: Agamidae) from the Deccan Peninsula Biogeographic Zone of India. Zootaxa, 4948 (2021), 261274.Google Scholar
D’Angiolella, A. B., Klaczko, J., Rodrigues, M. T., and Avila-Pires, L. J., Hemipenial morphology and diversity in South American anoles (Squamata: Dactyloidae). Canadian Journal of Zoology, 94 (2016), 251256.Google Scholar
Köhler, G., Batista, A., Vesely, M., et al., Evidence for the recognition of two species of Anolis formerly referred to as A. tropidogaster (Squamata: Dactyloidae). Zootaxa, 3348 (2012), 123.CrossRefGoogle Scholar
Blanc, C.-P., Reptiles Sauriens Iguanidae. Faune de Madagascar, 45 (1977), 1195.Google Scholar
Dowling, H. G., Majupuria, T. C., and Gibson, F. W., Hemipenial morphology of the tree lizard, Plica plica (Linnaeus). Herpetological Review, 3 (1971), 9192.Google Scholar
Quipildor, M., Quinteros, A. S., and Lobo, F., Structure, variation, and systematic implications of the hemipenes of liolaemid lizards (Reptilia: Liolaemidae). Canadian Journal of Zoology, 96 (2018), 987995.Google Scholar
Thomas, R. and Hedges, S. B., New anguid lizard (Diploglossus) from Cuba. Copeia, 1998 (1998), 97103.Google Scholar
Card, W. and Kluge, A. G., Hemipeneal skeleton and varanid lizard systematics. Journal of Herpetology, 29 (1995), 275280.Google Scholar
Weijola, V., Donnellan, S. C., and Lindqvist, C., A new blue-tailed Monitor lizard (Reptilia, Squamata, Varanus) of the Varanus indicus group from Mussau Island, Papua New Guinea. ZooKeys, 568 (2016), 129154.Google Scholar
Harrington, S. M. and Reeder, T. W., Phylogenetic inference and divergence dating of snakes using molecules, morphology and fossils: new insights into convergent evolution of feeding morphology and limb reduction. Biological Journal of the Linnean Society, 121 (2017), 379394.Google Scholar
Zaher, H. and Smith, K. T., Pythons in the Eocene of Europe reveal a much older divergence of the group in sympatry with boas. Biology Letters, 16 (2020), 20200735.Google Scholar
McDowell, S. B., A catalogue of the snakes of New Guinea and the Solomons, with special reference to those in the Bernice P. Bishop Museum, Part I. Scolecophidia. Journal of Herpetology, 8 (1974), 157.Google Scholar
Myers, C. W. and Trueb, L., The hemipenis of an anomalepidid snake. Herpetologica, 23 (1967), 235238.Google Scholar
Fabrezi, M., Marcus, A., and Scrocchi, G., Contribución al conocimiento de los Leptotyphlopidae de Argentina. I. Leptotyphlops weyrauchi y Leptotyphlops albipuncta . Cuadernos de Herpetología, 1 (1985), 120.Google Scholar
Orejas-Miranda, B. R., Descripción del hemipenis de Leptotyphlops munoai Orejas-Miranda, 1961. Comunicaciones Zoologicas del Museo de Historia Natural de Montevideo, 97 (1962), 19.Google Scholar
Robb, J., The internal anatomy of Typhlops Schneider (Reptilia). Australian Journal of Zoology, 8 (1960), 181-216.Google Scholar
Robb, J., The generic status of the Australasian typhlopids (Reptilia: Squamata). Annals and Magazine of Natural History, 13 (1966), 106108.Google Scholar
Peters, J. A. and Orejas-Miranda, B. R., Notes on the hemipenis of several taxa in the family Leptotyphlopidae. Herpetologica, 26 (1970), 320324.Google Scholar
Broadley, D. G. and Wallach, V., A revision of the genus Leptotyphlops in northeastern Africa and southwestern Arabia (Serpentes: Leptotyphlopidae). Zootaxa, 1408 (2007), 178.Google Scholar
Ferreira, A. C., Klaczko, J., and Martins, A., Hemipenial morphology of Epictia vellardi (Laurent, 1984) (Leptotyphlopidae, Serpentes) with the proposition and discussion of two general hemipenial patterns within the genus Epictia . Zoomorphology, 140 (2020), 143150.Google Scholar
Martins, A., Koch, C., Pinto, R., et al., From the inside out: Discovery of a new genus of threadsnakes based on anatomical and molecular data, with discussion of the leptotyphlopid hemipenial morphology. Journal of Zoological Systematics and Evolutionary Research, 57 (2019), 840863.Google Scholar
Pinto, R. and Curcio, F. F., On the generic identity of Siagonodon brasiliensis, with the description of a new leptotyphlopid from central Brazil (Serpentes: Leptotyphlopidae). Copeia, 2011 (2011), 5363.Google Scholar
Wallach, V., Morphological review and taxonomic status of the Epictia phenops species group of Mesoamerica, with description of six new species and discussion of South American Epictia albifrons, E. goudotii, and E. tenella (Serpentes: Leptotyphlopidae: Epictinae). Mesoamerican Herpetology, 3 (2016), 216374.Google Scholar
Wynn, A. H., Reynolds, R. P., Buden, D. W., et al., The unexpected discovery of blind snakes (Serpentes: Typhlopidae) in Micronesia: two new species of Ramphotyphlops from the Caroline Islands. Zootaxa, 3172 (2012), 3954.Google Scholar
Passos, P., Caramaschi, U., and Pinto, R. R., Redescription of Leptotyphlops koppesi Amaral, 1954, and description of a new species of the Leptotyphlops dulcis group from Central Brazil (Serpentes: Leptotyphlopidae). Amphibia–Reptilia, 27 (2006), 347357.Google Scholar
Passos, P., Caramaschi, U., and Pinto, R. R., Rediscovery and redescription of Leptotyphlops salgueiroi Amaral, 1954 (Squamata, Serpentes, Leptotyphlopidae). Boletim do Museu Nacional, 520 (2005), 110.Google Scholar
Pyron, R. A. and Wallach, V., Systematics of the blindsnakes (Serpentes: Scolecophidia: Typhlopoidea) based on molecular and morphological evidence. Zootaxa, 3829 (2014), 181.Google Scholar
Thomas, R., The relationships of Antillean Typhlops (Serpentes: Typhlopidae) and the description of three new Hispaniolan species. Biogeography of the West Indies, 1989 (1989), 409432.Google Scholar
Thomas, R.. Systematics of the Antillean Blind Snakes of the Genus Typhlops (Serpentes: Typhlopidae). (LSU Historical Dissertations and Theses 1976).Google Scholar
Wynn, A. H. and Leviton, A. E., Two new species of blind snake, genus Typhlops (Reptilia: Typhlopidae), from the Philippine archipelago. Proceedings of the Biological Society of Washington, 106 (1993), 3445.Google Scholar
Dixon, J. and Hendricks, F. S., The wormsnakes (family Typhlopidae) of the Neotropics, exclusive of the Antilles. Zoologische Verhandelungen, 173 (1979), 139.Google Scholar
Curcio, F. F., Nunes, P. M., Argolo, A. J. S., et al., Taxonomy of the South American dwarf boas of the genus Tropidophis Bibron, 1840, with the description of two new species from the Atlantic forest (Serpentes: Tropidophiidae). Herpetological Monographs, 26 (2012), 80121.Google Scholar
Gibson, F. W., The ‘quadrifurcate’ hemipenis of Tropidophis . Herpetological Review, 2 (1970), 2930.Google Scholar
McDowell, S. B., A catalogue of the snakes of New Guinea and the Solomons, with special reference to those in the Bernice P. Bishop Museum. Part II. Anilioidea and Pythoninae. Journal of Herpetology, 9 (1975), 179.CrossRefGoogle Scholar
Smith, M. A., The fauna of British India, Ceylon and Burma, including the whole of the Indo-Chinese sub-region. Reptilia and Amphibia. Vol III. – Serpentes. (London: Taylor and Francis, 1943).Google Scholar
Gower, D. J. and Wickramasinghe, J. L. M., Recharacterization of Rhinophis dorsimaculatus Deraniyagala, 1941 (Serpentes: Uropeltidae), including description of new material. Zootaxa, 4158 (2016), 203212.Google Scholar
Cyriac, V. P., Narayanan, S., Sampaio, F. L., et al., A new species of Rhinophis Hemprich, 1820 (Serpentes: Uropeltidae) from the Wayanad region of peninsular India. Zootaxa, 4778 (2020), 329342.Google Scholar
Pyron, R. A., Ganesh, S. R., Sayyed, A., et al., A catalogue and systematic overview of the shield-tailed snakes (Serpentes: Uropeltidae). Zoosystema, 38 (2016), 453506.Google Scholar
Gower, D. J. and Maduwage, K., Two new species of Rhinophis Hemprich (Serpentes: Uropeltidae) from Sri Lanka. Zootaxa, 2881 (2011), 5168.Google Scholar
Stuebing, R., A new species of Cylindrophis (Serpentes: Cylindrophiidae) from Sarawak, Western Borneo. Raffles Bulletin of Zoology, 42 (1994), 967–73.Google Scholar
Underwood, G., A Contribution to the Classification of Snakes (London: British Museum of Natural History , 1967).Google Scholar
Vidal, N., Delmas, A.-S., and Hedges, S. B.. The higher-level relationships of alethinophidian snakes inferred from seven nuclear and mitochondrial genes. In Henderson, R. W., Powell, R., eds., Biology of the Boas and Pythons (Eagle Mountain , Utah: Eagle Mountain Publishing, 2007), pp. 2733.Google Scholar
Dowling, H. G.. The Neartic snake fauna. In Dowling, H. G., ed., 1974 Yearbook of Herpetology (New York: HISS Publications, 1974), pp. 191202.Google Scholar
