Published online by Cambridge University Press: 05 October 2009
From the construction of Chen–Ruan cohomology, it is clear that the only non-topological datum is the obstruction bundle. This phenomenon is also reflected in calculations. That is, it is fairly easy to compute Chen–Ruan cohomology so long as there is no contribution from the obstruction bundle, but when the obstruction bundle does contribute, the calculation becomes more subtle. In such situations it is necessary to develop new technology. During the last several years, many efforts have been made to perform such calculations. So far, major success has been achieved in two special cases: abelian orbifolds (such as toric varieties) and symmetric products. For both these sorts of orbifolds, we have elegant – and yet very different – solutions.
Abelian orbifolds
An orbifold is abelian if and only if each local group Gx is an abelian group. Abelian orbifolds constitute a large class of orbifolds, and include toric varieties and complete intersections of toric varieties. Such orbifolds were the first class of examples to be studied extensively. Immediately after Chen and Ruan introduced their cohomology, Poddar [123] identified the twisted sectors of toric varieties and their complete intersections. There followed a series of works on abelian orbifolds by Borisov and Mavlyutov [28], Park and Poddar [122], Jiang [74], and Borisov, Chen, and Smith [26].
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.