Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T02:43:36.525Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  06 March 2020

Jim Agler
Affiliation:
University of California, San Diego
John Edward McCarthy
Affiliation:
Washington University, St Louis
Nicholas John Young
Affiliation:
University of Leeds and University of Newcastle
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Operator Analysis
Hilbert Space Methods in Complex Analysis
, pp. 361 - 371
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Abate, Marco. The Julia-Wolff-Carathéodory theorem in polydisks. J. Anal. Math., 74:275306, 1998.Google Scholar
[2] Abduvalieva, Gulnara and Kaliuzhnyi-Verbovetskyi, Dmitry S.. Implicit/inverse function theorems for free noncommutative functions. J. Funct. Anal., 269(9):2813 2844, 2015.Google Scholar
[3] Adamian, Vadym M., Arov, Damir Z., and Krein, Mark G.. On infinite Hankel matrices and generalized problems of Carathéodory-Fejér and F. Riesz. Funkcional. Anal. Prilozen., 2(1):119, 1968.Google Scholar
[4] Adamian, Vadym M., Arov, Damir Z., and Krein, Mark G.. Analytic properties of Schmidt pairs for a Hankel operator and the generalized Schur-Takagi problem. Math. USSR. Sb., 15:3173, 1971.Google Scholar
[5] Agler, Jim. Some interpolation theorems of Nevanlinna-Pick type. Preprint, 1988.Google Scholar
[6] Agler, Jim. The Arveson extension theorem and coanalytic models. Integral Eq. Oper. Theory, 5:608631, 1982.Google Scholar
[7] Agler, Jim. On the representation of certain holomorphic functions defined on a polydisc. In Operator Theory: Advances and Applications, vol. 48, pages 4766. Birkhäuser, Basel, 1990.Google Scholar
[8] Agler, Jim. Operator theory and the Carathéodory metric. Inventiones Math., 101:483500, 1991.Google Scholar
[9] Agler, Jim, Harland, John, and Raphael, Benjamin J.. Classical function theory, operator dilation theory, and machine computation on multiply-connected domains. Mem. Amer. Math. Soc., 191(892):viii, 159, 2008.Google Scholar
[10] Agler, Jim and McCarthy, John E.. Nevanlinna-Pick interpolation on the bidisk. J. Reine Angew. Math., 506:191204, 1999.CrossRefGoogle Scholar
[11] Agler, Jim and McCarthy, John E.. Pick Interpolation and Hilbert Function Spaces. Graduate Studies in Mathematics, vol. 44. American Mathematical Society, Providence, RI, 2002.Google Scholar
[12] Agler, Jim and McCarthy, John E.. Norm preserving extensions of holomorphic functions from subvarieties of the bidisk. Ann. Math. (2), 157(1):289312, 2003.Google Scholar
[13] Agler, Jim and McCarthy, John E.. Distinguished varieties. Acta Math., 194:133– 153, 2005.CrossRefGoogle Scholar
[14] Agler, Jim and McCarthy, John E.. Global holomorphic functions in several noncommuting variables. Canad. J. Math., 67(2):241285, 2015.Google Scholar
[15] Agler, Jim and McCarthy, John E.. Non-commutative holomorphic functions on operator domains. European J. Math, 1(4):731745, 2015.Google Scholar
[16] Agler, Jim and McCarthy, John E.. Operator theory and the Oka extension theorem. Hiroshima Math. J., 45(1):934, 2015.CrossRefGoogle Scholar
[17] Agler, Jim and McCarthy, John E.. Pick interpolation for free holomorphic functions. Amer. J. Math., 137(6):16851701, 2015.Google Scholar
[18] Agler, Jim and McCarthy, John E.. The implicit function theorem and free algebraic sets. Trans. Amer. Math. Soc., 368(5):31573175, 2016.Google Scholar
[19] Agler, Jim and McCarthy, John E.. Wandering Montel theorems for Hilbert space valued holomorphic functions. Proc. Amer. Math. Soc., 146(10):43534367, 2018.Google Scholar
[20] Agler, Jim and McCarthy, John E.. Non-commutative functional calculus. J. Anal., 137(1):211229, 2019.Google Scholar
[21] Agler, Jim, McCarthy, John E., and Young, Nicholas. On the representation of holomorphic functions on polyhedra. Michigan Math. J., 62(4):675689, 2013.Google Scholar
[22] Agler, Jim, McCarthy, John E., and Young, Nicholas. Facial behavior of analytic functions on the bidisk. Bull. Lond. Math. Soc., 43:478494, 2011.Google Scholar
[23] Agler, Jim, McCarthy, John E., and Young, Nicholas. A Carathéodory theorem for the bidisk via Hilbert space methods. Math. Ann., 352(3):581624, 2012.CrossRefGoogle Scholar
[24] Agler, Jim, McCarthy, John E., and Young, Nicholas. Operator monotone functions and Löwner functions of several variables. Ann. Math., 176(3):17831826, 2012.Google Scholar