Böhme, W. and Sieling, U., Zum Zusammenhang zwischen Genital Struktur, Paarungsverhalten und Fortpflanzungserfolg bei squamaten Reptilien: erste Ergehnisse. Herpetofauna, 15 (1993), 1523.Google Scholar
Kluge, A. G., Aspidites and the phylogeny of pythonine snakes. Records of the Australian Museum, 19 (1993), 177.Google Scholar
Domergue, C. A., Observations sur les pénis des ophidiens (deuxième partie). Bulletin de la Société des Sciences Naturelles et Physiques du Maroc, 42 (1962), 87105.Google Scholar
Hoge, A. R., A new genus and species of Boinae from Brazil. Xenoboa cropanii, gen. nov., sp. nov. Memorias do Instituto Butantan, 25 (1953), 2734.Google Scholar
Kluge, A. G., Calabaria and the phylogeny of erycine snakes. Zoological Journal of the Linnean Society, 107 (1993), 293351.Google Scholar
Branch, W. R., Hemipenes of the Madagascan boas Acrantophis and Sanzinia, with a review of hemipenial morphology in the Boinae. Journal of Herpetology, 15 (1981), 9199.Google Scholar
McDowell, S. B., A catalogue of the snakes of New Guinea and the Solomons, with special reference to those in the Bernice P. Bishop Museum. Part III. Boinae and Acrochordoidea (Reptilia, Serpentes). Journal of Herpetology, 13 (1979), 192.Google Scholar
Passos, P. and Fernandes, R., Revision of the Epicrates cenchria complex (Serpentes: Boidae). Herpetological Monographs, 22 (2008), 130.Google Scholar
Andonov, K., Natchev, N., Kornilev, Y. V., and Tzankov, N., Does sexual selection influence ornamentation of hemipenes in Old World snakes? Anatomical Record, 300 (2017), 16801694.Google Scholar
Bogert, C. M., The variations and affinities of the dwarf boas of the genus Ungaliophis . American Museum Novitates, 2340 (1968), 126.Google Scholar
Deepak, V., Ruane, S., and Gower, D. J., A new subfamily of colubroid fossorial snakes from the Western Ghats of peninsular India. Journal of Natural History, 52 (2019), 29192934.Google Scholar
Zaher, H., Murphy, R. W., Arredondo, J. C., et al., Large-scale molecular phylogeny, morphology, divergence-time estimation, and the fossil record of advanced caenophidian snakes (Squamata: Serpentes). PLoS ONE, 14 (2019), e0216148.Google Scholar
Myers, C. W., A new genus and new tribe for Enicognathus melanauchen Jan, 1863, a neglected South American snake (Colubridae: Xenodontinae), with taxonomic notes on some Dipsadinae. American Museum Novitates, 3715 (2011), 133.Google Scholar
Rossman, D. A. and Eberle, W. G., Partition of the genus Natrix, with preliminary observations on evolutionary trends in natricine snakes. Herpetologica, 33 (1977), 3443.Google Scholar
McDowell, S. B., [Review of] Systematic division and evolution of the colubrid snake genus Natrix, with comments on the subfamily Natricinae, by Edmond V. Malnate. Copeia, 1961 (1961), 502506.Google Scholar
Zaher, H., Grazziotin, F. G., Graboski, R., et al., Phylogenetic relationships of the genus Sibynophis (Serpentes: Colubroidea). Papéis Avulsos de Zoologia (São Paulo), 52 (2012), 141149.Google Scholar

References

Orr, T. J. and Brennan, P. L. R., Sperm storage: distinguishing selective processes and evaluating criteria. Trends in Ecology and Evolution, 30 (2015), 261272.Google Scholar
Schuett, G. W., Is long-term sperm storage an important component of the reproductive biology of temperate pitvipers? In Campbell, J. A. and Brodie, E. D., eds., Biology of the Pitvipers (Tyler: Selva Publishing, 1992), pp. 169184.Google Scholar
Aldridge, R. D. and Duvall, D., Evolution of the mating season in the pitvipers of North America. Herpetolological Monographs, 16 (2002), 125.Google Scholar
Birkhead, T. R. and Møller, A. P., Sexual selection and the temporal separation of reproductive events: sperm storage data from reptiles, birds and mammals. Biological Journal of the Linnean Society, 50 (1993), 295311.Google Scholar
Friesen, C. R., Kahrl, A. F., and Olsson, M., Sperm competition in squamate reptiles. Philosophical Transactions of the Royal Society, B Biological Sciences, 375 (2020), 20200079.Google Scholar
Blackburn, D. G., Structure, function, and evolution of the oviducts of squamate reptiles, with special reference to viviparity and placentation. Journal of Experimental Zoology, 282 (1998), 560617.Google Scholar
Girling, J. E., The reptilian oviduct: a review of structure and function and directions for future research. Journal of Experimental Zoology, 293 (2002), 141170.Google Scholar
Sever, D. M. and Hamlett, W. C., Female sperm storage in reptiles. Journal of Experimental Zoology, 292 (2002), 187199.CrossRefGoogle ScholarPubMed
Siegel, D. S., Miralles, A., Chabarria, R. E., and Aldridge, R. D., Female reproductive anatomy: cloaca, oviduct, and sperm storage. In Aldridge, R. D. and Sever, D. M., eds., Reproductive Biology and Phylogeny of Snakes (Enfield: Science Publishers, 2011), pp. 347409.Google Scholar
Siegel, D. S., Miralles, A., Rheubert, J. L., and Sever, D. M., Female reproductive anatomy: cloaca, oviduct and sperm storage. In Rheubert, J. L., Siegel, D. S., and Thauth, S. E., eds., Reproductive Biology and Phylogeny of Lizards and Tuatara (Boca Raton: CRC Press, 2014), pp. 144195.Google Scholar
Eckstut, M. E., Sever, D. M., White, M. E., and Crother, B. I., Phylogenetic analysis of sperm storage in female squamates. In Dahnof, L. T., ed., Animal Reproduction: New Research Developments (New York: Nova Science Publishers, 2009), pp. 185218.Google Scholar
Howarth, B., Sperm storage: as a function of the female reporductive tract. In Johnson, A. D. and Foley, C. W., eds., The Oviduct and Its Functions (New York: Academic Press, 1974), pp. 237270.Google Scholar
Fox, H., Urinogenital System. In Gans, C. and Parsons, T. S., eds., Biology of the Reptilia, Vol. 6. Morphology (London and New York: Academic Press, 1977), pp. 8196.Google Scholar
Gist, D. H. and Jones, J. M., Storage of sperm in the reptilian oviduct. Scanning Microscopy, 1 (1987), 18391849.Google Scholar
Barros, V. A., Sueiro, L. R., and Almeida-Santos, S. M., Reproductive biology of the neotropical rattlesnake Crotalus durissus from northeastern Brazil: a test of phylogenetic conservatism of reproductive patterns. Herpetological Journal, 22 (2012), 97104.Google Scholar
Barros, V. A., Rojas, C. A., and Almeida-Santos, S. M., Reproductive biology of Bothrops erythromelas from the Brazilian Caatinga. Advances in Zoology, 2014 (2014), 111.Google Scholar
Bassi, E. A., Coeti, R. Z., and Almeida-Santos, S. M., Reproductive cycle and sperm storage of female coral snakes, Micrurus corallinus and Micrurus frontalis . Amphibia-Reptilia, 41 (2019), 115.Google Scholar
Braz, H. B., Kasperoviczus, K. N., and Guedes, T. B., Reproductive biology of the fossorial snake Apostolepis gaboi (Elapomorphini): a threatened and poorly known species from the Caatinga region. South American Journal of Herpetology, 14 (2019), 3747.Google Scholar
Silva, K. M. P.,Barros, V. A., Rojas, C. A., and Almeida-Santos, S. M., Infundibular sperm storage and uterine muscular twisting in the Amazonian lancehead, Bothrops atrox . Anatomical Record, 303 (2020), 31453154.Google Scholar
Silva, K. M. P., Silva, K. B., Sueiro, L. R., Oliveira, M. E. E. S., and Almeida-Santos, S. M., Reproductive biology of Bothrops atrox (Serpentes, Viperidae, Crotalinae) from the Brazilian Amazon. Herpetologica, 74 (2019), 198207.Google Scholar
Loebens, L., Almeida-Santos, S. M., and Cechin, S. Z., Reproductive biology of the sword snake Tomodon dorsatus (Serpentes: Dipsadidae) in South Brazil: comparisons within the tribe Tachymenini. Amphibia-Reptilia, 41 (2020), 115.Google Scholar
Gualdrón-Durán, L. E., Calvo-Castellanos, M. F., and Ramírez-Pinilla, M. P., Annual reproductive activity and morphology of the reproductive system of an Andean population of Atractus (Serpentes, Colubridae). South American Journal of Herpetology, 14 (2019), 5870.Google Scholar
Silva, K. M. P., Braz, H. B., Kasperoviczus, K. N., Marques, O. A. V., and Almeida-Santos, S. M., Reproduction in the pitviper Bothrops jararacussu: large females increase their reproductive output while small males increase their potential to mate. Zoology, 142 (2020), 125816.Google Scholar
Muniz‐da‐Silva, D. F., Passos, J., Siegel, D. S., and Santos-Almeida, S. M., Caudal oviduct coiling in a viperid snake, Crotalus durissus . Acta Zoologica, 101 (2020), 6977.Google Scholar