[25] Agler, Jim, Tully-Doyle, Ryan, and Young, Nicholas. Boundary behavior of analytic functions of two variables via generalized models. Indag. Math. (n.s.), 23(4):9951027, 2012.Google Scholar
[26] Agler, Jim, Tully-Doyle, Ryan, and Young, Nicholas. Nevanlinna representations in several variables. J. Funct. Anal., 270(8):30003046, 2016.CrossRefGoogle Scholar
[27] Agler, Jim and Young, Nicholas. A commutant lifting theorem for a domain in C2 and spectral interpolation. J. Funct. Anal., 161(2):452477, 1999.Google Scholar
[28] Agler, Jim and Young, Nicholas. The hyperbolic geometry of the symmetrized bidisc. J. Geom. Anal., 14(3):375403, 2004.Google Scholar
[29] Agler, Jim and Young, Nicholas. Symmetric functions of two noncommuting variables. J. Funct. Anal., 266(9):57095732, 2014.Google Scholar
[30] Agler, Jim and Young, Nicholas. Realization of functions on the symmetrized bidisc. J. Math. Anal. Applic., 453(9):227240, 2017.Google Scholar
[31] Alpay, Daniel and Kalyuzhnyi-Verbovetzkii, Dmitry S.. Matrix-J-unitary noncommutative rational formal power series. In The State Space Method Generalizations and Applications. Operator Theory: Advances and Applications, vol. 161, pages 49113. Birkhäuser, Basel, 2006.Google Scholar
[32] Ambrozie, Calin, Engliš, Miroslav, and Müller, Vladimír. Operator tuples and analytic models over general domains in Cn. J. Oper. Theory, 47:287302, 2002.Google Scholar
[33] Andô, Tsuyoshi. On a pair of commutative contractions. Acta Sci. Math. (Szeged), 24:8890, 1963.Google Scholar
[34] Arendt, Wolfgang and Nikol’skiĭ, Nikolaĭ. Vector-valued holomorphic functions revisited. Math. Z., 234(4):777805, 2000.Google Scholar
[35] Aronszajn, Nachman. Theory of reproducing kernels. Trans. Amer. Math. Soc., 68:337404, 1950.Google Scholar
[36] Arveson, William. Subalgebras of C*-algebras. Acta Math., 123:141224, 1969.Google Scholar
[37] Arveson, William. Subalgebras of C -algebras. II. Acta Math., 128(3–4):271– 308, 1972.Google Scholar
[38] Augat, Meric, Balasubramanian, Sriram, and McCullough, Scott. Compact sets in the free topology. Linear Algebra Appl., 506:6–9, 2016.Google Scholar
[39] Badea, Catalin, Beckermann, Bernhard, and Crouzeix, Michel. Intersections of several disks of the Riemann sphere as K-spectral sets. Commun. Pure Appl. Anal., 8(1):3754, 2009.CrossRefGoogle Scholar
[40] Balasubramanian, Sriram. Toeplitz corona and the Douglas property for free functions. J. Math. Anal. Appl., 428(1):111, 2015.Google Scholar
[41] Ball, Joseph A., Gohberg, Israel, and Rodman, Leiba. Interpolation of Rational Matrix Functions. Birkhäuser, Basel, 1990.Google Scholar
[42] Ball, Joseph A., Groenewald, Gilbert, and Malakorn, Tanit. Conservative structured noncommutative multidimensional linear systems. In The State Space Method Generalizations and Applications. Operator Theory: Advances and Applications, vol. 161, pages 179–223. Birkhäuser, Basel, 2006.Google Scholar
[43] Ball, Joseph A., Marx, Gregory, and Vinnikov, Victor. Interpolation and transfer-function realization for the noncommutative Schur-Agler class. In Operator Theory in Different Settings and Related Applications. Operator Theory: Advances and Applications, vol. 262, pages 23–116. Birkhäuser/Springer, Cham, Switzerland, 2018.Google Scholar
[44] Ball, Joseph A., Sadosky, Cora, and Vinnikov, Victor. Scattering systems with several evolutions and multidimensional input/state/output systems. Integral Eq. Oper. Theory, 52:323393, 2005.Google Scholar
[45] Ball, Joseph A. and Trent, Tavan T.. Unitary colligations, reproducing kernel Hilbert spaces, and Nevanlinna-Pick interpolation in several variables. J. Funct. Anal., 197:1–61, 1998.Google Scholar
[46] Barnett, Stephen. Matrices in Control Theory: With Applications to Linear Programming. Van Nostrand Reinhold, London, New York, and Toronto, 1971.Google Scholar
[47] Bercovici, H., Foias, C., and Tannenbaum, A.. Spectral variants of the Nevanlinna-Pick interpolation problem. In Signal Processing, Scattering and Operator Theory, and Numerical Methods (Amsterdam, 1989). Program Systems Control Theory, vol. 5, pages 2345. Birkhäuser, Boston, 1990.Google Scholar
[48] Beurling, Arne. On two problems concerning linear transformations in Hilbert space. Acta Math., 81:239255, 1949.Google Scholar
[49] Bhatia, Rajendra and Rosenthal, Peter. How and why to solve the operator equation AX − XB = Y. Bull. London Math. Soc., 29(1):121, 1997.Google Scholar
[50] Bhattacharyya, Tirthankar, Pal, Sourav, and Shyam Roy, Subrata. Dilations of Γ-contractions by solving operator equations. Adv. Math., 230(2):577606, 2012.Google Scholar
[51] Bickel, Kelly. Differentiating matrix functions. Oper. Matrices, 7(1):7190, 2013.Google Scholar
[52] Bickel, Kelly and Knese, Greg. Inner functions on the bidisk and associated Hilbert spaces. J. Funct. Anal., 265(11):27532790, 2013.Google Scholar
[53] Bonsall, Frank and Duncan, John. Complete Normed Algebras. Springer, New York and Berlin, 1973.Google Scholar
[54] Boyd, Stephen, Ghaoui, Laurent El, Feron, Eric, and Balakrishnan, Venkataramanan. Linear Matrix Inequalities in System and Control Theory. SIAM Studies in Applied Mathematics, vol. 15. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1994.CrossRefGoogle Scholar
[55] Brown, Arlen and Pearcy, Carl. Structure of commutators of operators. Ann. Math. (2), 82:112127, 1965.Google Scholar
[56] Carathéodory, Constantin. Über die Winkelderivierten von beschränkten analytischen Funktionen. Sitzungsber Preuss. Akad. Wissens. pages 39–52, 1929.Google Scholar
[57] Carleson, Lennart. Interpolations by bounded analytic functions and the corona problem. Ann. Math., 76:547559, 1962.Google Scholar
[58] Cartan, Henri. Séminaire Henri Cartan 1951/2. W. A. Benjamin, New York, 1967.Google Scholar
[59] Cimpric, Jakob, Helton, J. William, McCullough, Scott, and Nelson, Christopher. A noncommutative real nullstellensatz corresponds to a noncommutative real ideal: Algorithms. Proc. Lond. Math. Soc. (3), 106(5):10601086, 2013.CrossRefGoogle Scholar
[60] Conway, John B.. A Course in Functional Analysis. Springer-Verlag, New York, 1985.Google Scholar
[61] Costara, Constantin. The symmetrized bidisc and Lempert’s theorem. Bull. London Math. Soc., 36(5):656662, 2004.Google Scholar
[62] Crabb, Michael J. and Davie, Alexander M.. Von Neumann’s inequality for Hilbert space operators. Bull. London Math. Soc., 7:4950, 1975.Google Scholar
[63] Crouzeix, Michel. Bounds for analytical functions of matrices. Integral Eq. Oper. Theory, 48(4):461477, 2004.Google Scholar
[64] Crouzeix, Michel. A functional calculus based on the numerical range: applications. Linear Multilinear Algebra, 56(1-2):81103, 2008.Google Scholar
[65] Crouzeix, Michel. The annulus as a K-spectral set. Commun. Pure Appl. Anal., 11(6):22912303, 2012.Google Scholar
[66] Crouzeix, Michel and Palencia, Cesar. The numerical range is a -spectral set. SIAM J. Matrix Anal. Appl., 38(2):649655, 2017.Google Scholar
[67] Curto, Raúl E.. Applications of several complex variables to multiparameter spectral theory. In Conway, J. B. and Morrel, B. B., eds., Surveys of Some Recent Results in Operator Theory, pages 25–90. Longman Scientific, Harlow, UK 1988.Google Scholar
[68] Branges, Louis de. A proof of the Bieberbach conjecture. Acta Math., 154:137– 152, 1985.Google Scholar
[69] de Branges, Louis and Rovnyak, James. Square Summable Power Series. Holt, Rinehart, and Winston, New York, 1966.Google Scholar
[70] Delyon, Bernard and Delyon, Francois. Generalizations of von Neumann’s spectral sets and integral representations of operators. Bull. Soc. Math. France, 127:2541, 1999.Google Scholar
[71] Diestel, Joe, Fourie, Jan H., and Swart, Johan. The Metric Theory of Tensor Products. American Mathematical Society, Providence, RI, 2008.Google Scholar
[72] Dieudonné, Jean. History of Functional Analysis. In Nachbin, L., ed., Notas de Matematica (77). North-Holland Mathematics Studies, book 49. North-Holland, Amsterdam, New York, and Oxford, 1981.Google Scholar
[73] Dineen, Seán. Complex Analysis on Infinite-Dimensional Spaces. Springer Monographs in Mathematics. Springer-Verlag, London, 1999.Google Scholar
[74] Dixmier, Jacques. C -algebras. North-Holland Mathematical Library, vol. 15. North-Holland, Amsterdam, New York, and Oxford, 1977. (Translated from the French by Francis Jellett.)Google Scholar
[75] Dixmier, Jacques. Les algèbres d’opérateurs dans l’espace hilbertien (algèbres de von Neumann). Les Grands Classiques Gauthier-Villars. [Gauthier-Villars Great Classics]. Éditions Jacques Gabay, Paris, 1996. (Reprint of the 2nd ed., 1969.)Google Scholar