Khouri, R. S., Almeida‐Santos, S. M., and Fernandes, D. S., Anatomy of the reproductive system of a population of Amerotyphlops brongersmianus from southeastern Brazil (Serpentes: Scolecophidia). Anatomical Record, 303 (2020), 24852496.Google Scholar
Villagrán-Santa, M., Mendoza-Cruz, E., Granados-González, G., Rheubert, J. L., and Hernández-Gallegos, O., Sperm storage in the viviparous lizard Sceloporus bicanthalis (Squamata: Phrynosomatidae), a species with continuous spermatogenesis. Zoomorphology, 136 (2017), 8593.Google Scholar
Barros, V. A., Rojas, C. A., and Almeida-Santos, S. M., Is rainfall seasonality important for reproductive strategies in viviparous Neotropical pitvipers? A case study with Bothrops leucurus from the Brazilian Atlantic Forest. Herpetological Journal, 24 (2014), 6977.Google Scholar
Melo, G. C., Nascimento, L. B., and Galdino, C. A. B., Lizard reproductive biology beyond the gonads: an investigation of sperm storage structures and renal sexual segments. Zoology, 135 (2019), 125690.Google Scholar
Migliore, S. N., Biologia reprodutiva de Enyalius perditus (Jackson, 1978) e Enyalius iheringii Boulenger, 1885 (Squamata: Leiosauridae). Unpublished Masters dissertation, Universidade de São Paulo, 2016.Google Scholar
Souza, E. and Almeida‐Santos, S. M., Reproduction in the bushmaster (Lachesis muta): Uterine muscular coiling and female sperm storage. Acta Zoologica, 2020.Google Scholar
Migliore, S. N., Estratégias reprodutivas de lagartos Mabuyinae do Brasil . Unpublished PhD thesis, Universidade de São Paulo, 2021.Google Scholar
Khouri, R. S., Fiorillo, B. F., Braz, H. B., et al., Reproductive ecology of the Amaral’s Blind Snake Trilepida koppesi in an area of Cerrado in south-eastern Brazil. Herpetological Journal, 32 (2022), 7079.Google Scholar
Kasperoviczus, KN. Evolução das estratégias reprodutivas de Bothrops jararaca (Serpentes: Viperidae). Unpubished PhD thesis, Universidade de São Paulo, 2013.Google Scholar
de Resende, F. C. and Nascimento, L. B., The female reproductive cycle of the Neotropical snake Atractus pantostictus (Fernandes and Puorto, 1993) from south-eastern Brazil. Anatomia Histologia Embryologia , 44 (2015), 225235.Google Scholar
Amaral, F. M., Estratégias reprodutivas da serpente Bothrops alternatus: influência de fatores ambientais. Unpublished Masters dissertation, Universidade de São Paulo, 2015.Google Scholar
Rojas, C. A., Barros, V. A., and Almeida-Santos, S. M., Sperm storage and morphofunctional bases of the female reproductive tract of the snake Philodryas patagoniensis from southeastern Brazil. Zoomorphology, 134 (2015), 577586.Google Scholar
Rojas, C. A., Barros, V. A., and Almeida-Santos, S. M., A histological and ultrastructural investigation of the female reproductive system of the water snake (Erythrolamprus miliaris): Oviductal cycle and sperm storage. Acta Zoologica, 100 (2019), 6980.Google Scholar
Almeida-Santos, S. M., Barros, V. A., Rojas, C. A., Sueiro, L. R., and Nomura, R. H. C., Reproductive biology of the Brazilian lancehead, Bothrops moojeni (Serpentes, Viperidae), from the state of São Paulo, southeastern Brazil. South American Journal of Herpetology, 12 (2017), 174181.Google Scholar
Loebens, L., Rojas, C. A., Almeida-Santos, S. M., and Cechin, S. Z., Reproductive biology of Philodryas patagoniensis (Snakes: Dipsadidae) in south Brazil: Female reproductive cycle. Acta Zoologica , 99 (2018), 105114.Google Scholar
Pyron, R. A., Burbrink, F. T., and Wiens, J. J., A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evolutionary Biology, 13 (2013), 93.Google Scholar
Zaher, H., Murphy, R. W., Arredondo, J. C., et al., Large-scale molecular phylogeny, morphology, divergence-time estimation, and the fossil record of advanced caenophidian snakes (Squamata: Serpentes). PLoS ONE, 14 (2019), e0216148.Google Scholar
Burbrink, F. T., Grazziotin, F. G., Pyron, R. A., et al., Interrogating genomic-scale data for Squamata (lizards, snakes, and amphisbaenians) shows no support for key traditional morphological relationships. Systematic Biology, 69 (2020), 502520.Google Scholar
Cuellar, O., Oviducal anatomy and sperm storage structures in lizards. Journal of Morphology, 119 (1966), 719.Google Scholar
Fox, W., Special tubules for sperm storage in female lizards. Nature, 198 (1963), 500501.Google Scholar
Shantakumari, T. R., Sarkar, H. B. D., and Shivanandappa, T., Histology and histochemistry of the oviductal sperm storage pockets of the agamid lizard Calotes versicolor . Journal of Morphology, 203 (1990), 97106.Google Scholar
Amey, A. P. and Whittier, J. M., The annual reproductive cycle and sperm storage in the bearded dragon, Pogona barbata. Australian Journal of Zoology, 48 (2000), 411.Google Scholar
Uribe, M. C. A., Velasco, S. R., Guillette, L. J., and Estrada, E. F., Oviduct histology of the lizard, Ctenosaura pectinata. Copeia, 1988 (1988), 10351042.Google Scholar
Guillette, L. J. and Jones, R. E.. Ovarian, oviductal, and placental morphology of the reproductively bimodal lizard, Sceloporus aeneus . Journal of Morphology, 184 (1985), 8598.Google Scholar
Yaron, Z., Effects of ovariectomy and steroid replacement on the genital tract of the viviparous lizard, Xantusia vigilis . Journal of Morphology, 136 (1972), 313325.Google Scholar
Halpert, A. P., Garstka, W. R., and Crews, D., Sperm transport and storage and its relation to the annual sexual cycle of the female red-sided garter snake, Thamnophis sirtalis parietalis . Journal of Morphology, 174 (1982), 149159.Google Scholar
Aldridge, R. D., Oviductal anatomy and seasonal sperm storage in the southeastern crowned snake (Tantilla coronata). Copeia, 1992 (1992), 11031106.Google Scholar
Sever, D. M. and Ryan, T. J., Ultrastructure of the reproductive system of the black swamp snake (Seminatrix pygaea): Part I. Evidence for oviducal sperm storage. Journal of Morphology, 241 (1999), 118.Google Scholar
Sever, D. M., Ryan, T. J., Morris, T., Patton, D., and Swafford, S., Ultrastructure of the reproductive system of the black swamp snake (Seminatrix pygaea). II. Annual oviducal cycle. Journal of Morphology, 245 (2000), 146160.Google Scholar
Almeida-Santos, S. M. and Salomão, M. G., Long-term sperm storage in the female Neotropical rattlesnake Crotalus durissus terrificus (Viperidae: Crotalinae). Japanese Journal of Herpetology, 17 (1997), 4652.Google Scholar
Ludwig, M. and Rahn, H., Sperm storage and copulatory adjustment in the prairie rattlesnake. Copeia, 1943 (1943), 1518.Google Scholar
Nilson, G. and Andrén, C., Function of renal sex secretion and male hierarchy in the adder, Vipera berus, during reproduction. Hormones and Behavior, 16 (1982), 404413.Google Scholar
Almeida-Santos, S. M. and Salomão, M. G., Reproduction in Neotropical pitvipers, with emphasis on species of the genus Bothrops . In Schuett, G. W., Höggren, M., Douglas, M. E., et al., eds., Biology of the Vipers (Carmel: Eagle Mountain Publishing, 2002), pp. 445462.Google Scholar
Nunes, S. F., Kaefer, I. L., Leite, P. T., and Cechin, S. Z., Reproductive and feeding biology of the pitviper Rhinocerophis alternatus from subtropical Brazil. Herpetological Journal, 20 (2010), 3139.Google Scholar
Kasperoviczus, K. N., Biologia reprodutiva da jararaca ilhoa, Bothrops insularis (Serpentes: Viperidae), da Ilha da Queimada Grande, São Paulo . Unpublished Masters dissertation, Universidade de São Paulo, 2009.Google Scholar
Yamanouye, N., Silveira, P. F., Abdalla, F. M. F., et al., Reproductive cycle of the Neotropical Crotalus durissus terrificus: II. Establishment and maintenance of the uterine muscular twisting, a strategy for long-term sperm storage. General and Comparative Endocrinology, 139 (2004), 151157.Google Scholar
Almeida-Santos, S. M., Abdalla, F. M. F, Silveira, P. F., et al., Reproductive cycle of the Neotropical Crotalus durissus terrificus: I. Seasonal levels and interplay between steroid hormones and vasotocinase. General and Comparative Endocrinology, 139 (2004), 143150.Google Scholar
Stille, B., Madsen, T., and Niklasson, M., Multiple paternity in the adder, Vipera berus . Oikos, 47 (1986), 173175.Google Scholar
Siegel, D. S. and Sever, D. M., Utero-muscular twisting and sperm storage in viperids. Herpetological Conservation and Biology, 1 (2006), 8792.Google Scholar
Andrén, C. and Nilson, G., The copulatory plug of the adder, Vipera berus : Does it keep sperm in or out? Oikos, 49 (1987), 230.Google Scholar
Fox, W., Seminal receptacles of snakes. Anatomical Record, 124 (1956), 519539.Google Scholar