[76] Donoghue, William F.. Monotone Matrix Functions and Analytic Continuation. Springer, Berlin, 1974.Google Scholar
[77] Douglas, Ronald G. and Paulsen, Vern I.. Completely bounded maps and hypo-Dirichlet algebras. Acta Sci. Math. (Szeged), 50(1–2):143157, 1986.Google Scholar
[78] Doyle, John. Analysis of feedback systems with structured uncertainties. IEE Proc., 129:242250, 1982.Google Scholar
[79] Doyle, John and Stein, Gunter. Multivariable feedback design: Concepts for a classical/modern synthesis. IEEE Trans. Automatic Control, 26:413, 1981.Google Scholar
[80] Dritschel, Michael A. and McCullough, Scott. The failure of rational dilation on a triply connected domain. J. Amer. Math. Soc., 18(4):873918, 2005.Google Scholar
[81] Drury, Scott W.. Remarks on von Neumann’s inequality. In Blei, R. C. and Sidney, S. J., eds. Banach Spaces, Harmonic Analysis, and Probability Theory, pages 1432. Lecture Notes in Mathematics, vol. 995. Springer Verlag, Berlin, 1983.Google Scholar
[82] Duffin, Richard J.. Infinite programs. In Linear Inequalities and Related Systems. Annals of Mathematics Studies, no. 38, pages 157–170. Princeton University Press, Princeton, NJ, 1956.Google Scholar
[83] Dullerud, Geir and Paganini, Fernando. A Course in Robust Control Theory. Springer Verlag, New York, 2000.Google Scholar
[84] Duren, Peter L.. Theory of Hp Spaces. Academic Press, New York, 1970.Google Scholar
[85] Dym, Harry. J Contractive Matrix Functions, Reproducing Kernel Hilbert Spaces and Interpolation. CBMS Regional Conference Series in Mathematics, vol. 71. Published for the Conference Board of the Mathematical Sciences, Washington, DC by the American Mathematical Society, Providence, RI, 1989.Google Scholar
[86] Edigarian, Armen and Zwonek, Włodzimierz. Geometry of the symmetrized polydisc. Arch. Math. (Basel), 84(4):364374, 2005.Google Scholar
[87] Effros, Edward G. and Ruan, Zhong-Jin. Operator space tensor products and Hopf convolution algebras. J. Operator Theory, 50(1):131156, 2003.Google Scholar
[88] Eisenbud, David and Hochster, Melvin. A Nullstellensatz with nilpotents and Zariski’s main lemma on holomorphic functions. J. Algebra, 58(1):157161, 1979.Google Scholar
[89] Eschmeier, Jörg and Putinar, Mihai. Spectral Decompositions and Analytic Sheaves. Oxford University Press, Oxford, 1996.Google Scholar
[90] Foias, Ciprian and Frazho, Arthur. The Commutant Lifting Approach to Interpolation Problems. Birkhäuser, Basel, 1990.Google Scholar
[91] Fuglede, Bent. A commutativity theorem for normal operators. Proc. Nat. Acad. Sci., 36:3540, 1950.Google Scholar
[92] Gamelin, Theodore W.. Uniform Algebras. Chelsea, New York, 1984.Google Scholar
[93] Garnett, John B.. Bounded Analytic Functions. Academic Press, New York, 1981.Google Scholar
[94] Gärtner, Bernd and Matoušek, Jiří. Approximation Algorithms and Semidefinite Programming. Springer, Heidelberg, 2012.Google Scholar
[95] Greenbaum, Anne and Overton, Michael L.. Numerical investigation of Crouzeix’s conjecture. Linear Algebra Appl., 542:225245, 2018.Google Scholar
[96] Greub, Werner. Linear Algebra. Graduate Texts in Mathematics, no. 23. Springer-Verlag, New York and Berlin, 4th ed., 1975.Google Scholar
[97] Greub, Werner. Multilinear Algebra. Springer-Verlag, New York and Heidelberg, 2nd ed., 1978. (Universitext).Google Scholar
[98] Halmos, Paul R.. Shifts on Hilbert spaces. J. Reine Angew. Math., 208:102112, 1961.Google Scholar
[99] Halmos, Paul R.. Ten problems in Hilbert space. Bull. Amer. Math. Soc., 76:887933, 1970.Google Scholar
[100] Helemskii, Alexander Ya.. The Homology of Banach and Topological Algebras. Mathematics and Its Applications (Soviet Series), vol. 41. Kluwer Academic, Dordrecht, The Netherlands, 1989. (Translated from the Russian by Alan West.)Google Scholar
[101] William Helton, J.. Discrete-time systems, operator models and scattering theory. J. Funct. Anal., 16:1538, 1974.Google Scholar
[102] Helton, J. William. “Positive” noncommutative polynomials are sums of squares. Ann. Math. (2), 156(2):675694, 2002.Google Scholar
[103] William Helton, J., Klep, Igor, and McCullough, Scott. Analytic mappings between noncommutative pencil balls. J. Math. Anal. Appl., 376(2):407428, 2011.Google Scholar
[104] William Helton, J., Igor Klep, and Scott McCullough. Proper analytic free maps. J. Funct. Anal., 260(5):1476 1490, 2011.Google Scholar
[105] Helton, J. William, Klep, Igor, and McCullough, Scott. Convexity and semidefinite programming in dimension-free matrix unknowns. In Handbook on Semidefinite, Conic and Polynomial Optimization. International Series in Operations Research and Management Science, vol. 166, pages 377–405. Springer, New York, 2012.Google Scholar
[106] Helton, J. William, Klep, Igor, and McCullough, Scott. Free analysis, convexity and LMI domains. In Operator Theory: Advances and Applications, vol. 222, pages 195–219. Springer, Basel, 2012.Google Scholar
[107] Helton, J. William and McCullough, Scott. Every convex free basic semi-algebraic set has an LMI representation. Ann. Math. (2), 176(2):9791013, 2012.Google Scholar
[108] Helton, J. William and McCullough, Scott. Free convex sets defined by rational expressions have LMI representations. J. Convex Anal., 21(2):425448, 2014.Google Scholar
[109] Helton, J. William, McCullough, Scott, Putinar, Mihai, and Vinnikov, Victor. Convex matrix inequalities versus linear matrix inequalities. IEEE Trans. Automat. Control, 54(5):952964, 2009.Google Scholar
[110] Helton, J. William and McCullough, Scott A.. A Positivstellensatz for noncommutative polynomials. Trans. Amer. Math. Soc., 356(9):37213737 (electronic), 2004.Google Scholar
[111] Helton, J. William and Putinar, Mihai. Positive polynomials in scalar and matrix variables, the spectral theorem, and optimization. In Operator Theory, Structured Matrices, and Dilations. Theta Series in Advanced Mathematics, vol. 7, pages 229–306. Theta, Bucharest, 2007.Google Scholar
[112] Helton, J. William and Vinnikov, Victor. Linear matrix inequality representation of sets. Comm. Pure Appl. Math., 60(5):654674, 2007.Google Scholar
[113] Guennadi, M. Henkin, and Polyakov, Pierre L.. Prolongement des fonctions holomorphes bornées d’une sous-variétée du polydisque. Comptes Rendus Acad. Sci. Paris Sér. I Math., 298(10):221224, 1984.Google Scholar
[114] Herglotz, Gustav. Über Potenzreihen mit positivem, reellem Teil in Einheitskreis. Leipz. Bericht, 63:501511, 1911.Google Scholar
[115] Hilbert, David. Grundzüge einer allgemeinen Theorie der linearen Integralgle-ichungen. B. G. Teubner, Leipzig, Germany 1912.Google Scholar
[116] Hoffman, Kenneth. Banach Spaces of Analytic Functions. Prentice-Hall, Englewood Cliffs, NJ, 1962.Google Scholar
[117] Holbrook, John A.. Polynomials in a matrix and its commutant. Linear Algebra Appl., 48:293301, 1982.Google Scholar
[118] Hörmander, Lars. An Introduction to Complex Analysis in Several Variables. North Holland, Amsterdam, 1973.Google Scholar
[119] Ionescu, Vlad, Oară, Cristian, and Weiss, Martin. Generalized Riccati Theory and Robust Control. John Wiley, Chichester, UK, 1999. (A Popov function approach.)Google Scholar
[120] Jafari, Farhad. Angular derivatives in polydisks. Indian J. Math., 35:197–212, 1993.Google Scholar
[121] Jarchow, Hans. Locally Convex Spaces. Teubner, Stuttgart, 1981.Google Scholar
[122] Jarnicki, Marek and Pflug, Peter. Invariant Distances and Metrics in Complex Analysis. De Gruyter Expositions in Mathematics, vol. 9. Walter de Gruyter, Berlin, extended ed., 2013.Google Scholar
[123] Julia, Gaston. Extension nouvelle d’un lemme de Schwarz. Acta Math., 42:349– 355, 1920.Google Scholar
[124] Kaashoek, Marinus A. and Rovnyak, James. On the preceding paper by R. B. Leech. Integral Eq. Oper. Theory, 78(1):7577, 2014.Google Scholar
[125] Kailath, Thomas. Linear systems. Prentice-Hall Information and System Sciences Series. Prentice-Hall, Englewood Cliffs, NJ, 1980.Google Scholar
[126] Kaliuzhnyi-Verbovetskyi, Dmitry S. and Vinnikov, Victor. Singularities of rational functions and minimal factorizations: The noncommutative and the commutative setting. Linear Algebra Appl., 430(4):869889, 2009.Google Scholar
[127] Kaliuzhnyi-Verbovetskyi, Dmitry S. and Vinnikov, Victor. Foundations of Free Non-Commutative Function Theory. American Mathematical Society, Providence, RI, 2014.Google Scholar
[128] Kato, Tosio. Perturbation Theory for Linear Operators. Springer, Berlin, 1966.Google Scholar
[129] Kelley, John L.. General topology. Springer-Verlag, New York-Berlin, 1975. Reprint of the 1955 edition [Van Nostrand, Toronto, Ont.], Graduate Texts in Mathematics, No. 27.Google Scholar