Bull, K. H., Mason, R. T., and Whittier, J., Seasonal testicular development and sperm storage in tropical and subtropical populations of the brown tree snake (Boiga irregularis). Australian Journal of Zoology, 45 (1997), 479.Google Scholar
Thongboon, L., Senarat, S., Kettratad, J., et al., Morphology and histology of female reproductive tract of the dog-faced water snake Cerberus rynchops (Schneider, 1799). Maejo Internation Journal of Science and Technology, 14 (2020), 1126.Google Scholar
Saint Girons, H., Le cycle sexuel chez Vipera aspis (L.) dans l’ouest de la France. Bulletin Biologique de la France et de la Belgique, 91 (1957), 284350.Google Scholar
Saint Girons, H., Le cycle reproducteur de la Vipère à cornes Cerastes cerastes (L.) dans la nature et en captivité. Bulletin de la Société Zoologique de France, 87 (1962), 4151.Google Scholar
Saint Girons, H. and Duguy, R., Le cycle sexuel de Lacerta muralis L. en plaine et en montagne. Bulletin du Muséum National d’Histoire Naturelle, 42 (1970), 690695.Google Scholar
Devine, M., Copulatory plugs in snakes: enforced chastity. Science, 187 (1975), 844845.Google Scholar
Uribe, M. C., González-Porter, G., Palmer, B. D., and Guilette, L. J., Cyclic histological changes of the oviductal-cloacal junction in the viviparous snake Toluca lineata . Journal of Morphology, 237 (1998), 91100.Google Scholar
Barros, V. A., Rojas, C. A., and Almeida-Santos, S. M., Mating plugs and male sperm storage in Bothrops cotiara (Serpentes, Viperidae). Herpetological Journal, 27 (2017), 6367.Google Scholar
, H. A. J in den Bosch, , First record of mating plugs in lizards. Amphibia-Reptilia, 15 (1994), 8993.Google Scholar
Kasperoviczus, K. N. and Almeida‐Santos, S. M., Copulatory plugs in Neotropical viperid snakes. 7th World Congress of Herpetology, Vancouver, abstracts (2012), 11–12.Google Scholar
Devine, M. C., Potential for sperm competition in reptiles: behavioral and physiological consequences. In Smith, R. L., ed., Sperm Competition and the Evolution of Animal Mating Systems (Orlando: Academic Press, 1984), pp. 509521.Google Scholar
Shine, R., Olsson, M., and Mason, R., Chastity belts in gartersnakes: the functional significance of mating plugs. Biological Journal of the Linnean Society, 70 (2000), 377390.Google Scholar
Friesen, C. R., Shine, R., Krohmer, R. W., and Mason, R. T., Not just a chastity belt: the functional significance of mating plugs in garter snakes, revisited. Biological Journal of the Linnean Society, 109 (2013), 893907.Google Scholar
Hoffman, L. H. and Wimsatt, W. A., Histochemical and electron microscopic observations on the sperm receptacles in the garter snake oviduct. American Journal of Anatomy, 134 (1972), 7195.Google Scholar
Jacobi, L., Ovoviviparie bei einheimischen Eidechsen. Zeitschrift für wissenschaftliche Zoologie, 148 (1936), 401464.Google Scholar
Saint Girons, H., Sperm survival and transport in the female genital tract of reptiles. In Hafez, E. S. E. and Thibault, C. G., eds., The Biology of Spermatozoa (Basel: Karger, 1975), pp. 105113.Google Scholar
Fox, W. and Dessauer, H. C., The single right oviduct and other urogenital structures of female Typhlops and Leptotyphlops . Copeia, 1962 (1962), 590597.Google Scholar
Srinivas, S. R., Hegde, S. N., Sarkar, H. B. D., and Shivanandappa, T., Sperm storage in the oviduct of the tropical rock lizard, Psammophilus dorsalis . Journal of Morphology, 224 (1995), 293301.Google Scholar
Marinho, C. E., Almeida-Santos, S. M., Yamasaki, S. C., and Silveira, P. F., Peptidase activities in the semen from the ductus deferens and uterus of the neotropical rattlesnake Crotalus durissus terrificus . Journal of Comparative Physiology B, 179 (2009), 635642.Google Scholar
Aldridge, R. D., Jellen, B. C., Siegel, D. S., and Wisniewski, S. S., The sexual segment of the kidney. In Aldridge, R. D. and Sever, D. M., eds., Reproductive Biology and Phylogeny of Snakes (Enfield: Science Publishers, 2011), pp. 477509.Google Scholar
Siegel, D. S. and Sever, D. M., Sperm aggregations in female Agkistrodon piscivorus (Reptilia: Squamata): A histological and ultrastructural investigation. Journal of Morphology 269 (2008), 189206.Google Scholar
Rahn, H., Sperm viability in the uterus of the garter snake, Thamnophis. Copeia, 1940 (1940), 109115.Google Scholar
Maddison, W. P. and Maddison, D. R., Mesquite: A modular system for evolutionary analysis. Version 3.61 , http://mesquiteproject.org (2019).Google Scholar
Zheng, Y. and Wiens, J. J., Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Molecular Phylogenetics and Evolution, 94 (2016), 537547.Google Scholar
Alencar, L. R. V., Quental, T. B., Grazziotin, F. G., et al., Diversification in vipers: Phylogenetic relationships, time of divergence and shifts in speciation rates. Molecular Phylogenetics and Evolution, 105 (2016), 5062.Google Scholar
Saint Girons, H., Deplacements et survie des spermatozoides chez les reptiles. Colloques de l’Institut National de la Santé et de la Recherche Médicale, 26 (1973), 259282.Google Scholar
Gabe, M. and Saint Girons, H., Contribution a l’histologie de Sphenodon punctatus Gray (Paris: Éditions du Centre National de la Recherche Scientifique, 1964).Google Scholar
Cree, A., Cockrem, J. F., and Guillette, L. J., Reproductive cycles of male and female tuatara (Sphenodon punctatus) on Stephens Island, New Zealand. Journal of Zoology 226 (1992), 199217.Google Scholar
Wiens, J. J., Hutter, C. R., Mulcahy, D. G., et al., Resolving the phylogeny of lizards and snakes (Squamata) with extensive sampling of genes and species. Biology Letters, 8 (2012), 10431046.Google Scholar
Miralles, A., Marin, J., Markus, D., et al., Molecular evidence for the paraphyly of Scolecophidia and its evolutionary implications. Journal of Evolutionary Biology, 31 (2018), 17821793.Google Scholar
Simões, B. F., Sampaio, F. L., Jared, C.., et al., Visual system evolution and the nature of the ancestral snake. Journal of Evolutionary Biology, 28 (2015), 13091320.Google Scholar
Withers, P. C., Physiological correlates of limblessness and fossoriality in scincid lizards. Copeia, 1981 (1981), 197204.Google Scholar
Gans, C., Studies on amphisbaenids (Amphisbaenia, Reptilia). 1. A taxonomic revision of the Trogonophinae, and a functional interpretation of the amphisbaenid adaptive pattern. Bulletin of the American Museum of Natural History, 119 (1960), 129204.Google Scholar
Webb, J. K., Shine, R., Branch, W. R., and Harlow, P. S., Life-history strategies in basal snakes: reproduction and dietary habits of the African thread snake Leptotyphlops scutifrons (Serpentes: Leptotyphlopidae). Journal of Zoology, 250 (2000), 321327.Google Scholar
Webb, J. K., Branch, W. R., and Shine, R., Dietary habits and reproductive biology of typhlopid snakes from southern Africa. Journal of Herpetology 35 (2001), 558567.Google Scholar
Sawaya, R. J., Marques, O. A. V., and Martins, M., Composição e história natural das serpentes de Cerrado de Itirapina, São Paulo, sudeste do Brasil. Biota Neotropica, 8 (2008), 127149.Google Scholar
Parpinelli, L. and Marques, O. A. V., Seasonal and daily activity in the pale-headed blindsnake Liotyphlops beui (Serpentes: Anomalepidae) in southeastern Brazil. South American Journal of Herpetology, 3 (2008), 207212.Google Scholar
Shine, R. and Webb, J. K., Natural history of Australian typhlopid snakes. Journal of Herpetology, 24 (1990), 357363.Google Scholar
Parpinelli, L. and Marques, O. A. V., Reproductive biology and food habits of the blindsnake Liotyphlops beui (Scolecophidia: Anomalepididae). South American Journal of Herpetology, 10 (2015), 205210.Google Scholar
Saint Girons, H., Reproductive cycles of male snakes and their relationships with climate and female reproductive cycles. Herpetologica, 38 (1982), 516.Google Scholar
Aldridge, R. D., Goldberg, S. R., Wisniewski, S. S., Bufalino, A. P., and Dillman, C. B., The reproductive cycle and estrus in the colubrid snakes of temperate North America. Contemporary Herpetology, 2009 (2009), 131.Google Scholar
Smyth, M. and Smith, M. J., Obligatory sperm storage in the skink Hemiergis peronii . Science, 161 (1968), 575576.Google Scholar
Bertona, M. and Chiaraviglio, M., Reproductive biology, mating aggregations, and sexual dimorphism of the Argentine boa constrictor (Boa constrictor occidentalis). Journal of Herpetology, 37 (2003), 510516.Google Scholar
Cechin, S. Z. and Oliveira, J. L., Sibynomorphus ventrimaculatus (Southern Snail-eater). Mating. Herpetological Review, 34 (2003), 73.Google Scholar
Marques, O. A. V., Muniz-Da-Silva, D. F., Barbo, F. E., et al., Ecology of the colubrid snake Spilotes pullatus from the Atlantic Forest of southeastern Brazil. Herpetologica, 70 (2014), 407416.Google Scholar
Shine, R., Comparative ecology of three Australian snake species of the genus Cacophis (Serpentes: Elapidae). Copeia, 1980 (1980), 831838.Google Scholar
Shine, R., Haagner, G. V., Branch, W. R., Harlow, P. S., and Webb, J. K., Natural history of the African shieldnose snake Aspidelaps scutatus (Serpentes, Elapidae). Journal of Herpetology, 30 (1996), 361366.Google Scholar
Yokoyama, F. and Yoshida, H., The reproductive cycle of the female habu, Trimeresurus flavoviridis . Journal of Herpetology, 28 (1994), 5459.Google Scholar

References

Kochva, E., The origin of snakes and evolution of the venom apparatus. Toxicon, 25 (1987), 65106.Google Scholar
Deufel, A. and Cundall, D., Functional plasticity of the venom delivery system in snakes with focus on the poststrike prey release behavior. Zoologischer Anzeiger, 245 (2006), 249267.Google Scholar
Kochva, E., Oral glands of the reptilia. In Gans, C. K. and Gans, A., eds., Biology of the Reptilia, Vol. 8 (London and New York: Academic Press, 1978), pp. 43162.Google Scholar
Cundall, D., Functional morphology. In Siegel, R. A., Collins, J. T., and Novak, S. S., eds., Snakes, Ecology and Evolutionary Biology (New York: MacMillan, 1987), pp. 106140.Google Scholar
Underwood, G., An overview of venomous snake evolution. In Thorpe, R. S., Wüster, W., and Malhotra, A., eds., Venomous Snakes. Ecology, Evolution and Snakebite, n. 70 (Oxford: Clarendon Press, 1997), pp. 113.Google Scholar
Jackson, K., The evolution of venom-delivery systems in snakes. Zoological Journal of the Linnean Society, 137 (2003), 227354.Google Scholar
Fry, B. G., Vidal, N., Norman, J. A., et al., Early evolution of the venom system in lizards and snakes. Nature, 439 (2006), 584588.Google Scholar
Taub, A. M., Ophidian cephalic glands. Journal of Morphology, 118 (1966), 529542.Google Scholar
Pearse, A. G., Histochemistry: Theoretical and Applied. Volume 2. 4th ed. (Edinburgh: Churchill Livingstone, 1985).Google Scholar
Kiernan, J. A., Histological and Histochemical Methods: Theory and Practice. 3rd ed. (London: Oxford University Press, 2001).Google Scholar
Metscher, B. D., MicroCT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiology, 9 (2009), 114.Google Scholar
Underwood, G., On the rictal structures of some snakes. Herpetologica, 58 (2002), 117.Google Scholar
Zaher, H., Comments on the evolution of the jaw adductor musculature of snakes. Zoological Journal of the Linnean Society, 111 (1994), 339384.Google Scholar
Weinstein, S. A., ‘Venomous’ bites from non-venomous snakes: a critical analysis of risk and management of ‘colubrid’ snake bites. (Waltham, MA: Elsevier, 2011).Google Scholar
Jackson, T. N. W., Young, B., Underwood, G., et al., Endless form most beautiful: the evolution of ophidian oral glands, including the venom system, and the use of appropriate terminology for homologous structures. Zoomorphology, 136 (2017), 107130.Google Scholar
Zaher, H., Grazziotin, F. G., Cadle, J. E., et al., Molecular phylogeny of advanced snakes (Serpentes, Caenophidia) with an emphasis South American Xenodontines: a revised classification and description of new taxa. Papéis Avulso de Zoologia, 49 (2009), 115153.Google Scholar
Zaher, H., Murphy, R. W., Arredondo, J. C., et al., Large-scale molecular phylogeny, morphology, divergence-time estimation, and the fossil record of advanced caenophidian snakes (Squamata: Serpentes). PLoS ONE, 14 (2019), e0216148.Google Scholar
Taub, A. M., Comparative studies on Duvernoy’s gland of colubrid snakes. Bulletin of the American Museum of Natural History, 138 (1967), 150.Google Scholar
Vidal, N., Colubroid systematics: evidence for an early appearance of the venom apparatus followed by extensive evolutionary tinkering. Journal of Toxinology: Toxin Review, 21 (2002), 2141.Google Scholar
Kardong, K. V., Colubrid snakes and Duvernoy’s ‘venom’ glands. Journal of Toxicology: Toxin Reviews, 21 (2002), 119.Google Scholar
Weinstein, S. A., Smith, T. L., and Kardong, K., Reptile venom glands form, function, and future. In Mackessy, S. P., ed., Handbook of Venoms and Toxin of Reptiles (Boca Raton, NY: CRC Taylor & Francis, 2010), pp. 6591.Google Scholar
Fry, B. G., Casewell, N. R., Wüster, W., et al., The structural and functional diversification of the Toxicofera reptile venom system. Toxicon, 60 (2012), 434448.Google Scholar
Burbrink, F. T., Grazziotin, F. G., Pyron, R. A., et al., Interrogating genomic-scale data for Squamata (lizards, snakes, and amphisbaenians) shows no support for key traditional morphological relationships. Systematic Biology, 69 (2020), 502520.Google Scholar
Smith, M. and Bellairs, A. A., The head glands of snakes, with remarks on the evolution of the parotid gland and teeth of the Opisthoglypha. Zoological Journal of the Linnean Society, 41 (1947), 353368.Google Scholar
Gygax, P., Entwicklung, Bau und Funktion der Giftdrüse (Duvernoy’s gland) von Natrix tessellata . Acta Tropica, Zoology, 28 (1971), 225274.Google Scholar
Oliveira, L., Guerra-Fuentes, R. A., and Zaher, H., Embryological evidence of a new type of seromucous labial gland in neotropical snail-eating snakes of the genus Sibynomorphus . Zoologischer Anzeiger, 266 (2017), 8994.Google Scholar
Saint-Girons, H., Évolution de la function venimeuse chez les reptiles. In Compte-rendu du colloque organisé à la Faculté Catholique des Sciences (Lyon: Societé Herpétologique de France & Fondation Marcel Merieuse, 1987), pp. 922.Google Scholar
Gabe, M. and Saint-Girons, H., Données histologiques sur les glandes salivaires des lépidosauriens. Memoires du Museum National d’Histoire Naturelle, 58 (1969), 3116.Google Scholar
Haas, G., Anatomical observations on the head of Liotyphlops albirostris (Typhlopidae, Ophdia). Acta Zoologica, 1964 (1964), 162.Google Scholar
Saint-Girons, H., Les glandes céphaliques exocrines des Reptiles. II. – Considérations fonctionnelles et évolutives. Annales des Sciences Naturelles, Zoologie, 10 (1989), 117.Google Scholar
Penteado, D. C., Estudos histológicos das glândulas da cabeça dos ofídeos brasileiros. Memórias do Instituto Butantan, 1 (1918), 2757.Google Scholar
Taub, A. M., Systematic implications from the labial glands of the Colubridae. Herpetologica, 23 (1967), 145148.Google Scholar
Fry, B. G., Scheib, H., van der Weerd, L., et al., Evolution of an arsenal: structural and functional diversification of the venom system in the advanced snakes (Caenophidia). Molecular and Cellular Proteomics, 7 (2008), 215–46.Google Scholar
Underwood, G. and Kochva, E., On the affinities of the burrowing asps Atractaspis (Serpentes: Atractaspididae). Zoological Journal of the Linnean Society, 107 (1993), 364.Google Scholar
Lopes, R. A., de Oliveira, C., Campos, M. N. M., Campos, S. M., and Birman, E. G., Morphological and histochemical study of cephalic glands of Bothrops jararaca (Ophidia, Viperidae). Acta Zoologica, 55 (1974), 1724.Google Scholar
Ineich, I. and Tellier, J. M., Une glande supralabiale à débouché externe chez le genre Echis (Reptilia, Viperidae), cas unique chez les serpents. Comptes Rendus de l’Académie des Sciences Paris, 315 (1992), 4953.Google Scholar
Saint-Girons, H. and Ineich, I.. Donnés histologiques sur la glande labiale supérieure externe des Viperidae du genre Echis . Amphibia-Reptilia, 14 (1993), 315319.Google Scholar
Savitzky, A. H., The origin of the New World proteroglyphous snakes and its bearing on the study of venom delivery systems in snakes . Unpublished PhD dissertation, University of Kansas, Lawrence, United States, 1979.Google Scholar
Oliveira, L., Buononato, M. A., and Zaher, H., Chapter 12 - The cephalic glands and venom apparatus of coralsnakes. In N. J. Silva Jr., L. W. Porras, S. T. Aird, and A. L. C. Prudente, eds., Advances in coralsnake biology: with an emphasis on South America. (Eagle Mountain, Utah: Eagle Mountain Publishing, LC, Utah, USA, 2021), pp. 371–390.Google Scholar
Burns, B. and Pickwell, G. V., Cephalic glands in sea snakes (Pelamis, Hydrophis and Laticauda). Copeia, 1972 (1972), 547559.Google Scholar
Oliveira, L., Prudente, A. L. C., and Zaher, H., H. Unusual labial glands in snakes of the genus Geophis Wagler, 1830 (Serpentes: Dipsadinae). Journal of Morphology, 275 (2014), 8799.Google Scholar