[130] Klep, Igor and Spenko, Spela. Free function theory through matrix invariants. Canad. J. Math., 69(2):408433, 2017.Google Scholar
[131] Knese, Greg. Polynomials defining distinguished varieties. Trans. Amer. Math. Soc., 362(11):56355655, 2010.Google Scholar
[132] Knese, Greg. Rational inner functions in the Schur-Agler class of the polydisk. Publ. Mat., 55(2):343357, 2011.Google Scholar
[133] Kobayashi, Shoshichi. Hyperbolic Complex Spaces. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 318. Springer-Verlag, Berlin, 1998.Google Scholar
[134] Koosis, Paul. An Introduction to Hp Spaces. London Mathematical Society Lecture Notes, vol. 40. Cambridge University Press, Cambridge, 1980.Google Scholar
[135] Kosiński, Łukasz and Zwonek, Wlodzimierz. Nevanlinna-Pick problem and uniqueness of left inverses in convex domains, symmetrized bidisc and tetra-block. J. Geom. Anal., 26(3):18631890, 2016.Google Scholar
[136] Krantz, Steven G.. Function Theory of Several Complex Variables. Wiley, New York, 1982.Google Scholar
[137] Krantz, Steven G.. Function Theory of Several Complex Variables. 2nd ed. Wadsworth-Cole, Belmont, CA, 1992.Google Scholar
[138] Kummert, Anton. Synthesis of two-dimensional lossless m-ports with prescribed scattering matrix. Circ. Syst. Signal Process., 8(1):97119, 1989.Google Scholar
[139] Lax, Peter. Translation invariant spaces. Acta Math., 101:163178, 1959.Google Scholar
[140] Lax, Peter. Functional Analysis. Wiley, New York, 2002.Google Scholar
[141] Lax, Peter and Phillips, Ralph S.. Scattering theory. Rocky Mountain J. Math., 1:173224, 1971.Google Scholar
[142] Leech, Robert B.. Factorization of analytic functions and operator inequalities. Integral Eq. Oper. Theory, 78(1):7173, 2014.Google Scholar
[143] Lempert, Laszlo. La métrique de Kobayashi et la représentation des domaines sur la boule. Bull. Soc. Math. France, 109:427484, 1981.Google Scholar
[144] Loomis, Lynn H.. An Introduction to Abstract Harmonic Analysis. D. Van Nostrand, Toronto, New York, and London, 1953.Google Scholar
[145] Löwner, Karl. Über monotone Matrixfunktionen. Math. Z., 38:177216, 1934.Google Scholar
[146] Luger, Annemarie and Nedic, Mitja. A characterization of Herglotz-Nevanlinna functions in two variables via integral representations. Ark. Mat., 55(1):199216, 2017.Google Scholar
[147] McCarthy, John E. and Pascoe, James E.. The Julia-Carathéodory theorem on the bidisk revisited. Acta Sci. Math. (Szeged), 83(1–2):165175, 2017.Google Scholar
[148] McCarthy, John E. and Timoney, Richard. Non-commutative automorphisms of bounded non-commutative domains. Proc. Roy. Soc. Edinburgh Sect. A, 146(5):10371045, 2016.Google Scholar
[149] Mancuso, Mark. Inverse and implicit function theorems for noncommutative functions on operator domains. To appear in J. Oper. Theory.Google Scholar
[150] McCullough, Scott and Putinar, Mihai. Noncommutative sums of squares. Pacific J. Math., 218(1):167171, 2005.Google Scholar
[151] Mercer, James. Functions of positive and negative type and their connection with the theory of integral equations. Philos. Trans. Roy. Soc. London Ser. A, 209:415– 446, 1909.Google Scholar
[152] Moore, Eliakim H.. General Analysis. The American Philosophy Society, Philadelphia, PA, part I, 1935; part II, 1939.Google Scholar
[153] Müntz, Chaim Herman. Über den Approximationssatz von Weierstrass. In H. A. Schwartz Festschrift, pages 303–312. Berlin, 1914.Google Scholar
[154] Naĭmark, Mark A.. Positive definite operator functions on a commutative group. Izv. Akad. Nauk SSSR, 7:237244, 1943.Google Scholar
[155] Nevanlinna, Rolf. Asymptotische Entwicklungen beschränkter Funktionen und das Stieltjessche Momentproblem. Ann. Acad. Sci. Fenn. Ser. A, 18:153, 1922.Google Scholar
[156] Nevanlinna, Rolf. Über beschränkte Funktionen. Ann. Acad. Sci. Fenn. Ser. A, 32(7):775, 1929.Google Scholar
[157] Nikol’skiĭ, Nikolaĭ and Vasyunin, Vasily. Elements of spectral theory in terms of the free function model Part I: Basic constructions. In Axler, S., McCarthy, J. E., and Sarason, D., eds., Holomorphic Spaces, vol. 33, pages 211302. Mathematical Sciences Research Institute Publications, Cambridge University Press, Cambridge, 1998.Google Scholar