Zaher, H., Oliveira, L., Grazziotin, F. G., et al., Consuming viscous prey: a novel protein-secreting delivery system in Neotropical snail-eating snakes. BMC Evolutionary Biology, 14 (2014), 58.Google Scholar
Savitzky, A. H., The relationship of the xenodontine colubrid snakes related to Ninia . Unpublished Masters dissertation, University of Kansas, United States, 1972.Google Scholar
Harvey, M. B., Fuenmayor, G. R., Portilla, J. C. R., and Rueda-Almonacid, J. V., Systematics of the enigmatic dipsadinae snake Tropidophis perijanensis Alemán (Serpentes: Colubridae) and review of morphological characters of Dipsadini. Herpetological Monographs, 22 (2008), 106132.Google Scholar
Underwood, G., A Contribution to the Classification of Snakes. (London: British Museum (Natural History), 1967).Google Scholar
Haas, G., Anatomical observations on the head of Anomalepis aspinosus (Typhlopidae, Ophidia). Acta Zoologica, 49 (1967), 63139.Google Scholar
Martins, A., Passos, P., and Pinto, R., Unveiling diversity under the skin: comparative morphology study of the cephalic glands in threadsnakes (Serpentes: Leptotyphlopidae: Epictinae). Zoomorphology, 137 (2018), 433443.Google Scholar
Haas, G., Über die Kaumuskulatur und die Schädelmechanik einiger Wühlschlangen. Zoologische Jahrbücher (Anatomie), 52 (1930), 95218.Google Scholar
Brongersma, L. D., Some features of the Dipsadinae and Pareinae (Serpentes, Colubridae). Proceedings van de Koninklijke Nederlandse Akademie van Wetenschappen Section C, 61, (1958), 712.Google Scholar
Haas, G., A note on the origin of solenoglyph snakes. Copeia, 1938 (1938), 7378.Google Scholar
Zaher, H., Hemipenial morphology of the South American xenodontine snakes, with a proposal for a monophyletic Xenodontinae and a reappraisal of colubroid hemipenes. Bulletin of the American Museum of Natural History, 240 (1999), 1168.Google Scholar
Cadle, J. E. and Greene, H. W., Phylogenetic patterns, biogeography, and the ecological structure of Neotropical snake assemblages. In Ricklefs, R. E and Schluter, D., eds., Species Diversity in Ecological Communities: Historical and Geographical Perspective (Chicago: University of Chicago Press, 1993), pp. 281293.Google Scholar
Laporta-Ferreira, I. L. and Salomão, M. G., Morphology, physiology and toxicology of the oral glands of a tropical cochleophagous snake, Sibynomorphus neuwiedi (Colubridae – Dipsadinae). Zoologischer Anzeiger, 27 (1991), 198208.Google Scholar
Salomão, M. G. and Laporta-Ferreira, I. L., The role of secretions from the supralabial, infralabial, and Duvernoy’s glands of the slug-eating snake Sibynomorphus mikanii (Colubridae: Dipsadinae) in the immobilization of molluscan prey. Journal of Herpetology, 28 (1994), 369371.Google Scholar
Oliveira, L., Jared, C., and Prudente, A. L. C., Oral glands in dipsadinae ‘goo-eater’ snakes: Morphology and histochemistry of the infralabial glands in Atractus reticulatus, Dipsas indica, and Sibynomorphus mikanii . Toxicon, 51 (2008), 898913.Google Scholar
Campos, P. F., Oliveira, L., Grazziotin, F. G., et al., Transcriptomic analysis of snake infralabial glands highlights a plasticity in the site of expression of venom genes. Toxicon, 158 (2019), pp. S48.Google Scholar
Phisalix, M., Animaux venimeux et venins, Vol. 2 (Paris: Masson & Cie, 1922).Google Scholar
Phisalix, M. and Caius, R.. L’extension de la fonction venimeuse dans l’ordre entière des ophidiens et son existence chez des familles ou elle n’avait pas été soupçonnée jusqu’içi. Journal de Physiologie et de Pathologie Générale, 17 (1918), 923964.Google Scholar
Kochva, E., The development of the venom gland in the opisthoglyph snake Telescopus fallax with remarks on Thamnophis sirtalis (Colubridae, Reptilia). Copeia, 1965 (1965), 147154.Google Scholar
McDowell, S. B., The architecture of the corner of the mouth of colubroid snakes. Journal of Herpetology, 20 (1986), 353407.Google Scholar
Wollberg, M., Kochva, E., and Underwood, G., On the rictal glands of some atractaspid snakes. Herpetological Journal, 8 (1998), 137143.Google Scholar
Cundall, D. and Rossman, D. A., Cephalic anatomy of the rare Indonesian snake Anomochilus weberi . Zoological Journal of the Linnean Society, 109 (1993), 235273.Google Scholar
Oliveira, L., Buononato, M. A., and Zaher, H., Glândulas cefálicas e aparato de veneno das cobras-corais. In Silva, N. J. Jr., ed., As cobras-corais do Brasil: Biologia, taxonômica, venenos e envenamentos (Goiânia: Editoria de Pontifica Universidade Católica de Goiás, Brasil, 2016), pp. 217241.Google Scholar
Dix, M. W., A venom gland in the lower jaw of the coral snake (Micrurus nigrocinctus mosquitensis Schmidt). In Rosenberg, P., ed., Toxins. Animal, Plant and Microbial (Oxford: Pergamon Press, 1978), pp. 1628.Google Scholar
Fry, B. G., Undheim, E. A. B., Ali, S. A, et al., Squeezers and leaf-cutters: differential diversification and degeneration of the venom system in toxicoferan reptiles. Molecular and Cellular Proteomics 12 (2013), 18811899.Google Scholar
Babonis, L. S. and Brischoux, F., Perspectives on the convergent evolution of tetrapod salt glands. Integrative and Comparative Biology, 52 (2012), 245–56.Google Scholar
Dunson, W. A., Packer, R. K., and Dunson, M. K., Sea snakes: an unusual salt gland under the tongue. Science, 173 (1971), 437441.Google Scholar
Dunson, W. A. and Dunson, M. K., Convergent evolution of sublingual salt glands in the marine file snake and true sea snakes. Journal of Comparative Physiology, 86 (1973), 193208.Google Scholar
Dunson, W. A. and Dunson, M. K., Possible new salt gland in a marine homalopsid snake (Cerberus rhynchops). Copeia, (1979), 661673.Google Scholar
Fry, B. G., Venomous Reptiles and Their Toxins: Evolution, Pathophysiology and Biodiscovery (New York: Oxford University Press, 2015).Google Scholar
Fry, B. G., Winter, K., Norman, J. A., et al., Functional and structural diversification of the Anguimorpha lizard venom system. Molecular and Cellular Proteomics, 9 (2010), 23692390.Google Scholar
Tucker, A. S., Salivary gland adaptations: modification of the glands for novel uses. In Tucker, A. S. and Miletich, I., eds., Salivary Glands. Development, Adaptations and Disease. Frontiers of Oral Biology, Vol. 14 (Basel: Karger, 2010), pp. 2131.Google Scholar
Kerkkamp, H. M. I., Casewell, N. R., and Vonk, F. J., Evolution of the snake venom delivery system. In. Gopalakrishnakone, P. and Malhotra, A., eds., Evolution of Venomous Animals and Their Toxins, Toxinology (Berlin: Springer, 2017), pp. 303315.Google Scholar
Kochva, E., Development of the venom gland and trigeminal muscles in Vipera palaestinae , Acta Anatomica, 52 (1963), 4989.Google Scholar
Shayer-Wollberg, M. and Kochva, E., Embryonic development of the venom apparatus in Causus rhombeatus (Viperidae, Ophidia). Herpetologica, 23 (1967), 249259.Google Scholar
Vonk, F. J., Admiraal, J. R., Jackson, K., et al., Evolutionary origin and development of snakes fangs. Nature, 454 (2008), 630633.Google Scholar
Boulenger, G. A., Remarks on the dentition of snakes and on the evolution of the poison-fangs. Proceedings of the Zoological Society of London, 64 (1896), 614618.Google Scholar
Mackessy, S. P., Morphology and ultrastructure of the venom gland of the Northern Pacific Rattlesnake Crotalus viridis oreganus . Journal of Morphology, 208 (1991), 109128.Google Scholar
Sakai, F., Carneiro, S. M., and Yamanouye, N., Morphological study of accessory gland of Bothrops jararaca and its secretory cycle. Toxicon, 59 (2012), 393401.Google Scholar
Kochva, E. and Gans, C., Salivary glands of snakes. Clinical Toxicology, 3 (1970), 363387.Google Scholar
Rosenberg, H. I., Histology, histochemistry, and emptying mechanism of the venom glands of some elapid snakes. Journal of Morphology, 123 (1967), 133156.Google Scholar
Kochva, E. and Wollberg, M., The salivary glands of Aparallactinae (Colubridae) and the venom glands of Elaps (Elapidae) in relation to the taxonomic status of this genus. Zoological Journal of the Linnean Society, 49 (1970), 217224.Google Scholar
McCarthy, C. J., Morphology of elapid snakes (Serpentes: Elapidae). An assessment of the evidence. Zoological Journal of the Linnean Society, 83 (1985), 7993.Google Scholar
Gopalakrishnakone, P. and Kochva, E., Venom glands and some associated muscles in sea snakes. Journal of Morphology, 205 (1990), 8596.Google Scholar
Gopalakrishnakone, P., Structure of the venom gland of the Malayan Banded Snake Maticora intestinalis . Snake, 18 (1986), 1926.Google Scholar
Kochva, E., Atractaspis (Serpentes, Atractaspididae) the burrowing asp; a multidisciplinary minireview. Bulletin of the Natural History Museum of London (Zoology), 68 (2002), 9199.Google Scholar
Young, B. A. and Kardong, K. V., Dentitional surface features in snakes (Reptilia: Serpentes). Amphibia–Reptilia, 17 (1996), 261276.Google Scholar
Salomão, M. G. and Ferrarezzi, H., A morphological, histochemical and ultrastructural analysis of the Duvernoy’s glands of elapomorphine snakes: the evolution of their venom apparatus and phylogenetic implications . Abstract (Campinas: III Congresso Latino Americano de Herpetologia, 43, Instituto de Biociências da Universidade Estadual de Campinas, 1993).Google Scholar

References

Cundall, D. and Greene, H. W., Feeding in snakes. In Schwenk, K., ed., Feeding: Form, Function, and Evolution in Tetrapod Vertebrates (San Diego, CA: Academic Press, 2000), pp. 293333.Google Scholar
Cundall, D. and Irish, F., The snake skull. In Gans, C., Gaunt, A. S. and Adler, K., eds., Biology of the Reptilia, Vol. 20, Morphology H. (Ithaca, NY: Society for the Study of Amphibians and Reptiles, 2008), pp. 349692.Google Scholar
Moon, B. R., Penning, D. A., Segall, M., and Herrel, A., Feeding in snakes: Form, function, and evolution of the feeding system. In Bels, V. and Whishaw, I. Q., eds., Feeding in Vertebrates: Evolution, Morphology, Behaviour, Biomechanics (Switzerland: Springer Nature, 2019), pp. 527574.Google Scholar
Greene, H. W., Snakes: The Evolution of Mystery in Nature (Berkeley, CA: University of California Press, 1997).Google Scholar
Rieppel, O., A review of the origin of snakes. Evolutionary Biology, 22 (1988), 37130.Google Scholar
Müller, J., Beiträge zur Anatomie und Naturgeschichtte der Amphibien. Zeitschrift für Physiologie, 4 (1832), 190275.Google Scholar
Harrington, S. and Reeder, T., Phylogenetic inference and divergence dating of snakes using molecules, morphology and fossils: new insights into convergent evolution of feeding morphology and limb reduction. Biological Journal of the Linnean Society, 121 (2017), 379394.Google Scholar
Burbrink, F. T., Grazziotin, F. G., Pyron, R. A., et al., Interrogating genomic-scale data for Squamata (lizards, snakes, and amphisbaenians) shows no support for key traditional morphological relationships. Systematic Biology, 69 (2020), 502520.Google Scholar
Caldwell, M. W., The Origin of Snakes: Morphology and the Fossil Record (Boca Raton, FL: CRC Press, 2020).Google Scholar
Greene, H. W., Dietary correlates of the origin and radiation of snakes. American Zoologist, 23 (1983), 431441.Google Scholar
Hsiang, A. Y., Field, D. J., Webster, T. H., et al., The origin of snakes: revealing the ecology, behaviour, and evolutionary history of early snakes using genomics, phenomics, and the fossil record. BMC Evolutionary Biology, 15 (2015), 87.Google Scholar
Scanferla, A., Post-natal ontogeny and the evolution of macrostomy in snakes. Royal Society Open Science, 3 (2016), 160612.Google Scholar
Bezuijen, M. R., Field observation of a large prey item consumed by a small Cylindrophis ruffus (Laurenti, 1768) (Serpentes: Cylindrophiidae). Hamadryad, 34 (2009), 185187.Google Scholar
Kusamba, C., Resetar, A., Wallach, V., Lulengo, K., and Nagy, Z. T., Mouthful of snake: An African snake-eater’s (Polemon fulvicollis graueri) large typhlopid prey. Herpetology Notes, 6 (2013), 235237.Google Scholar
Jackson, K., Kley, N. J., and Brainerd, E. L., How snakes eat snakes: the biomechanical challenges of ophiophagy for the California kingsnake, Lampropeltis getula californiae (Serpentes: Colubridae). Zoology, 107 (2004), 191200.Google Scholar
Cundall, D., A few puzzles in the evolution of feeding mechanisms in snakes. Herpetologica, 75 (2019), 99107.Google Scholar
Schwenk, K. and Rubega, M., Diversity of vertebrate feeding systems. In Stark, J. M. and Wang, T., eds., Physiological and ecological adaptations to feeding in vertebrates (Enfield, NH: Science Publishers, 2005), pp. 141.Google Scholar
Jayne, B. C., Voris, H. K., and Ng, P. K. L., How big is too big? Using crustacean-eating snakes (Homalopsidae) to test how anatomy and behavior affect prey size and feeding performance. Biological Journal of the Linnean Society, 123 (2018), 636650.Google Scholar
Gripshover, N. H. and Jayne, B. C., Crayfish eating in snakes: testing how anatomy and behavior affect prey size and feeding performance. Integrative Organismal Biology, 3 (2021), obab001.Google Scholar
Close, M. and Cundall, D., Snake lower jaw skin: Extension and recovery of a hyperextensible keratinized integument. Journal of Experimental Zoology, 321A (2014), 7897.Google Scholar
Close, M., Perni, S., Franzini-Armstrong, C.,, and Cundall, D., Highly extensible skeletal muscle in snakes. Journal of Experimental Biology, 217 (2014), 24452448.Google Scholar
Young, B. A., The arthrology of the head of the Red-sided Garter snake, Thamnophis sirtalis parietalis . Netherlands Journal of Zoology, 38 (1988), 166205.Google Scholar
Young, B. A., The comparative morphology of the intermandibular connective tissue in snakes (Reptilia: Squamata). Zoologischer Anzeiger, 237 (1998), 5984.Google Scholar
Young, B. A. The comparative morphology of the mandibular midline raphe in snakes (Reptilia: Squamata). Zoologischer Anzeiger, 237 (1998–1999), 217241.Google Scholar
Cundall, D. and Beaupre, S. J., Field records of predatory strike kinematics in rattlesnakes, Crotalus horridus . Amphibia-Reptilia, 22 (2001), 492498.Google Scholar
Cundall, D., Viper fangs: Functional limitations of extreme teeth, Physiological and Biochemical Zoology: Ecological and Evolutionary Approaches, 82 (2009), 6379.Google Scholar
Gauthier, J. A., Kearney, M., Maisano, J. A., Rieppel, O., and Behlke, D. B., Assembling the squamate tree of life: Perspectives from the phenotype and the fossil record. Bulletin of the Peabody Museum of Natural History, 53 (2012), 3308.Google Scholar
Greer, A. E., Limb reduction in squamates: Identification of the lineages and discussion of the trends. Journal of Herpetology, 25 (1991), 166173.Google Scholar
Tsuihiji, T., Kearney, M., and Rieppel, O., First report of a pectoral girdle muscle in snakes, with comments on the snake cervico-dorsal boundary. Copeia, 2006 (2006), 206215.Google Scholar
Tsuihiji, T., Kearney, M., and Rieppel, O., Finding the neck-trunk boundary in snakes: Anteroposterior dissociation of myological characteristics in snakes and its implications for their neck and trunk body regionalization. Journal of Morphology, 273 (2012), 9921009.Google Scholar
Leal, F. and Cohn, M. J., Developmental, genetic, and genomic insights into the evolutionary loss of limbs in snakes. Genesis: The Journal of Genetics and Development, 56 (2018), e23077.Google Scholar
Gasc, J.-P., Axial musculature. In Gans, C. and Parsons, T. S., eds., Biology of the Reptilia, Vol. 11, Morphology F (London: Academic Press, 1981), pp. 355435.Google Scholar
Rivera, G., Savitzky, A. H., and Hinkley, J. A., Mechanical properties of the integument of the common gartersnake, Thamnophis sirtalis (Serpentes: Colubridae). Journal of Experimental Biology, 208 (2005), 29132922.Google Scholar
Buffa, P., Ricerche sulla muscolatura cutanea dei serpenti e considerazioni sulla locomozione di questi animali. Atti della Accademia scientifica veneto-trentino-istriana, 1 (1904), 145237.Google Scholar
Fetcho, J. R., The organization of motor neurons innervating the axial musculature of vertebrates. II. Florida water snakes (Nerodia fasciata pictiventris). Journal of Comparative Neurology, 249 (1986), 551563.Google Scholar
Vogl, A. W., Lillie, M. A., Piscitelli, M. A., et al., Stretchy nerves are an essential component of the extreme feeding mechanism of rorqual whales. Current Biology, 25 (2015), R345R361.Google Scholar
Apodaca, G., The uroepithelium: Not just a passive barrier. Traffic, 5 (2004), 117128.Google Scholar
Eaton, A. F., Clayton, D. R., Ruiz, W. G., et al., Expansion and contraction of the umbrella cell apical junctional ring in response to bladder filling and voiding. Molecular Biology of the Cell, 30 (2019), 20372052.Google Scholar
Burke, A. C. and Nowicki, J. L., A new view of patterning domains in the vertebrate mesoderm. Developmental Cell, 4 (2003), 159165.Google Scholar
Head, J. J. and Polly, P. D., Evolution of the snake body form reveals homoplasy in amniote Hox gene function. Nature, 520 (2015), 8689.Google Scholar