[158] Nikol’skiĭ, Nikolaĭ K.. Treatise on the Shift Operator: Spectral Function Theory. Grundlehren der mathematischen Wissenschaften, vol. 273. Springer-Verlag, Berlin, 1985.Google Scholar
[159] Pascoe, James E.. Note on Löwner’s theorem on matrix monotone functions in several commuting variables of Agler, McCarthy and Young. arXiv:1409.2605.Google Scholar
[160] Pascoe, James E.. The inverse function theorem and the Jacobian conjecture for free analysis. Math. Z., 278(3-4):987994, 2014.Google Scholar
[161] Paulsen, Vern I.. Every completely polynomially bounded operator is similar to a contraction. J. Funct. Anal., 55:117, 1984.Google Scholar
[162] Paulsen, Vern I.. Completely Bounded Maps and Operator Algebras. Cambridge University Press, Cambridge, 2002.Google Scholar
[163] Pick, Georg. Über die Beschränkungen analytischer Funktionen, welche durch vorgegebene Funktionswerte bewirkt werden. Math. Ann., 77:723, 1916.Google Scholar
[164] Pisier, Gilles. A polynomially bounded operator on Hilbert space which is not similar to a contraction. J. Amer. Math. Soc., 10:351369, 1997.Google Scholar
[165] Pisier, Gilles. Introduction to Operator Space Theory. London Mathematical Society Lecture Note Series, vol. 294. Cambridge University Press, Cambridge, 2003.Google Scholar
[166] Popescu, Gelu. Free holomorphic functions on the unit ball of B(H)n . J. Funct. Anal., 241(1):268333, 2006.Google Scholar
[167] Popescu, Gelu. Free holomorphic functions and interpolation. Math. Ann., 342(1):130, 2008.Google Scholar
[168] Popescu, Gelu. Free holomorphic automorphisms of the unit ball of B(H)n. J. Reine Angew. Math., 638:119168, 2010.Google Scholar
[169] Popescu, Gelu. Free biholomorphic classification of noncommutative domains. Int. Math. Res. Not. IMRN, (4):784850, 2011.Google Scholar
[170] Procesi, Claudio. A noncommutative Hilbert Nullstellensatz. Rend. Mat. Appl. (5), 25(1–2):1721, 1966.Google Scholar
[171] Putinar, Mihai. Uniqueness of Taylor’s functional calculus. Proc. Amer. Math. Soc., 89:647650, 1983.Google Scholar
[172] Riesz, Frigyes and Sz.-Nagy, Béla. Functional Analysis. Dover, New York, 1990.Google Scholar
[173] Rosenblum, Marvin and Rovnyak, James. Hardy Classes and Operator Theory. Oxford Mathematical Monographs, Oxford Science Publications. Clarendon Press, Oxford University Press, New York, 1985.Google Scholar
[174] Rudin, Walter. Function Theory in Polydiscs. Benjamin, New York, 1969.Google Scholar
[175] Rudin, Walter. Real and Complex Analysis. McGraw-Hill, New York, 1986.Google Scholar
[176] Rudin, Walter. Functional Analysis. McGraw-Hill, New York, 1991.Google Scholar
[177] Ryan, Raymond A.. Introduction to Tensor Products of Banach Spaces. Springer Monographs in Mathematics. Springer-Verlag London, London, 2002.Google Scholar
[178] Salomon, Guy, Shalit, Orr M., and Shamovich, Eli. Algebras of bounded noncommutative analytic functions on subvarieties of the noncommutative unit ball. Trans. Amer. Math. Soc., 370(12):86398690, 2018.Google Scholar
[179] Sarason, Donald. On spectral sets having connected complement. Acta Sci. Math., 26:289299, 1965.Google Scholar
[180] Sarason, Donald. Generalized interpolation in H. Trans. Amer. Math. Soc., 127:179203, 1967.Google Scholar
[181] Sarason, Donald. Sub-Hardy Hilbert Spaces in the Unit Disk. University of Arkansas Lecture Notes, Wiley, New York, 1994.Google Scholar
[182] Sarason, Donald. Nevanlinna-Pick interpolation with boundary data. Integral Eq. Oper. Theory, 30:231250, 1998.Google Scholar
[183] Sarkar, Jaydeb. Operator theory on symmetrized bidisc. Indiana Univ. Math. J., 64(3):847873, 2015.Google Scholar
[184] Schur, Issai. Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind I. J. Reine Angew. Math., 147:205232, 1917.Google Scholar
[185] Schur, Issai. Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind II. J. Reine Angew. Math., 148:122145, 1918.Google Scholar
[186] Shields, Allen L.. Weighted shift operators and analytic function theory. In Topics in Operator Theory. Mathematical Surveys and Monographs, vol. 13, pages 49– 128. American Mathematical Society, Providence, RI, 1974.Google Scholar
[187] Shilov, Georgi E.. On the decomposition of a commutative normed ring into a direct sum of ideals. Amer. Math. Soc. Transl. (2), 1:3748, 1955.Google Scholar