Mosauer, W., The myology of the trunk region of snakes and its significance for ophidian taxonomy and phylogeny. Publications of the University of California at Los Angeles in Biological Sciences, 1 (1935), 81120.Google Scholar
Ottaviani, G. and Tazzi, A., The lymphatic system. In Gans, C. and Parsons, T. S., eds., Biology of the Reptilia, Vol. 6, Morphology E (London: Academic Press, 1977), pp. 315464.Google Scholar
Cundall, D., Tuttman, C., and Close, M., A model of the anterior esophagus in snakes, with functional and developmental implications. Anatomical Record, 297 (2014), 586598.Google Scholar
Yi, H. and Norell, M. A., The burrowing origin of modern snakes. Science Advances, 1 (2015), e1500743.Google Scholar
Lee, M. S. Y., Convergent evolution and character correlation in burrowing reptiles: towards a resolution of squamate relationships. Biological Journal of the Linnean Society, 65 (1998), 369453.Google Scholar
McDowell, S. B., Jr., The skull of Serpentes. In Gans, C., Gaunt, A. S., and Adler, K., eds., Biology of the Reptilia, Vol. 21, Morphology I. (Ithaca, NY: Society for the Study of Amphibians and Reptiles, 2008), pp. 467620.Google Scholar
Abdeen, A. M., Abo-Taira, A. M., and Zaher, M. M, Further studies on the ophidian cranial osteology: the skull of the Egyptian blind snake Leptotyphlops cairi (Leptotyphlopidae). I. The cranium. A – The median dorsal bones, bones of the upper jaw, circumorbital bone and occipital ring. Journal of the Egyptian-German Society of Zoology, 5 (1991), 417437.Google Scholar
Abdeen, A. M., Abo-Taira, A. M., and Zaher, M. M, Further studies on the ophidian cranial osteology: The skull of the Egyptian blind snake Leptotyphlops cairi (Leptotyphlopidae). I. The cranium. B – The otic capsule, palate and temporal bones. Journal of the Egyptian-German Society of Zoology, 5 (1991), 439455.Google Scholar
Broadley, D. G. and Broadley, S., A review of the African worm snakes from south of latitude 12°S (Serpentes: Leptotyphlopidae). Syntarsus, 5 (1999), 136.Google Scholar
Boughner, J. C., Buchtova, M., Fu, K., et al., Embryonic development of Python sebae. I. Staging criteria and macroscopic skeletal morphogenesis of the head and limbs. Zoology, 110 (2007), 212230.Google Scholar
Boback, S. M., Dichter, E. K., and Mistry, H. L., A developmental staging series for the African house snake, Boaedon (Lamprophis) fuliginosus . Zoology, 115 (2012), 3846.Google Scholar
Polachowski, K. M. and Werneburg, I., Late embryos and bony skull development in Bothropoides jararaca (Serpentes, Viperidae). Zoology, 116 (2013), 3663.Google Scholar
Khannoon, E. R. and Evans, S. E., The development of the skull of the Egyptian cobra Naja h. haje (Squamata: Serpentes: Elapidae). PLoS ONE, 10 (2015), e0122185.Google Scholar
Irish, F. J., The role of heterochrony in the origin of a novel bauplan: evolution of the ophidian skull. Geobios, Mémoires Special, 12 (1989), 227233.Google Scholar
Werneburg, I., Polachowski, K. M., and Hutchinson, M. N., Bony skull development in the Argus Monitor (Squamata, Varanidae, Varanus panoptes) with comments on developmental timing and adult anatomy. Zoology, 118 (2015), 255280.Google Scholar
Kley, N. J. and Brainerd, E. L., Post-cranial prey transport mechanisms in the black pinesnake, Pituophis melanoleucus lodingi: an x-ray videographic study. Zoology, 105 (2002), 153164.Google Scholar
Kiran, U., A new structure in the lower jaw of colubrid snakes. Snake, 13 (1981), 131133.Google Scholar
Cundall, D., Feeding behaviour in Cylindrophis and its bearing on the evolution of alethinophidian snakes. Journal of Zoology, London, 237 (1995), 353376.Google Scholar
Kley, N. J., Prey transport mechanisms in blindsnakes and the evolution of unilateral feeding systems in snakes. American Zoologist, 41 (2001), 13211337.Google Scholar
Schwenk, K., Feeding in lepidosaurs. In Schwenk, K., ed., Feeding: Form, Function, and Evolution in Tetrapod Vertebrates (San Diego, CA: Academic Press, 2000), pp. 175291.Google Scholar
Frazzetta, T. H., A functional consideration of cranial kinesis in lizards. Journal of Morphology, 111 (1962), 287320.Google Scholar
Frazzetta, T. H., Morphology and function of the jaw apparatus in Python sebae and Python molurus . Journal of Morphology, 118 (1966), 217296.Google Scholar
Cundall, D. and Shardo, J., Rhinokinetic snout of thamnophiine snakes. Journal of Morphology, 225 (1995), 3150.Google Scholar
Shcherbakov, D. E., Tim, T., Tzetlin, A. B., Vinn, O., and Zhuravlev, A. Y., A probable oligochaete from an Early Triassic Lagerstätte of the southern Cis-Urals and its evolutionary implications. Acta Palaeontologica Polonica, 65 (2020), 219233.Google Scholar
Zaher, H. and Scanferla, C. A., The skull of the Upper Cretaceous snake Dinilysia patagonica Smith-Woodward, 1901, and its phylogenetic position revisited. Zoological Journal of the Linnean Society, 164 (2012), 194238.Google Scholar
Gower, D. J., Giri, V., Captain, A., , and Wilkinson, M., A reassessment of Melanophium Günther, 1864 (Squamata: Serpentes: Uropeltidae) from the Western Ghats of peninsular India, with description of a new species. Zootaxa, 4085 (2016), 481503.Google Scholar
Boltt, R. E. and Ewer, R. F., The functional anatomy of the head of the puff adder, Bitis arietans (Merr.). Journal of Morphology, 114 (1964), 83106.Google Scholar
Greene, H. W. and Burghardt, G. M., Behaviour and phylogeny: Constriction in ancient and modern snakes. Science, 200 (1978), 7477.Google Scholar
Head, J. J., Mahlow, K., and Müller, J., Fossil calibration dates for molecular phylogenetic analysis of snakes 2: Caneophidia, Colubroidea, Elapoidea, Colubridae. Palaeontologia Electronica 19.2.2FC (2016), 121.Google Scholar
Hargreaves, A. D., Swain, M. T., Logan, D. W., and Mulley, J. F., Testing the Toxicofera: Comparative transcriptomics casts doubt on the single, early evolution of the reptile venom system. Toxicon, 92 (2015), 140156.Google Scholar
Sweet, S. S., Chasing flamingos: Toxicofera and the misinterpretation of venom in varanid lizards. In Cota, M., ed., Proceedings of the 2015 Interdisciplinary World Conference on Monitor Lizards (Bangkok, Thailand: Institute for Research and Development, Suan Sunandha Rajhabat University, 2016), pp. 123149.Google Scholar
Radcliffe, C. W. and Chiszar, D. A., A descriptive analysis of predatory behavior in the yellow-lipped sea krait (Laticauda colubrina). Journal of Herpetology, 14 (1980), 422424.Google Scholar
Miralles, A., Marin, J., Markus, D., et al., Molecular evidence for the paraphyly of Scolecophidia and its evolutionary implications. Journal of Evolutionary Biology, 31 (2018), 17821793.Google Scholar
Zaher, H., and Smith, K. T., Pythons in the Eocene of Europe reveal a much older divergence of the group in sympatry with boas. Biology Letters, 16 (2020), 20200735.Google Scholar
Rage, J.-C., Serpentes, In Wellnhofer, P., ed., Handbuch der Paläoherpetologie/ Encyclopedia of Paleontology, Part 11 . (Stuttgart: Gustav Fischer, 1984), pp. 180.Google Scholar
Rage, J.-C., Fossil snakes. In Seigel, R. A., Collins, J. T., and Novak, S. S., eds., Snakes: Ecology and Evolutionary Biology (New York: Macmillan, 1987), pp. 5176.Google Scholar
Rieppel, O., H., Zaher, E. Tchernov, ,, and Polcyn, M. J., The anatomy and relationships of Haasiophis terrasanctus, a fossil snake with well-developed hind limbs from the mid-Cretaceous of the Middle East. Journal of Paleontology, 77 (2003), 536558.Google Scholar
Zaher, H., Apesteguía, S., and Scanferla, C. A., The anatomy of the upper cretaceous snake Najash rionegrina Apesteguía & Zaher, 2006, and the evolution of limblessness in snakes. Zoological Journal of the Linnean Society, 156 (2009), 801826.Google Scholar
Garberoglio, F. F., Apesteguía, S., Simões, T. R., et al., New skulls and skeletons of the Cretaceous legged snake Najash, and the evolution of the modern snake body plan. Science Advances, 5 (2019), eaax5833.Google Scholar
Cundall, D., Review of Caldwell, M. W., the origin of snakes: morphology and the fossil record. Herpetological Review, 51 (2020), 364368.Google Scholar
Koch, N. M. and Gauthier, J. A., Noise and biases in genomic data may underlie radically different hypotheses for the position of Iguania within Squamata. PLoS ONE, 13 (2018), e0202729.Google Scholar
Uetz, P., Freed, P., and Hosek, J., eds., The Reptile Database. www.reptile-database.org (accessed 1 February 2021).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×