[188] Smirnov, Vladimir I.. Sur les valeurs limites des fonctions, régulières à l’intérieur d’un cercle. J. Soc. Phys.-Math. Léningrade, 2(2):2237, 1929.Google Scholar
[189] Smirnov, Vladimir I.. Sur les formules de Cauchy et de Green et quelques problèmes qui s’y rattachent. J. Soc. Phys.-Math. Léningrade, 3:338372, 1932.Google Scholar
[190] Smith, Roger R.. Completely bounded maps between C*-algebras. J. Lond. Math. Soc., 27:157166, 1983.Google Scholar
[191] Stone, Marshall H.. Linear Transformations in Hilbert Space. New York, 1932.Google Scholar
[192] Sylvester, James J.. Sur l’équations en matrices px = xq. C. R. Acad. Sci. Paris, 99:6771, 1884.Google Scholar
[193] Szőkefalvi-Nagy, Béla. Sur les contractions de l’éspace de Hilbert. Acta Sci. Math., 15:8792, 1953.Google Scholar
[194] Szőkefalvi-Nagy, Béla and Foias, Ciprian. Harmonic Analysis of Operators on Hilbert Space. North Holland, Amsterdam, 1970.Google Scholar
[195] Szőkefalvi-Nagy, Béla and Foias, Ciprian. Harmonic Analysis of Operators on Hilbert Space, 2nd ed. Springer, New York, 2010.Google Scholar
[196] Szász, Otto. Über die Approximation stetiger Funktionen durch lineare Aggregate von Potenzen. Math. Ann., 77(4):482496, 1916.Google Scholar
[197] Taylor, Joseph L.. The analytic-functional calculus for several commuting operators. Acta Math., 125:138, 1970.Google Scholar
[198] Taylor, Joseph L.. A joint spectrum for several commuting operators. J. Functional Analysis, 6:172191, 1970.Google Scholar
[199] Taylor, Joseph L.. A general framework for a multi-operator functional calculus. Adv. Math., 9:183252, 1972.Google Scholar
[200] Taylor, Joseph L.. Functions of several noncommuting variables. Bull. Amer. Math. Soc., 79:134, 1973.Google Scholar
[201] Taylor, Joseph L.. Several Complex Variables with Connections to Algebraic Geometry and Lie Groups. Graduate Studies in Mathematics, vol. 46. American Mathematical Society, Providence, RI, 2002.Google Scholar
[202] Tolokonnikov, Vadim A.. Estimates in the Carleson corona theorem, ideals of the algebra H, a problem of Sz.-Nagy. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 113:178198, 267, 1981. (Investigations on linear operators and the theory of functions, XI.)Google Scholar
[203] Treil, Sergei. Estimates in the corona theorem and ideals of H : A problem of T. Wolff. J. Anal. Math., 87:481495, 2002. (Dedicated to the memory of Thomas H. Wolff.)Google Scholar
[204] Trybula, Maria. Invariant metrics on the symmetrized bidisc. Complex Var. Elliptic Equ., 60(4):559565, 2015.Google Scholar
[205] Tully-Doyle, Ryan. Analytic functions on the bidisk at boundary singularities via Hilbert space methods. Oper. Matrices, 11(1):5570, 2017.Google Scholar
[206] Varopoulos, N. T.. On an inequality of von Neumann and an application of the metric theory of tensor products to operators theory. J. Funct. Anal., 16:83100, 1974.Google Scholar
[207] Voiculescu, Dan. Free analysis questions. I. Duality transform for the coalgebra of X : B. Int. Math. Res. Not., (16):793822, 2004.Google Scholar
[208] Voiculescu, Dan. Free analysis questions II: The Grassmannian completion and the series expansions at the origin. J. Reine Angew. Math., 645:155236, 2010.Google Scholar
[209] Neumann, John von. Allgemeine Eigenwerttheorie Hermitescher Funktionalop-eratoren. Math. Ann., 102:49131, 1929.Google Scholar
[210] Neumann, John von. Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes. Math. Nachr., 4:258281, 1951.Google Scholar
[211] Waring, Edward. Meditationes Algebraicæ. American Mathematical Society, Providence, RI, 1991. (Translated from the Latin, edited, and with a foreword by Dennis Weeks, with an appendix by Franz X. Mayer; translated from the German by Weeks.)Google Scholar
[212] Wermer, John. Banach Algebras and Several Complex Variables. Markham, Chicago, 1971.Google Scholar
[213] Wlodarczyk, Kazimierz. Julia’s lemma and Wolff’s theorem for J -algebras. Proc. Amer. Math. Soc., 99:472476, 1987.Google Scholar
[214] Young, Nicholas. An Introduction to Hilbert Space. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, 1988.Google Scholar
[215] Young, Nicholas. Some analysable instances of μ-synthesis. In Mathematical Methods in Systems, Optimization, and Control. Operator Theory: Advances and Applications, vol. 222, pages 351–368. Birkhäuser/Springer Basel, 2012.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×